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mapped to CFT states defined on the asymptotic boundary. It is also observed that these
states are endowed with quantum coherence properties.

Applying this as holographic engineering, one can to construct an emergent space
geometry with certain predetermined topology by preparing an entangled state of the dual
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1 Introduction

The main goal of holographic gravity is to understand the rules to reconstruct the spacetime
geometry from states of some quantum theory defined on a fixed timelike boundary. In the
AdS/CFT realization of holography [1], the standard interpretation is that the exact bulk
geometry AdSd+1 corresponds to the fundamental state |0〉 of the CFT Hilbert space H
defined on its conformal boundary Sd−1 × R, and all classical asymptotically AdS (aAdS)
spacetime with only one connected boundary, should correspond to some exited state [3, 4].

By considering two non-interacting identical copies of this CFT (labeled by a subindex
1, 2). The asymptotically AdSd+1 spacetime with a eternal black hole corresponds to the
(entangled) state [2]:

|Ψ(β)〉 =
∑
n

e−
β
2 En

Z1/2 |En〉1 ⊗ |En〉2 ∈ H1 ⊗H2 , β ≡ (kBT )−1, (1.1)

where the |En〉 are a complete basis of eigenstates of the CFT Hamiltonian H, and En are
its eigenvalues. This is the TFD state and describes a thermal state of the CFT quantum
system at temperature T [5–7].

It has been shown that all classically connected spacetime should have a similar
(entangled) structure [8], thus it would be interesting to have some precise recipe to describe
this decomposition for more general states and dual geometries. One of the important
ingredients of this is that state above is a quantum superposition of tensor products
|En〉1 ⊗ |En〉2, which are assumed to correspond to a pair of disconnected classical aAdS
spacetimes (see figure 1).

– 1 –



J
H
E
P
0
7
(
2
0
2
3
)
2
2
7

e
β En–

Σ=
n

(a) (b)

Z
—1/2

–2 En En

Figure 1. (a) Penrose diagram of a maximally extended AdS-black hole. The green line is a
connected spacial slice (b) We schematically show the interpretation of [8], where the resulting
state (1.1) is a linear combination of states |En〉1 ⊗ |En〉2 supposedly dual to aAdS spacetimes. The
blue lines represent the non-interacting CFT theories on the two asymptotic boundaries.

For holographic uses of this description one must know the dictionary between the
product CFT basis and the gravitational dual, however we do not expect that all the CFT
energy eigenstates are dual themselves to some geometric description, and if they are, it is
unclear how to interpret their gravity dual precisely. So from a holographic point of view,
the expansion in the energy basis might be senseless.

Since the TFD state is only a function of the (boundary) Hamiltonian, it is diagonal
in the energy basis, and so the r.h.s. of (1.1) coincides with the so called Schmidt form of
the state. It has numerous applications in quantum information theory, for example in the
characterization of quantum entanglement and purification of states, and in plasticity [9].

This is the Schmidt form of the state and its components are nothing but the components
of the propagator (the evolution operator) for an Euclidean time β/2:

e−
Enβ

2 δnm = 〈En|U(β/2)|Em〉 ,

which can be represented as a path integral on the CFT fields on the Euclidean cylinder
Σ ≡ Sd−1 × [0, β/2] (see figure 3).

The reason why this state corresponds to a classical geometry is that, because of the
standard duality recipes [10, 11], the same path integral can be expressed as a partition
function of gravity, and finally the classical (Euclidean) geometry is recovered as saddle in
the large N approximation. In this case, Σ represents the (past) asymptotic boundary of
the Euclidean black hole geometry, and is homologous to the initial spacelike slice Σ0 of the
maximally extended black hole: the Einstein-Rosen wormhole (see figure 5 (left)).

The main objective of this paper is to construct a systematic recipe to compute the
multi-partite, manifestly entangled, descomposition of the CFT state corresponding to some
dual classical geometry, and as by-product: to prepare entangled states dual to certain
prefixed geometries.

The more fundamental question that still remains open, is which are the states of
a b-partite quantum system H1 ⊗ · · · ⊗ Hb that have a dual geometric interpretation in
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terms of a connected/disconnected classical geometry, and how general they are. In this
sense, it has been pointed out that entanglement is not sufficient and some other ingredient
participates of the emergence mechanism [12]. In [13, 14] was argued that generic entangled
states do not have a connected geometric dual, while in more recent studies have shown
that small deformations of the TFD double even describe wormhole-like spacetimes [15–17].
The present approach aims to address these issues in a more systematic way.

In the paper [18] the prescription of [3, 19] was applied to a class of 2 + 1-dimensional
wormhole-like spacetimes [20, 21], stressing the relationship with the Hartle-Hawking (HH)
type of construction [22]. The construction presented in this article is in line with this
earlier work, and makes use of more recently developed results and tools [4, 23–25]

Other previous works with different mehods, have also studied the decomposition of
entangled states dual to multi-boundary wormholes in 2 + 1d (and genus g = 0) in a
puncture limit [26, 27].

The manuscript is organized as follows. In section 2 we build and present the main
prescription, and show how to derive it from the standard holographic recipes. Part of
this consists of the homology and equivalence hypothesis, which is argued from all known
examples of holographic gravity at the end of the section. In section 3 we show how the
same method can be generalized to capture all the non trivial spacetime topologies in
2 + 1d, and precisely which CFT states are actually involved in the emergence mechanism,
observing (as a result) that the ingredient of quantum coherence is actually a property
of these states [12]. In section 4 we discuss better which is the actual meaning of dual
geometric interpretation of a given quantum state, since the dominant saddle geometry
depends on the basis which the boundary state is project onto; and furthermore, clarify
the role of the Hartle-Hawking wave functional in the present framework. In section 5 we
follow and describe in detail the steps of the prescription for the paradigmatic case of black
holes. Finally in section 6 we exemplify how to compute the Schmidt form for a non trivial
spatial topology (g = 1) using the present methods, and find how the coefficients encode
the genus. Concluding remarks are collected in section 7.

2 The prescription

The idea that the connected spacetime geometry is encoded in the entanglement pattern
can be realized more concretely by projecting the states in the basis of tensor products of
(generalized) n-particle states:

|n〉x1,x2,...,xn ≡ O(x1)O(x2) . . . O(xn)|0〉 , (2.1)

where x1 . . . xn are points of the asymptotic boundary where the CFT is defined and O

are primary operators. For simplicity, we only go to consider the subspace generated by
states (2.1) built with a scalar primary operator O, of conformal weight ∆, dual to a massive
scalar field Φ(x) with mass µ2 = ∆(∆ − d) defined on the bulk. In other words, we will
project states onto the CFT-sector, dual to the Fock space associated to the scalar field Φ.

