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Abstract. In this work we present a novel procedure, involving linear viscoelastic analysis, to 

discriminate the two possible contributions of the observed damping peak which appears around 

840 K – 1050 K in mechanically deformed high purity single-crystalline molybdenum. An 

interesting feature of the procedure is that, for low damping samples, it can efficiently resolve 

experimental peaks that result from the superposition of different processes independently of the 

ratio between their relaxation strengths. This allows us to confirm that two different relaxation 

processes appear in molybdenum in the temperature range about 0.3 Tm, one around 840 K, and the 

other one near 1050 K. These can be related to diffusion and to a coupled mechanism involving 

creation and diffusion of vacancies, respectively. 

Introduction 

Molybdenum, a group VI transition metal has a melting point of 2883 K, high specific heat, and 

good corrosion and creep resistance. Among the metals useful for high-temperature applications, 

the melting point of molybdenum is exceeded only by tungsten and tantalum. Molybdenum is 

ductile at room temperature, with a brittle-ductile transition temperature significantly lower than 

that of tungsten. Molybdenum has also good strength at high temperatures, being lighter than 

tungsten and tantalum [1, 2]. These qualities make molybdenum attractive for the use in the nuclear 

industry [3 - 7]. 

Mechanical spectroscopy, referred to also as the internal friction method, is a non-destructive 

technique and is a fundamental tool for studying the movement of dislocations and their interaction 

with point defects [8, 9]. It involves the simultaneous measurement of the damping or internal 

friction, Q
-1
, and the elastic modulus as a function of temperature. 

We have reported recently that molybdenum exhibits a damping peak at about 840 K – 1050 K, 

which is developed in deformed samples after annealing at temperatures above that of the vacancy 

migration [10, 11]. The intensity of the damping peak depended on the degree of plastic 

deformation at room temperature, but it was not affected by a bias stress. Moreover, the peak 

temperature and activation energy of this relaxation process increased with the temperature of the 

previous annealing of the sample; and it was independent of the crystal orientation. For instance, the 

activation energy increases from 1.6 eV for peak temperature at around 840 K to 2.7 eV for a peak 

at 1000 K. Also, the shape of the peak when it appears at temperatures around 1000 K is markedly 

asymmetrical. It has been proposed that the vacancy-dislocation interaction mechanism controls this 

peak [10, 11]. 

The Modified Relaxation Time (MRT) function and its applications, derived from a general 

linear viscoelastic formalism, are a very useful tool to determine if more than one overlapping 
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relaxation processes are taking place. In fact, it is well known that relaxation processes involving 

dislocations and non-dilute concentration of point defects originate damping peaks that are wider in 

comparison with the Debye model. Also, in most cases the observed peaks are asymmetrical. The 

MRT function clearly describes the width and symmetry characteristics of relaxation processes, as it 

will be later shown. 

In this work, the MRT is applied to the study of the relaxation damping peaks at high 

temperatures in deformed and deformed plus irradiated molybdenum. The dependence with 

temperature of experimental data from these relaxation processes is adequately described by a 

Havriliak-Negami (HN) function, and the MRT makes possible to find a relation between the 

parameters of the HN function and the activation energy of the process. 

The analysis allows us to relate the relaxation peak appearing at temperatures below 900 K, to a 

physical mechanism involving vacancy-diffusion-controlled movement of dislocations. In contrast, 

when the peak appears at temperatures higher than 900 K, the damping is controlled by a coupled 

mechanism of diffusion and creation plus diffusion of vacancies in the dislocation line. 

Theoretical Background 

The dynamical response of a linear viscoelastic material is usually described in terms of the 

complex modulus G* (or the complex compliance J*) as functions of the circular frequency ω and 
the temperature T. The complex modulus is generally presented in terms of its real and imaginary 

parts, that is, G* (T, ω) = G’(T, ω) + i G”(T, ω), where G’ is the storage modulus, G” is the loss 

modulus and i is the imaginary unit [12]. 