In the large-N approximation all the matter fields, so as metric fluctuations (gravitons),
behave as a free non back-reacting scalar field [28–30]. On a fixed background spacetime M ,

– 3 –



J
H
E
P
0
7
(
2
0
2
3
)
2
2
7

this field can be canonically quantized and following the holographic BDHM dictionary [4, 28–
30], we can identify the CFT operators with Φ̂(x) =

∑
α fα(x) a†α + h.c. near the AdS

boundary, where fα(x) are the normalizable modes (labeled by α) that solve the equation
of motion, and aα (a†α ) are the standard annihilation (creation) operators.

Therefore, taking products of O(x) we schematically have

|n〉 ∼ (a†)n|0〉, (2.2)

where the subindices α1, . . . αn were dropped out for simplicity. This is the reason why we
refer to these states as (generalized) n-particle states, and a (holographic) Fock space F
can be defined as the direct sum on the n-particle spaces. It is worth emphasizing that to
large N this basis (approximately) diagonalizes the Hamiltonian, so that the states |En〉
can be represented in this approximation as exact AdS spacetimes with n free particles.

So then, we are going to project the states in a (holographic) Fock space, i.e. to
decompose them in the basis of tensor products of (generalized) n-particle states as follows:

|Ψ〉 =
∑
nm

Ψnm |n〉1 ⊗ |m〉2 ∈ F1 ⊗F2 , (2.3)

considering first the tensor product of two CFTs, dual to spaces time with two asymp-
totic boundaries, for simplicity. By standard holographic arguments [8], all the relevant
information on the emergent classical geometry (distance and topology) is encoded in the
components of this expansion, which manifestly express the entanglement between two
quantum systems living on the boundaries (figure 2) [32].

The TFD state is a particular example whose components in this basis are also related
to the components of the propagator [24, 25]:

Ψnm(β) = 〈n|U(0, β/2) |m〉 . (2.4)

In this way the evolution operator characterizes a state of the boundary gauge theory, and
one can generalize the TFD vacuum to (thermal) excited states by substituting [25]

U(0, β/2) → Uλ(0, β/2) ≡ T e
∫ β/2

0 dτ O(τ,x)λ(τ,x) , (2.5)

which expresses the sourced CFT propagator in the Interaction Picture (I.P.)(T is the
euclidean time ordering operator). Below, we will show the detailed mechanism because
this family of states is dual to classical aAdS geometries with two asymptotic boundaries,
and derive a formula to compute the coefficients of (2.3).

Consider the standard GKPW holographic formula [10, 11], conveniently expressed in
a piece-wise form (regarding figure 3):

〈0| e
∫ 0
−∞ dτ O(τ,x)λ1(τ,x)

Uλ(0, β/2) e−
∫∞
β/2 dτ O(τ,x)λ2(τ,x)|0〉 =

∫
∂M=Σc

DMDΦ e−I[M,Φ]

(2.6)
where the (Euclidean) time ordering and the integrals on x ∈ Sd−1 on the left hand side
are implicit. This formula relates the sourced CFT generating functional Zλ(λ1, λ2) with a
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Figure 2. This figure schematically shows the terms of the expansion (2.3). The red diagrams
describe the result (2.9).

λ1

C1

λ2

C2

τ
0 β/2

Σ
Figure 3. The figure above represents the Schwinger-Keldysh contour in the imaginary time
associated to the path integral Z(λ1, λ2), and below, we depicted the boundary manifold for the
prescription (2.6).

gravitational partition function on the r.h.s., where I consists of the Einstein-Hilbert action
suplemented with the Gibbons-Hawking boundary term plus terms governing the matter
fields. The boundary manifold Σc is given by the surface Σ ≡ Sd−1 × [0, β/2] where the
state (2.5) is defined, whose boundaries are glued to two auxiliary (semi-infinite) intervals.
By adding a point at the infinity τ = ±∞ these auxiliary pieces are compactified to the
cups (half spheres) C1,2 of figure 3, where one can define non-vanishing sources λ1, λ2. So on
the left, the operator (2.5) has been projected onto auxiliary states defined (in the I.P.) as:

|λ1,2〉 ≡ e

∫
C1,2

O(τ,x)λ1,2(τ,x)
|0〉. (2.7)

The right hand side of (2.6) stands for the standard gravitational path integral on all the
aAdS geometriesM whose boundary is Σc ≡ C1∪Σ∪C2 and Dirichlett b.cs. for all the bulk
fields Φ(x). One can evaluate it in the large N approximation as Zλ(λ1, λ2) ≈ e−I(M,φ(x))

by taking the dominant (Euclidean) geometry saddle: M ,1 and the classical fields φ(x), that
1Trivially, the exact Euclidean AdSd+1 spacetime is a solution as long as the back-reaction due to the

sources λ can be neglected.
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solve the eqs.o.m. in terms of the boundary values λ1,2 on C1,2, and λ on Σ. This problem
is well posed in general, and it is a crucial part of the recipe to calculate the components of
the expansion (2.3) to large N .

It is worth remembering that to large N , the states (2.7) correspond to coherent states
in the bulk picture of the Hilbert space, i.e: |λ1,2〉 ∝ e

∑
α
λ1,2(α)a†α |0〉 (see ref. [4] for details).

This is useful for our purposes since the Fock (orthonormal) basis can be systematically
generated from these states by taking n derivatives with respect to λ1,2 in n arbitrary points
of the cups. Schematically:

|n〉i = (a†i )n√
n!
|0〉 ∼ ∂n

∂λni
|λi〉

∣∣∣∣∣
λi=0

i = 1, 2. (2.8)

In fact, differentiating n1 + n2 times with respect to the sources λ1,2 to both sides
of (2.6) in different points of C1,2, and using (2.4) and (2.5) to identify the l.h.s. in the
limit λ1 = λ2 = 0, we derive our main prescription:

Ψn1n2(β, λ) = ∂n1+n2

∂λn1
1 ∂λn2

2
Zλ(λ1, λ2)

∣∣∣∣∣
λ1=λ2=0

(2.9)

where we have used (2.4) and (2.5) to identify the l.h.s. in the limit λ1 = λ2 = 0. Recall that
∂λnii , i = 1, 2. denotes ∂λi(x1) . . . ∂λi(xni) where the points x1 . . . xni must finally be valued
on the gluing spheres ∂Ci ∼ Sd−2. According to this result, the entanglement/Schmidt
components are given by functions of correlations between insertions of the operators O(x)
on the regions C1,2, through the geometry M .