The internal friction (or loss tangent) Q
-1
 is defined as the quotient between the imaginary and 

real part of the complex modulus. 
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It is useful to define a dimensionless magnitude ∆, usually called the relaxation strength, in terms of 

the characteristic parameters of the modulus: 
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where the zero-frequency limit Gr(T) = G
*
(T, ω = 0) is the called relaxed modulus, and the high-

frequency limit Gu(T) = G
*
(T, ω → ∞) is the unrelaxed modulus. 

The Debye function, a process characterized by an single relaxation time, τD (T), is often 
employed to describe relaxation processes; due to its conceptual simplicity. In this case, the internal 

friction is written as 
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On the other hand, if the process cannot be represented by a single relaxation time, different 

approaches have been developed for analyzing the problem [9, 12]. This work presents a different, 

novel way to represent the loss tangent and, therefore, re-analyze the magnitude and its 

characteristic parameters. 

The Modified Relaxation Time (MRT) function. The internal friction represented by Eq. 3 can be 

written in a different manner. In previous works [13, 14] it has been rigorously demonstrated that 

the dependence of Q
-1
 on T and ω can be expressed in terms of two functions, Λ(T) and τt(T, ω) as 

follows: 
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where Λ (T) is the envelope function and τt(T, ω) is the modified relaxation time function (MRT 

function), formerly called the integrated distribution function in [13, 14]. The function τt represents 

a local perturbation of the Debye process in the (T, ω) domain, and its frequency dependence is 

critically related to the existence of multiple relaxation processes, that is, a relaxation times 

distribution function. For the case of only one relaxation time, the MRT function is reduced to τD T) 
and the envelope function is the pre-factor in Eq. 3. 

In a measurement of internal friction as a function of frequency, at constant temperature, which 

usually gives a single-peaked function, Λ (T) represents simply the double of the peak value, since 

the loss tangent takes its maximum value at the frequency ωm where ωmτt(T, ωm)  = 1. On the other 

hand, in a measurement of internal friction as a function of temperature at constant frequency, Λ(T) 

represents the envelope of the family of Q
-1  vs. T curves, since 2/)(),(1 TTQ Λ≤− ω  for all ω [13]. 

Analysis of Thermally Activated Processes Using the MRT 

The MRT function can be used to analyse the relaxation distribution involved in thermally 

activated processes. Usually, the shift of the peak temperature in the internal friction peaks with 

frequency has been widely used to determine the activation energy in this kind of processes [8, 9]. 

In fact, assuming that the characteristic relaxation time of the present distribution function depends 

exponentially on temperature as 

)/exp()( 0 kTHT ττ =                                                                                                                    (5) 

and at the peak temperature is such that 1)( =Tωτ , the mean activation energy, H, can be obtained 

from a linear regression between the measurement frequency at the peak temperature and the peak 

temperature. This is the so called Arrhenius plot [8, 9]. In Eq. (5) k is the Boltzmann constant and τ0 

is the mean pre-exponential factor. However, this procedure does not give any information about 

the distribution function that describes the internal friction peak, and in particular, whether there are 

or not several closely spaced relaxation times around the principal one. 

In order to show the advantages of the MRT formalism the Havriliak-Negami (HN) parametrical 

expression for dynamical modulus will be used. They are defined by [15, 16] 
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This function has been used to generate different Q
-1
  vs. T curves, for several frequencies and 

relaxation strength values. The values of α and β are the characteristic parameters of HN function, 

while relaxation time )(Tτ  has been simulated by using Eq. (5) for different values of H. α  and β 

are phenomenological parameters that describe the symmetrical and asymmetrical broadening of the 

peak, respectively. In fact, these behaviours are related to the loss modulus (the imaginary part), 

which could lead to slightly differences in Q
-1
. For simplicity, α, β and ∆ will be considered 

independent of temperature in the following discussion. In addition, it is convenient to mention that 

α and β are introduced as phenomenological parameters to describe the broadening of the relaxation 

peak (in comparison to the Debye model) and in consequence do not have, up to the present, a clear 

physical interpretation. 

Fig. 1 shows a few typical examples of internal friction peaks and the corresponding MRT 

functions vs. temperature curves. In all cases, even though the relaxation strength, ∆ , varies over 

three orders of magnitude, it is evident that the MRT functions are independent of ∆. 
 

Solid State Phenomena Vol. 137 51



 
Fig. 1. Internal friction peaks (full symbols) and MRT functions (empty symbols) for the case of a 

HN function, with different relaxation strengths. 
 

Also, it is important to note that the MRT functions show a linear behaviour on both sides of the 

peak, but the slopes of the linear sections on each side of the peak have a different dependence on 

the activation energy and on the parameters of the HN function. On the high temperature side, the 

slope of the MRT function, SH is found to be very close to 

HSH α=                                                                                                                                      (7) 

and therefore it is independent of the value of β. In addition, on the low temperature side, the slope 

SL is found to be nearly equal to 

HSL βα=                                                                                                                                   (8) 

Eqs. 7 and 8 have been verified through extensive numerical computations spanning all the 

physically meaningful range of the variables α, β, ∆  and  H. This remarkable, novel result 
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highlights the usefulness of the MRT formalism for the analysis of experimental data of relaxation 

processes. 

When β is different from 1, there is a change in the slope of the MRT function, and the quotient 

between SL and SH is directly the value of the parameter β. Moreover, both slopes are proportional 

to the activation energy H. In the Debye case, that is, when α = 1 and β = 1, the function is a 
straight line and its slope is directly the value of H, as it could be expected. 

It should be emphasized that in the novel procedure described above for the analysis of 

relaxation processes, the Modified Relaxation Time (MRT) function depends only on the relaxation 

times distribution function, and in consequence it is independent of the relaxation strength and the 

relaxed modulus. 

Moreover, for processes described by the Havriliak-Negami function, the slope of the MRT, as a 

function of temperature at a given frequency, is proportional to the shape parameters, α and β, and 
the activation energy H. Therefore, the graphical representation of the MRT makes much easier 

identify the characteristic parameters related to the shape and symmetry of the distribution function 

of relaxation times involved in the process. 

Experimental 

Samples. The single crystals used in this work were prepared from zone refined single-crystal rods 

of molybdenum in A.E.R.E., Harwell, UK. The residual resistivity, RR, of the samples was about 

8000, the main residual impurity being tungsten. Samples with <110> crystallographic tensile axis 

were annealed and then deformed in extension, followed by torsion at room temperature. Two types 

of deformed samples were studied: type I (elongation: 5 %, torsion: 1 %) and type II (elongation:     

3 %, torsion: 1 %). Further experimental details are given in Ref. [11]. 

After the room temperature deformation some samples of type II were neutron irradiated. Low 

flux neutron irradiation were performed at room temperature, at the Siemens SUR 100 nuclear 

reactor, RA-4, of the National University of Rosario and National Atomic Energy Commission of 

Argentina. The RA-4 was operated at 0.7 W. The thermal- and fast-neutron fluxes were about      

5.2 x 10
7
 n/cm

2
s, and their energies were of 0.025 eV and 10 Mev, respectively. Samples were 

irradiated at two different doses, 64 Gy and 127 Gy, and in this work are indicated as samples  b  

and c, respectively. A more detailed description of the neutron irradiation procedure is given 

elsewhere [17]. 

Mechanical Spectroscopy Measurements. Damping and natural frequency were measured in an 

inverted torsion pendulum, under a vacuum of about 10
-5
 Pa. The equipment can also apply a bias 

stress or “in situ” deformation. The maximum strain on the surface of the sample was 5 x 10
-5 
and 

the measurement frequency was around 1 Hz, except for the determination of the frequency 

dependence of the peak temperature. The heating and cooling rates employed in the test were          

1 K/minute. A heating ramp and its corresponding cooling run will be called hereafter a thermal 

cycle. There was no hold time once the maximum temperature had been achieved [11]. 

Results and Discussion 

Fig. 2 shows the damping peaks for the samples of type I and II, after background subtraction [18]. 

Curves A, B and C correspond to damping peaks obtained from a stabilised damping spectrum 

measured in a type II sample at a natural frequency of about 0.2 Hz, for thermal cycles with 

maximum temperatures of 1040 K, 1100 K and 1155 K, respectively; see reference [11]. The 

resulting peak temperatures were around 900K, 940 K and 960 K, respectively. Peaks labelled D 

and E correspond to the sample of type I after stabilization during thermal cycles up to temperatures 

of 1050 K and 1230 K, respectively. The resulting peak temperatures were 817 K and 949 K, 

respectively. In this figure the relaxation peaks measured in <110> samples have been summarized, 

in order to study the response of the MRT formalism, see for more details Ref. [18]. 