This is a manifest relation between the components of the (TFD) state and correlation
functions computed in the classical geometry dominating Zλ, and it has been derived by only
assuming the GKPW prescription. In other words, the formulas (2.6) and (2.9) explicitly
show how certain entangled bi-partite form of the state is dual to a classical spacetime from
the basic dictionary.

In this sense, we achieve as a result that deformations from the TFD state by λ 6= 0 also
have geometric dual interpretation. Then according to (2.8), by considering a perturbative
expansion in λ of the state (2.5), one systematically captures the deviations from the TFD
vacuum described by local insertions O(x) at points of Σ [15–17].

Homology and Equivalence Hypothesis. The formulae derived above require a com-
plementary constraint to link the space(time) topology with the data Σ, λ characterizing
the state.

Let consider a classical Lorentzian aAdS spacetime ML[Σ0], which evolves from an
initial totally geodesic spacelike hypersurface Σ0 (i.e, its extrinsic curvature Kij = 0), one
would like to describe as an entangled state of the boundary field theory by computing the
Schmidt coefficients.

Then, in the Hartle-Hawking (HH) approach to AdS quantum gravity [2–4, 22, 25],
the initial wave functional is a path integral on the Euclidean compact manifolds M[Σ0]
bounded by the (past) asymptotic boundary Σ and an initial surface Σ0, which is also
totally geodesic with respect toM[Σ0], and ∂Σ = ∂Σ0. These geometriesM[Σ0] can be
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called Euclidean cobordisms between the conformal boundary Σ and Σ0 [33], which are
homologous surfaces.

In addition to this, we will assume that Σ is topologically equivalent to Σ0, as can be
observed in many examples. In the AdS black hole, the initial space Σ0 is the connected
(AdS) Einstein-Rosen wormhole, equivalent to ≡ Σ ∼ Sd−1 × [0, β/2], and anchored by two
disconnected spheres ∂Σ ∼ Sd−1

(1) t S
d−1
(1) [2] (see figure 5 (left)). The other known examples

are general aAdS3 spacetimes that can be described as a foliation Σ(b,g) × R, with metrics
ds2 = dτ2 + cosh2 τ dΣ2

(b,g), where Σ(b,g) is an arbitrary 2d Riemann surface such that both
Σ0 (totally geodesic) and Σ are copies of Σ(b,g) at τ = 0 and τ = −∞ respectively.

This is what we will refer to as the hypothesis of homology and equivalence, which
almost all examples of the AdS/CFT literature seem fulfill, and it will be complementary
to the formulas (2.6) and (2.9) in order to connect an arbitrary topology of a spatial slice
Σ0 with the Schmidt coefficients.2

In the current prescription, this constraint works as an important part of the recipe to
build up some specific space(time) geometry from quantum entanglement: by defining λ(x)
as the pullback of an Euclidean classical solution of the bulk fields (a saddle of the HH wave
functional) M0, φ0 onto Σ, which unambiguously defines the state (2.5). The final step is
to use the above formulas ((2.6) and (2.9)) to compute the Schmidt coefficients explicitly.
In the next section, we will show how this recipe generalizes to capture arbitrary number of
boundaries and non-trivial topologies. In section 4 this will be elaborated more in depth.

Finally, it is worth noticing that the method formulated here connects the Schwarszchild-
AdS spacetime with the TFD state in all details. It is similar to the original argument of [2]
about homology, but differs by the fact that the formula (2.9) explicitly provides the state
from direct calculations in the bulk (see section 5), which is key to further generalizations.

Observe also that the geometries M0 and M , the saddles of the HH wave functional and
of Zλ(λ1, λ2) (r.h.s. of (2.6)) respectively, can be different although the state is the same.
This motivates the discussion of section 4. on the connection between these geometries
other dual descriptions of a same CFT state. In section 4 it also will be argued that some
of this restriction must be relaxed in suitable contexts.

3 More general states with holographic dual

The formula (2.6) can be generalized to arbitrary number of boundaries and topologies of
Σ such that the operator Uλ must be substituted by a more general object (See figure 4).
For instance, in AdS2+1/CFT2 the state is characterized by the operator Ub,g,λ on behalf
of Uλ(β/2), where g is the genus and b the number of boundaries of a general Riemman
surface Σb,g. Thus, we can see that all the states described as CFT path integrals on these

2The HH wave functional for a global AdSd+1 spacetime, for instance, is given by a path integral on
the Euclidean cobordisms between a cup C ≡ Σ, which is conformal to the (euclidean) boundary, and
an equivalent disk C ∼ Σ0 anchored by the (blue) sphere Sd−1 (see one of the two cups drawn in the
figure 2) [3].
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...

λ1

C1

λ2

C2
Σ0

Figure 4. The prescription (2.6) for more general CFT states (eq. (3.1)) is depicted: gluing the
pieces on the blue spheres yields a surface homologous and equivalent to Σc

g.

surfaces (with local sources λ), expressed by

Ub,g,λ(η1 . . . ηb) =
∫
η1...ηb

[Dη] e
−SCFT[η] +

∫
Σ(b,g)

λO
, (3.1)

where η1 . . . ηb denote the Dirichlet boundary conditions for the CFT fields on the boundaries
of Σ(b,g), are dual to a bulk geometry. Since a prescription similar to (2.6) can be formulated,
one can find the dominant saddle M of the path integral to its right.

In fact, according to the state-operator correspondence in CFT’s in the path integral
representation, eq. (3.1) defines a very general class of CFT states, and consequently, a
holographic formula like (2.6) can always be written to make contact with a dual geometry
(see figure 4). The precise recipe is to glue b cups C1 . . . Cb (with sources λ1 . . . λb) on each
boundary of Σ(b,g), which yields the compactified boundary Σc

g. Therefore, the generalization
of the prescription (2.6) can be expressed as∫

[Dη] e
−SCFT[η] +

∫
Σ(b,g)

λO+
∫
C1

λ1O+···+
∫
Cb
λbO

=
∫
∂M=Σcg

DMDΦ e−I[M,Φ] , (3.2)

where the left path integral sums over all the CFT field configurations on the closed Riemann
surface Σc

g. This is nothing but the wave functional Ub,g,λ(λ1 . . . λb) of the state (3.1) in
the particular basis of states (2.7), which is generally overcomplete [4, 25].

Then on the right hand side, one can find the dual geometry by finding a classical aAdS
solution M,φ for the specific boundary conditions: Σc

g , λ, λ1 . . . λb. If there is more than
one saddle, the geometric dual is understood to be the dominant one.

Finally by taking n1 + . . .+nb functional derivatives with respect to λ1 . . . λb on different
points of the respective Cis to both sides of (3.2), we obtain a expression similar to (2.9) for
the coefficients Ψn1...nb , which are correlation functions computed on the spacetime defined
as the solution M in the limit λ1 . . . λb → 0. So the gravity dual of the state in this basis
might be viewed as the Witten diagram itself (with n1 + . . .+ nb external lines) within such
background geometry. In the forthcoming section, we will discuss more these statements in
the context of the state representations and wave functionals.

As stated in the previous section, our prescription consists of the formulas (3.2) and the
corresponding generalization of (2.9) to b boundaries, complemented with the constraint of
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topological equivalence argued before. It provides the components of the b-partite entangled
state, whose (Lorentz) gravity dual evolves from an initial spacelike hypersurface Σ0, which
is totally geodesic and equivalent to Σ(b,g), and such that ∂Σ(b,g) = ∂Σ0. Although (3.2) is
expressed in 2+1d for concreteness, the prescription holds for arbitrary spacetime dimension
and topology of the compact surface Σ.

As a further result, it is worth noticing that a general property of the states (3.1)
(which have geometric dual), is the quantum coherence from the bulk point of view, in the
large-N approximation [12]. This can be verified using the [28, 29] recipe, and it has been
explicitly checked in the cases of pure AdS and BTZ geometries [4, 25].

4 Dual geometric interpretation and the Hartle-Hawking wave
functional

In general it can be established that a state has dual geometric interpretation if, when pro-
jected onto some suitable basis, its wave functional is dominated by some classical geometry.

Going further, although the duality to a classical geometry is a feature of the state, the
specific dual geometry shall depend on the basis which the state is projected on. For instance
as explained above, eq. (3.2) shows this in the particular basis of all the field configurations
λi(x) on the cups Ci; and the generalization of the formula (2.9) to b boundaries expresses
the projection of the state onto the complete Fock basis (2.7). So consistently, the states (3.1)
satisfies the previous definition, and has (dual) geometric interpretation.

In such a context, the Hartle-Hawking (HH) w.fs. are nothing but the projection of the
states (3.1) onto the set of configurations of all the bulk fields {hµν(x), f(x), x ∈ Σ0} on
certain surfaces Σ0 anchored by ∂Σ. It is defined as the path integral involving the local
fields of the gravitational theory and compact topologies [22]:

Ψ(λ,Σ)[Σ0, f ] =
∫
∂M=Σ0∪Σ

DM
∫

Φ(Σ)=λ,Φ(Σ0)=f
DΦ e−I[M,Φ] . (4.1)

Let M [Σ0] denote the dominant saddle geometry, which is a function of all the boundary
conditions: φ(x) ≡ λ(x) on Σ,3 and the induced metric and matter fields are hµν(x), f(x)
on Σ0, but here we would like to emphasize the importance of the dependence in the
choice of Σ0.

Notice that an important general property that characterizes the configuration basis
is that the surfaces Σ0 must complement Σ to form a closed (compact) manifold Σ0 ∪ Σ,
in order to have a well posed Dirichlet problem to determine M [Σ0]. This explains the
homology statement. Moreover, Σ0 is to be identified with the initial spatial surface of the
proper Lorentzian spacetime ML[Σ0], which is generally obtained by analytical continuation
from the Euclidean saddle geometry M [Σ0].

On the other hand, different elements of the basis give place to different dominant
geometries since the Dirichlett b.cs. are in fact different; however in order to define a
classically more significant HH geometric dual, a sort of double saddle point analysis can

3Near the asymptotic surface Σ, the metric is locally AdS.
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be done since the wave functional has a peak on

δΨ(λ,Σ)
δhµν

= 0 ,

which -to large N - implies that the amplitude maximizes in a saddle such that (Kµν −
Khµν)|Σ0 = 0, which becomes a Newman b.c. on the surface Σ0, trivially fulfilled by
choosing a totally geodesic surface Kµν |Σ0 = 0. In this case Σ0 is a moment of time
reflection symmetry, and let denote the corresponding saddle as M0.

This geometry is particularly useful for many purposes; e.g, in real-time applications [2,
3, 22], this is the solution to be glued to the Lorenzian piece ML[Σ0], and the (squared)
norm of the state 〈Ψ|Ψ〉 is computed by a path integral whose saddle point is the geometry
obtained by joining two copies of M0 across their common boundary Σ0 [4]. This has an
obvious time-reflection symmetry with respect to Σ0 [33].

Observations regarding the equivalence constraint and the gravitational space
of states. In the most familiar example of the state (2.5), there are two very different
HH wave functionals as we have two possibilities for totally geodesic Σ0 such that Σ0 ∪Σ is
closed, namely:

1. Σ0 ∼ S1 × I where I is a real interval, then Σ0 is connected, homologous, and
equivalent to Σ, and the saddle geometry M [Σ0] corresponds to the BTZ solution (see
figure 5 (left)). Notice that the manifold M [S1 × I] is a solid thorus, and there are curves
which cannot be continuously contracted in it.

2. Σ0 ∼ D2 tD2, it consists of a disconnected pair of discs, which are homologous but
not equivalent to Σ as claimed in section 2, and the solution in the interior M [D2 tD2]
corresponds to a solid cylinder filled with the global AdS solution (referred to as thermal
AdS). In contrast with the previous case, every closed curve in M [D2 tD2] is contractible.

This is the simplest context where we observe that the equivalence constraint does not
hold; therefore, it depends on the regime/moduli parameters that characterize the state, i.e,
the asymptotic surface Σ, and λ.

As is well known, this feature is described by the Hawking-Page (HP) transition,
governed by whether some of these geometric saddles dominates the partition function

Z(β) ≡ Tr U(β/2)U †(β/2) = 〈Ψ|Ψ〉. (4.2)

Notice that this is a sum over the probabilities of the different classical geometries (1. 2.,
in this case).