The calculated curves of the logarithm of the MRT as a function of 1/kT (that is, ln(τt(ω,T)) vs. 

1/kT), corresponding to peaks in Fig. 2 are given in Fig. 3. For the sake of clarity, only part of the 
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points calculated with the MRT function have been plotted. For the same reason the curve 

corresponding to the peak B has not been included, but it has a similar behaviour to the plotted 

curves, E and C. Vertical arrows in the figure indicate the temperature Tp corresponding to the 

maximum value of damping (Qp
-1
). SH and SL indicate the slope at high temperature and low 

temperature of the fitted straight lines (full lines), as defined in Eqs. 7 and 8. 

It has to be remarked that for curves A and D two linear zones with the same slope were found in 

the MRT plot, in spite of the scatter of the calculated data. For temperatures far from the peak 

temperature the linearity is lost, as it could be expected due to the uncertainties introduced in the 

data by the background subtraction procedure. It was shown in the theoretical background section 

that the distribution function of relaxation times should be symmetrical for this kind of behaviour of 

the MRT. In contrast, for spectra B (not shown in Fig. 3), C and E two clearly linear zones with 

different slopes were found. The behaviour of the MRT function indicates that these relaxation 

peaks should be asymmetrical, in agreement with the experimental results. Therefore, for these 

peaks it can be proposed that at least two overlapped relaxations occur; where each one can be 

described through its corresponding distribution function of relaxation times. It should be 

emphasized that, as it was indicated in the theoretical background section, no assumptions or 

restrictions were made about the shape of the distribution function of relaxation times for the 

calculation of the MRT curves plotted in Fig. 3. 

 

 

Fig. 2. Internal friction peaks after background 

subtraction (symbols) for the 

molybdenum samples. Spectra A, B and 

C: type II. Spectra D and E: type I. 

Full lines represent the numerical 

fitted peaks. 

 
Fig. 3. Natural logarithm of MRT as a function 

of 1/kT for the peaks plotted in Fig. 2. 

Vertical arrows indicate the position of 

the peaks on the 1/kT axis. Full lines, SH 

and SL are defined in the text. 

 

From the slopes of the straight segments fitted to the ln(MRT) vs. 1/kT curves (full lines in Fig. 

3), the parameters of the HN distribution function can be obtained by means of Eqs. 7 and 8. Table 

1 gives the calculated parameters for the HN function together with relevant experimental 

information related to each damping peak. 

The damping peaks calculated theoretically by means of Eqs. 1 and 6 using the fitted parameters 

of the HN function are also shown in Fig. 2 by means of full lines. The activation energy for the 

calculation of Eq. 6, using Eq. 5, is the value that we obtained previously from the usual Arrhenius 

procedure, see ref. [11] and Table 1. The use of this value of the activation energy for the HN 

function is supported by the fact that, even if there is a distribution of relaxation times, the 

experimentally measured τ (T) (Eq. 5) corresponds to the mean value of the distribution function. 

The peak temperature and peak height for the calculated relaxations are also listed in Table 1. 
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Table 1. AT: annealing temperature. Qp
-1
: damping value at the maximum. Tp: temperature for the 

Qp
-1
. α and β: parameters of the HN function. H: activation energy, taken from Ref. [11]. 

Calculated Peak name / 

sample type 

AT (K) Tp (K) Qp
-1
x10

3 
H [eV] α β 

Tp (K) Qp
-1
x10

3
 

A / II 1040 880 10.3 1.8 0.58 → 1 880 10.7 

B / II 1100 940 3.0 2.0 → 1 0.3 935 3.2 

C / II 1155 960 1.7 2.75 → 1 0.12 960 1.9 

D / I 1040 817 9.5 1.6 0.6 → 1 817 9.6 

E / I 1230 949 9.8 2.1 → 1 0.25 949 9.8 

A / b (irradiated 

64 Gy) 

973 615 4.5 1.6 (*) 0.33 →1 615 4.5 

B / b (irradiated 

64 Gy) 

1230 972 2.8 2 (*) →1 0.31 980 2.5 

A / c (irradiated 

127 Gy) 

973 695 3.6 1.7 (*) 0.39 →1 695 3.6 

842 3.7 B / c (irradiated 

127 Gy) 

1230 

929 3.7 

1.7 (*) 0.50 0.54 872 3.7 

C / c (irradiated 

127 Gy) 

1230 1067 1.7 3 (*) →1 0.32 1060 1.6 

(*) calculated value from the fitting of the HN function (see the text). 