Nevertheless, as argued above, even at the level of amplitudes one can compute all
the wave functionals for each possible choice of Σ0, and determine which one dominates
in each regime. The result should then be consistent with the standard description of the
HP-transition.

Thereby, the bulk representations of the state should be formally captured as a “sum”
over the choices of (topologically different) Σ0 such that Σ0 ∪ Σ is closed. Thus, in order to
describe this consistently with (4.2), two obvious requirements must be met to large N :
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I - There are no cross terms in (4.2), that is, the (gravity) Hilbert space is such that
the configuration basis {(Σ0, f(x)) ∀f(x)/x ∈ Σ0} on topologically different Σ0’s are
orthogonal, at least at the semiclassical level, schematically:

Σ0 6= Σ′0 =⇒ 〈Σ0, f |Σ′0, f ′〉 ≈ 0,

while for two equivalent slices Σ0 = Σ′0, the inner product reduces to the usual
definition for fields 〈f |f ′〉Σ0 .

II - Only two topologies (1. 2.) contribute to (4.2).

A natural and consistent proposal that collects these facts is that the states in the bulk
Hilbert space, are represented as a direct sum over all the topologically inequivalent initial
slices Σ0. For a generic state Ψ(λ,Σ) ∈ H⊗b, where b is the number of connected components
of ∂Σ:

Ψ(λ,Σ) =
⊕
Σ0

Ψ[Σ0] / Σ0 ∪ Σ = closed , ∂Σ0 = ∂Σ, (4.3)

which, can be represented as (3.1) in the boundary theory. This can be alternatively
formulated by claiming that the identity operator 1b on H⊗b, is represented in the bulk-
gravity Hilbert space as:

1
(grav)
b ≡

∑
Σ0

∑
f

|Σ0, f〉〈Σ0, f |

 . (4.4)

This formally projects the state |Ψ(λ,Σ)〉 onto the topologically different spatial slices, and
the standard description of the HP transition turns out be manifest as this expression is
inserted into the r.h.s. of (4.2)

In the specific case discussed above (d = 1, b = 2) eq. (4.3) becomes:

Ψ(λ,Σ) = Ψ[S1 × I]⊕Ψ[D2 tD2]⊕ . . . , (4.5)

where . . . denote direct sum on surfaces Σ0 with higher genus g(Σ0) ≥ 1, that because of
(II) should be negligible; for instance, their wave functionals might depend on the genus,
e.g. as ∼ e−cgq , q ∈ N, where c is a high positive number

As conclusion, note that one could relax the equivalence hypothesis from our prescription
of section 2, and evaluate all the wave functionals according to eq. (4.3) to compare them.
Moreover, the equivalence property can be derived in this framework if the component
Σ0 ≡ Σ, i.e. Ψ(λ,Σ)[Σ, f ], finally dominates the expansion (4.3) at least in a suitable regime
of λ, and moduli of Σ. This specific subject shall be further investigated in a future work.

Reverse space(time) engineering from CFT states. The homology and equivalence
constraint defines a one to one holographic dictionary between the spatial topology and
the asymptotic boundary Σ, in the proper range of parameters characterizing the state
(read the discussion in the next section). According to this, one can reciprocally reconstruct
the initial data on a spatial slice of the spacetime from a general state defined in the CFT
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Σ
1CFT 2CFT

Σ0

Σ

Σ0

Figure 5. (left) The eternal black hole is represented: we see that Σ0 is a totally geodesic surface,
homologous to Σ and they both share the boundaries (red points). The shaded (blue) region shows
the euclidean space time dominating the Hartle-Hawking wave functional. (right) The same region
is depicted regarding sections 2 and 4: it shows that the HH-saddle M0 described in section 4, the
shaded blue region, is topologically a solid thorus D2 × S1 containing non contractible curves.

theory as (3.1), then, and one straightforwardly obtains the HH (main) geometric dual by
solving a classically well posed problem.

In fact one must solve the Euclidean Einstein equations for a compactM0, the cobordism
between Σ(b,g) and the equivalent (and totally geodesic) Riemann surface Σ0. They join
on the b holes to form a closed surface, where one gives Dirichlett b.cs. φ ≡ λ (and aAdS
metric) on Σ(b,g), and the canonical momenta ΠΦ = 0 , Kij = 0 on Σ0.

Otherwise, regarding the framework discussed above, one could drop the equivalence
assumption and compute the wave functions Ψ(b,g)[Σ0] in the semi-classical approximation,
for all Σ0, by evaluating the action on the corresponding classical solutions M0 / ∂M0 =
Σ(b,g)∪Σ0. The expectation is that Σ(b,g) ∼ Σ0 dominates in the proper region of parameters.

5 The preliminary example: the TFD state from bulk computations

The goal of this section is to show how the prescription works in the simplest case: the
AdS black hole spacetime. Since the formulas 2 (2.9) were derived from the fundamental
holographic prescriptions [10, 11], we do not need to check them explicitly. Nevertheless,
the holographic computation indicated on the r.h.s. of (2.9) can be illuminating about many
conceptual and technical details; for instance, the definition and treatment of the Fock
basis, its analytical extensions, the central role of the two-point functions in characterizing
the Schmith coefficients, as well as some general remarks on the method.

To high black hole mass/temperature (β < 1/THawking−Page), the HH wave functional
must be dominated by the euclidean geometry shown in the lower part of figure 5 (left),
and the initial surface Σ0 is totally geodesic (Kij = 0) with respect to both: M0 and ML.
This surface is the (aAdS) Einstein-Rosen wormhole Σ0 ∼ Sd−1 × I, whose boundary are
two disconnected spheres ∂Σ ∼ Sd−1

(1) t S
d−1
(2) [2] (figure 5 (right)).

Precisely, the first step of the recipe of section 2 is to use the equivalence constraint to
put Σ ≡ Σ0 in the formula 2. Remarkably, to make the present calculation we will not use
any other detail on the Euclidean AdS-Schwarschild solution M0.
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Then, following the prescription (2.6), one must find the (dominant) saddle geometry
M filling Σc ≡ C1 ∪ Σ ∪ C2 (see figure 3). This is obtained by smoothly gluing the three
pieces M1, N,M2 of global AdS together, on totally geodesic discs denoted by S1,2(∼ Dd),
such that ∂M1,2 = C1,2 ∪ S1,2 , ∂N = S1 ∪ Σ ∪ S2 are closed. Taking the fundamental state
λ ≡ Φ|Σ = 0, the resulting geometry M is the Euclidean AdSd+1.4 Therefore, from the
general solution for a massive scalar field in AdSd+1 in global coordinates, one can compute
the boundary-to-boundary correlators following the standard methods.

For our present purposes it is convenient to obtain the Euclidean two-points function
on the cylinder of figure 4 by analytical continuation, from the propagator in the Lorentzian
AdSd+1 spacetime. By using a suitable system of global coordinates (see ref. [34]), the
Feynman propagator is obtained by integrating on the standard contour in the complex
ω-plane [3, 34]:

〈0|TLO(t,Ω)O(t′,Ω′)|0〉 =
∑
lm

∞∑
k=0
Nlmk Ylm(Ω)Y ∗lm(Ω′) e−i|t−t′|ωkl , (5.1)

Nlmk(Ω,Ω′) = 2∆ 2(∆−d) Γ(1− ν)
Γ(1 + ν)

(−1)k

k!
Γ(k + l + ∆)

Γ(k + l + d
2)Γ(−(k + ν))

,

where Ω denotes the coordinates on the d − 1 unit sphere,5 ν ≡
√
µ2 + d2/4, and ωkl ≡

2k + l + ∆ , k, l = 0, 1, 2, . . . are the normal frequencies.
By performing the analytical extension

t′ ≡ t1 − iτ1 , t ≡ t2 − i(τ2 + β/2)

such that τ1 ≤ 0 and τ2 ≥ 0, describe the positions of the insertions on the respective cups
C1,2. Using that the CFT vacuum is invariant under arbitrary (complex) time translations
U(z)|0〉 = 0 , ∀z ∈ C, we obtain:

〈0|T O(t1 − iτ1,Ω1)U(β/2)O(t2 − iτ2,Ω2)|0〉 =

=
∑
lm

∞∑
k=0
Nlmk Ylm(Ω1)Y ∗lm(Ω2) e−ωklβ/2e−i(t1−t2)ωkle(τ1−τ2)ωkl . (5.2)

Since the regions C1,2 are auxiliary and would be causally independent, the time ordering
of the real time variables t1,2 does not matter for the purpose here, hence the modulus has
been conveniently dropped out from this expression.

Regarding the formula (2.9), the l.h.s. of this equation exactly expresses the matrix ele-
ments of the operator U(β/2) in the (analytically extended) Fock basis O(t1,2−iτ1,2,Ω1,2)|0〉,
but in fact, the most familiar TFD form of these coefficients is to be recovered when one
(Fourier) transforms them into the space of real frequencies/energies ω1, ω2; thereby, by

4Actually, it is slightly deformed by the auxiliary sources λ1,2.
5The spherical harmonics Ylm on Sd−1 satisfy ∇2Ylm = −q2Ylm with q2 = l(l + d− 2), l = 0, 1, . . ., as

well as standard relations of orthogonality and normalization.
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multiplying this by ei(t1−t2)ω and integrating out the auxiliary variables t1, t2, we obtain:

Ψ11(ω1,Ω1;ω2,Ω2) = 〈0|Oω1(−iτ1,Ω1)U(β/2)Oω2(−iτ2,Ω2)|0〉 =∑
lm

∞∑
k=0
Nlmk Ylm(Ω1)Y ∗lm(Ω2) e−ωklβ/2 e(τ1−τ2)ωkl δ(ωkl − ω1)δ(ωkl − ω2) . (5.3)

We could achieve the same expression by using the BDHM dictionary [28–30]

O(t− iτ,Ω) =
∑
lm

∞∑
k=0

(
Oωkl(−iτ,Ω)e−iωklt + h.c.

)
=

=
∑
lm

∞∑
k=0

∫ ∞
0

dω
(
Oω(−iτ, lm)Y ∗lm(Ω) e−iωtδ(ωkl − ω) + h.c.

)
, ωkl > 0 .

Regarding the initial discussion of section 2 on the Fock spaces, and the relation (2.4),
eq. (5.3) expresses the components of the state in the basis:

Oωkl(−iτ,Ω)|0〉 =
∑
lm

e−τωkl Y ∗lm(Ω)N 1/2
lmk |ωkl, lm〉

(
=
∑
lm

Y ∗lm(Ω) Oωkl(−iτ, lm)|0〉
)
,

(5.4)
where |lm〉 is nothing but the standard (orthonormal) basis of the Hilbert space of one-
particle on the sphere Sd−1. It is worth remembering that in addition to the complex
conjugate, the corresponding bra involves the Euclidean time reflection τ → −τ [4]. Notice
from the definition of the basis (5.4), that the pre-factor e−τω can be removed by choosing
τ = 0. This observation plays a role in our prescription and applies to more general cases
(e.g. section 6), where one evaluates the Euclidean propagator on the boundaries of C1,2.

Thereby, (5.3) can be expressed as a state in the sector n1 = n2 = 1 of the Fock space
in this basis, resulting its Schmidt form:

|Ψ11〉 =
∑
lm

∞∑
k=0
Nlmk e−ωklβ/2 |ωkl, lm〉1|ωkl, lm〉2 . (5.5)

Comparing this with (5.1) we see that all the information of this manifestly entangled
expansion is captured in the (Euclidean) two-points function. For the simplest case of the
BTZ black hole (d = 2 + 1), this adopts a simple form:

Ψ11(ϕ1, ϕ2) = 〈0|T O(0, ϕ1)U(iβ/2)O(0, ϕ2)|0〉 = (∆− 1)2

2∆−1π

(
cosh(β/2)−cos(ϕ1−ϕ2)

)−∆
,

(5.6)
where τ1,2 = 0, and ϕ1,2 are the coordinates on the circles b1,2 ∼ S1. This interprets as the
wave function of an entangled pair of particles created at the cups C1,2, and in the large-N
approximation, the coefficients Ψnn of the expansion (2.3) is a product of n factors like this.
As a check for very large β, the Schmith coefficients reduce to n powers of it

Ψnn ∝ e−n∆β/2 (5.7)

which agrees with the TFD component of the n∆-energy level, since to low temperature,
only contribute pairs of particles in the fundamental state ω ≈ ∆.