 

As it can be seen from Fig. 2, the agreement between the experimental and calculated peaks is 

good, indicating that the calculated parameters of the HN function (α and β) are appropriate for 

describing the relaxation peaks in molybdenum at temperatures about 0.3 Tm. Therefore, from the 

study of the behaviour of α and β parameters as a function of temperature valuable information can 

be obtained about the physical process controlling the relaxation peaks. 

As it can be noted from Table 1 the peaks A and D were mainly symmetrical (β → 1) but broader 

(α < 1) than a Debye peak, in agreement with previous works [10, 11], where the half-width of the 

peaks was evaluated by means of the traditional analysis [8, 9]. Indeed, the peaks which appear at 

temperatures well below 900 K, obtained during annealing up to temperatures smaller than about 

1100 K, can be described by a symmetrical distribution function of relaxation times, with an 

average activation energy represented by the value obtained from the Arrhenius plot. In addition, a 

good agreement was also found for relaxation peaks during thermal cycles up to 973 K in type I 

samples with a Qp
-1
 of about 20 x 10

-3
. This indicates that the same physical mechanism occurs 

when the sample is heated below 1100 K [18]. 

For peaks B, C and E (with Tp > 900 K), which correspond to samples heated above 1100 K, the 

α and β parameters are: β < 1 and α → 1, revealing that the peaks are asymmetrically broadened. 

This means that there is an overlapping of relaxation processes leading to an asymmetrical 

broadening of the peak. It must be remembered that α  and β are the phenomenological parameters 

that describe the symmetrical and asymmetrical broadening of the peak, respectively, and in 

consequence, if β ≠ 1, the limit α → 1 does not lead to a Debye peak. 

Moreover, C and E peaks, which have close peak temperature (≈ 950 K) and very different 

relaxation intensities (by a factor about 5), exhibit similar α and β parameters, indicating an effect 

only on the relaxation strength, in agreement with the explanation given above for the peak at lower 

temperature. 

However, the physical mechanism controlling these asymmetrical peaks at higher temperatures 

is different to the physical mechanism giving rise to the symmetrical peaks found at lower 

temperatures. The change in the α and β parameters, depending of the peak temperature, (see Table 

1) leads to the conclusion that there exist two relaxation processes in molybdenum in the 

temperature range of 0.3Tm. The first relaxation process is related to the symmetrical peak which 
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appears between 820 K - 900 K, and the other to the asymmetrical peak which appears at higher 

temperatures, above 950 K [18]. 

The behaviour of the damping peaks and the MRT curves measured in irradiated samples are in 

good agreement with the analysis given above. Figures 4 and 5 show the damping peaks for 

samples (b) and (c) after background subtraction, after some thermal cycles up to 973 K. In this 

case, during the cooling part of the first thermal cycle ,after heating to 973 K, the damping peaks 

appear at lower temperature and have smaller intensity than the one for non-irradiated samples, as a 

consequence of the excess of vacancies, out of thermodynamic equilibrium, promoted by the 

neutron irradiation [17]. Successive thermal cycles up to 973 K did not modify the peak temperature 

and intensity of the peaks (see spectra A in the Figures). 

After the first thermal cycle up to 1230 K a wide peak appears within the temperature interval 

600 K – 1100 K, which is composed by more than one elementary peak. This situation is shown in 

the spectrum B for the sample (c) in Fig. 5. Indeed, the extra amount of vacancies produced by 

irradiation in the deformed samples makes it possible, at least once, to observe the two relaxations 

in the same spectrum [17]. 

Subsequent thermal cycles up to 1230 K lead to a strong shift in the peak temperature and to a 

decrease in the peak height, in a similar fashion as the non-irradiated sample (see peak marked B in 

Fig. 4 and peak C in Fig. 5). 

 

 

Fig. 4. Internal friction peaks after background 

subtraction (symbols) for molybdenum 

(b) samples (deformed and irradiated 64 

Gy). A: After thermal cycles up to 973K. 

B: After several thermal cycles up to 

1230K. Full lines represent the 

numerically fitted peaks. 

 

 

Fig. 5. Internal friction peaks after background 

subtraction (symbols) for the 

molybdenum (c) samples (deformed and 

irradiated 127 Gy). A: After a thermal 

cycles up to 973K. B: After first heating 

up to 1230K. C: After several thermal 

cycles up to 1230K. Full lines represent 

the numerically fitted peaks. 

 

The behaviour of the calculated MRT values for the peaks plotted in Figures 4 and 5 is shown in 

Figures 6 and 7. As it can be inferred from these Figures, MRT results are in agreement with 

experimental data. This clearly shows that, for peaks measured after annealing at temperatures 

higher than 1100 K, the relaxation process must be described by more than a single relaxation time; 

see also Table 1. In fact, curves B for sample (b) (Figure 6) and curves B and C for sample (c) 

(Figure 7) have two linear zones, indicated as above by SL and SH, with markedly different slopes. 

In contrast, peaks obtained from thermal cycles performed up to temperatures lower than 1100 K 

exhibited the same slope in the straight lines SL and SH. 
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It should be also mentioned that in irradiated samples the activation energy values given in Table 

1, were also determined from the numerical procedure of fitting the HN function. Despite the scatter 

in the obtained values, the agreement is fairly good. 

Finally, full lines in Figures 4 and 5 are the calculated peaks using the parameters determined 

through the MRT function, as it was done above for deformed samples. The agreement between 

experimental and theoretical results is good. 

 

 
Fig. 6. Natural logarithm of MRT as a 

function of 1/kT for the peaks plotted 

in Fig.4. Full lines, SH and SL are 

defined in the text. 

 
Fig. 7. Natural logarithm of MRT as a 

function of 1/kT for the peaks plotted 

in Fig.5. Full lines, SH and SL are 

defined in the text. 

 

In order to relate the information obtained from the MRT function with the physical driving 

force which gives rise to the damping peaks discussed above, the following facts must be taken into 

account. The low temperature peak is developed both in deformed and deformed plus irradiated 

samples after annealing at temperatures above that of vacancy diffusion, and the higher temperature 

peak appears at temperatures near to 0.3 Tm [10, 11, 17, 18]. In addition, the measured activation 

energy for the lower temperature peak is 1.6 eV [11]. Therefore, this peak can be related to the 

dragging of vacancies by the dislocation line controlled by a diffusion mechanism. In contrast, 

when the peak appears at higher temperature, results show that it is controlled by another 

mechanism. This mechanism is consistent with the creation and diffusion of vacancies in the 

dislocation line, in agreement with the activation energy measured for the high temperature peak 

(2.7 eV). In addition, it has been proposed that the high temperature peak is involving both 

diffusion and creation plus diffusion of vacancies in the dislocation line [17, 18]. 

Conclusions 

A novel method has been presented to analyze relaxation processes in terms of the Modified 

Relaxation Time function (MRT). The slope of the MRT when applied to processes described by 

the Havriliak-Negami function, as a function of temperature, is shown to be proportional to the 

shape parameters, α and β and the activation energy H. Also, the MRT is independent of the 

relaxation strength and the unrelaxed modulus. 

The Modified Relaxation Time function procedure was applied to a Havriliak-Negami fit of 

experimental results from mechanical spectroscopy in high purity single-crystalline molybdenum, 

with good results. The analysis indicates that the distribution of relaxation times is symmetrical for 

peaks below 900K and asymmetrical at higher temperatures. The lower temperature relaxation was 

related to vacancy-diffusion-controlled movement of dislocations and the higher temperature peak 

was related to a process controlled by both the diffusion and the creation plus diffusion of vacancies 

in the dislocation line. 
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