This shows how the state dual to a AdS-Schwarschild spacetime, the TFD double, can
be straightforwardly found by holographic computations (eq. (2.9)).
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6 Characterizing entanglement for non-trivial spatial topology

In 2+1 spacetime dimensions, the spatial slices of a BTZ black hole have a cylindrical
topology, while in the wormholes the spatial slices are general two-dimensional Riemann
surfaces with b boundaries (holes). From each asymptotic region, these geometries look like
the BTZ solution, and the other boundaries as well as the non-trivial topology are always
hidden behind a horizon [35].

The goal of this final section is to estimate the SD coefficients of spacetimes with non-
trivial spacelike topology, in order to characterize them through the entanglement pattern
between the quantum systems defined on the asymptotic boundaries. As an application of
the presented method, let us study the simplest example: the state of a bipartite quantum
system, whose 2 + 1d dual spacetime starts from a spatial hypersurface Σ0 with a handle
(g = 1). This solution can be properly interpreted as a two-way wormhole.

According to the homology and equivalence hypothesis, in the appropriate regime of
parameters (moduli), Σ0 shall be conformal to a surface topologically equivalent to Σ(2,1)
(b = 2, g = 1), and anchored by two disconnected circles: ∂Σ(2,1) = S1tS1. In this example,
we take λ|Σ(2,1) = 0 for simplicity, which can be interpreted as the fundamental state related
to that topology.

By gluing Σ2,1 with two cups on its boundaries, the resulting closed surface is equivalent
to a thorus:

Σc
2,1 ≡ T 2 = S1 × S1

As highlighted in the TFD-state example, a computational advantage of the proposed
recipe is that the Hartle-Hawking geometry M [Σ0], filling Σ0 ∪ Σ(2,1), might be unknown.
What we really need to compute the SD components is the saddle geometry M that fits
into C1 ∪ Σ(2,1) ∪ C2 and dominates the r.h.s. of eq. (3.2).

The Euclidean bulk geometry M can be built up by joining two pieces M1,2 such that
∂M1,2 ≡ C1,2 ∪D2, to N whose boundary is D2 ∪ Σ(2,1) ∪D2, glued across the common
totally geodesic surfaces S1,2 ∼ D2 (Kµν |S1,2 = 0). So we have:

M ≡M1 ∪N ∪M2

where all the pieces are locally AdS3, then ∂M ≡M1 ∪N ∪M2 = C1 ∪Σ(2,1) ∪C2, which is
conformal to ∂M̃ = T 2. Therefore, the metrics on both closed surfaces shall be related by
some conformal factor hµν = Ω2(x)h̃µν , and since Σ(2,1) is a piece of T 2, Ω2(x) might be
different from one only at points of the cups C1,2, then, by attaching them to the holes of
Σ(2,1) demanding continuity, one gets

Ω2(x) ≈ 1 , ∀x ∈ ∂C1,2. (6.1)

The classical spacetime M̃ that fits into T 2 is isometric (and homeomorphic) to M , so
the correlators can be computed there. This geometry can be described by

ds̃2 = r̃2dϕ̃2 + dr̃2

r̃2 + 1 + (r̃2 + 1)dθ̃2 , ϕ̃ ∈ [0, 2π] θ̃ ∈ [0, 2πR], r ≥ 0 (6.2)
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The periodic identifications of this manifold are

θ̃ ∼ θ̃ + 2πR ϕ̃ ∼ ϕ̃+ 2π .

A circle along the angle θ̃ is non-contractible, and it has a minimal proper length:

l(r̃) =
∫ 2πR

0

√
r̃2 + 1 dθ̃ = 2πR

√
r̃2 + 1 ≥ 2πR (6.3)

as expected for a closed curve around the handle.
Since λ = 0 on Σ(2,1), the prescription (3.2) for this problem may be expressed as∫

[Dη̃] e−SCFT[η̃] +
∫
C̃1

Ω−∆λ1 O+
∫
C̃2

Ω−∆λ2 O =
∫
∂M=T 2

DMDΦ e−I[M,Φ] , (6.4)

where C̃1,2 = T 2 − Σ(2,1) denote the regions of the thorus that conformally map onto
C1,2. To large N , the r.h.s. of this expression can be approximated by the saddle M̃, φ̃.
The boundary conditions λ̃1,2 ≡ φ̃|C̃1,2

must transform accordingly, then we have that
λ̃1,2 = Ω−∆

1,2 λ1,2 as appears on the l.h.s. (see for instance [4] and appendix B of [31]).
Therefore, according to (2.9) the state components are obtained by taking n1 + n2

derivatives with respect to the sources λ1, λ2, that to large N , are given by products of
two-point functions

〈O(ϕ̃1, θ̃1)O(ϕ̃2, θ̃2)〉 = −δ
2I[M̃ ]
δλ1δλ2

= Ω∆(ϕ1, θ1)Ω∆(ϕ2, θ2)〈O(ϕ1, θ1)O(ϕ2, θ2)〉 (6.5)

but this shall be valued on ∂Σ(2,1) that consists of two separated circles on the thorus
parameterized by s1,2 ∈ S1. Using (6.1), the final result is6

Ψ1,1 ≈ 〈O(ϕ(s1), θ(s1))O(ϕ(s2), θ(s2))〉 =
∑
j∈Z

(∆− 1)2

2∆−1π
[cosh(∆θ + 2πRj)− cos(∆ϕ)]−∆ ,

(6.6)
where ∆ϕ ≡ ϕ(s2)− ϕ(s1) and ∆θ ≡ θ(s2)− θ(s1).

As prominent feature of the state components characterizing the (b = 2, g = 1)-spatial
topology (to large N), we can observe the appearing of the integer number j. In terms
of geodesic distance between two points of different boundaries, this is related to the
contribution from a minimal length around the handle (∼ 2πR), such that one shall sum
over the geodesics encircling it j times.

Remarkably, in view of (5.6), the result (6.6) matches with the following entangled state:

|Ψ(b = 2, g = 1)〉 =
∑
j∈Z
|TFD(βj)〉 = N1/2 ∑

α

∑
j∈Z

e−
βj
2 Eα |Eα〉1 ⊗ |Eα〉2 , (6.7)

where
βj
2 ≡ ∆θ + 2πRj j ∈ Z ,

6More details on this calculus can be found in refs. [24, 25]. For simplicity of the notation, we have
expressed it in the original coordinates θ, φ.

– 16 –



J
H
E
P
0
7
(
2
0
2
3
)
2
2
7

N1/2 is a normalizing constant, and α labels the eigenstates of (one copy of) the CFT
Hamiltonian. In the forthcoming subsection, we will argue this expression from a geometric
perspective using the torus symmetries.

This state depends on the parameters R and ∆θ, that is bounded because of the
thorus size: 0 ≤ ∆θ ≤ πR. Note that if R is large compared with the AdS-radious scale
(R � 1), only j = 0 contributes, and the state is in agreement with the standard TFD
double at inverse temperature β0 ∼ 2∆θ. The interpretation in this case may be that
the correlators are dominated by curves that do not probe the handle. The simplicity
of this result immediately suggests the general ansatz for arbitrary b, g, but it should be
checked properly.

The CFT operator/state from identification symmetries. In this brief subsection
we add a more detailed discussion and a derivation of the state dual to the handled spatial
geometry Σ(2,1) based on geometric aspects and symmetries. As explained before, the
completed Σc

(2,1) is a 2d torus, and the path integral (6.4) corresponds to the projection of
the state (3.1), U2,1,(λ=0), onto coherent states

UT [λ1, λ2] ≡ 〈λ1|U2,1,(λ=0)|λ2〉, (6.8)

where T ∈ C denotes the modulus of the torus (6.4), that represents the wave functional.
Then, the formula (2.9) provides the projection on a Fock basis. For the holographic calcu-
lations, we have fixed the boundary torus such that there are two independent symmetries
of identification

(θ, ϕ) ∼= (θ + 2πR,ϕ+ 2π) , (6.9)

which must be manifest at the level of the state itself. This is a very important property to
be used in the following analysis.

It is worth clarifying that this is rather different than the partition function Z2,0(β) =
Tr U2,0 defined also as a path integral on the torus, but describing the thermal partition
function for (CFT) degrees of freedom on S1, where the (thermal) state ρβ(S1) = U2,0
enjoys the explicit periodicity of the circle ϕ(∼= ϕ + 2π) that manifestly appears in the
correlations functions. While the other periodicity, in β ≡ 2πR, only arises upon taking
trace by virtue of the gluing of both cylinder extremes. In such familiar case, by identifying
the generator of translation Pθ with the Hamiltonian, the operator describing the state can
be expressed by

U2,0(β) = e−β H , (6.10)

which commutes with Pϕ, the generator of the spatial translations on S1. Although this
shares geometric properties, the state we are interested in, U2,1, is not thermal, and it is
described by the operator (6.8) endowed with the symmetries (6.9).

In fact, by virtue of the formula (2.9), we can impose UT (θ + 2πR) ≡ UT (θ) directly
on the components of the operator in the Fock basis (2.1), and obtain the conditions:

〈0|O(0, 0)UT (2πR)O(θ, 0)|0〉 = 〈0|O(0, 0)O(θ, 0)|0〉 , . . . (6.11)

where we have used that UT (±2πR)|0〉 = |0〉. This looks like KMS relations for the state
UT , and (. . . ) express that similar relations hold for all the n1 + n2- point functions, which
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completely expand the operator in the (holographic) Fock space of section 2. The correlation
functions in (6.11) appear valued at fixed (the same) ϕ, but they trivially generalize to
arbitrarily different points by composing UT with e iϕPϕ .

From the direct holographic calculus in a AdS3 spacetime whose boundary is the
torus, one obtains that the right hand side of these equations is (6.6), for the sector
n1 = n2 = 1 of the space of states, as well as the proper ones for arbitrary n1, n2. On the
other hand, noticing that each (j) term of the sum (6.6) corresponds to the matrix elements
of (thermal-like) operators as (6.10) (see section 5):

(∆− 1)2

2∆−1π
[cosh(θ + 2πRj)− cos(ϕ)]−∆ = 〈O(0, 0)U2,0(2πRj)O(θ, ϕ)〉 , (6.12)

the solution of the equations (6.11), that also fulfills (6.6), can be expressed as

UT (2πR) =
∑
j∈Z

U2,0(2πRj) =
∑
j∈Z

e−(j2πR)Pθ . (6.13)

In addition, this can be composed with the relative displacements ∆θ,∆ϕ generated
by Pθ and Pϕ respectively, and finally obtain

UT =
∑
j∈Z

e−(∆θ+j2πR)Pθ+ i∆ϕPϕ . (6.14)

Because of the infinite sum, this operator is manifestly invariant under the replacement
θ → θ + 2πR, and thereby, it captures both identification symmetries (6.9) as expected.

The operator (6.14) represents exactly the CFT state whose holographic dual has a
initial space Σ(2,1), and then, identifying Pθ once more with the Hamiltonian of the boundary
quantum system, one can express this state in a purified form as (6.7).

7 Concluding remarks

We presented a formalism that systematically connects explicitly entangled CFT states
with their emergent aAdS spacetimes in both senses: given a classical AdS spacetime
one can obtain the (multi-partite) entanglement pattern in terms of n-point correlation
functions computed on that geometry; and reciprocally, given a very general CFT state, one
can find a dual classical Euclidean spacetime, and the initial spatial geometry where the
Hartle-Hawking wave functional is defined [22], by solving a well posed classical problem.
The multi-partite expansion is realized here in a basis with a dual bulk interpretation (in
terms of particles on a fixed geometry), which is convenient for perturbative treatments.

As had been argued and conjectured in [12], it is worth emphasizing the coherent nature
of the states (3.1) (in the sense of [4]) that have a classical dual geometry, as an essential
ingredient for the holographic emergence in addition to the quantum entanglement.

Many crucial aspects of the present construction are based on some advances and tools
developed in recent years [4, 25]. As a first check we show how the method encounters
the TFD state from the Schwarschild-AdS geometry [2], and generalize this for deviations
from this state/geometry [15–17], captured by inserting general sources at the Euclidean
asymptotic boundary.
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One of the motivating objectives of this research was to clarify how and what information
about the geometry (particularly its topology) is encoded in the multi-partite, manifestly
entangled, decomposition of the state. We found that the presence of a handle in the
emergent spatial geometry is related to entanglement coefficients involving a sum on an
integer number j, interpreted as a winding number. In terms of geodesic distance, this can
be viewed as the minimal curve encircling the handle j times; hence, the genus g might be
related to the number of parameters associated to different winding numbers. Suggestively,
the resulting dual state of this geometry agrees with a superposition of TFD states.

In such a sense, these results do generalize the van Raamsdonk’s observation, since
more specific aspects of topology than space (time) connectivity can be encoded in
Schmidt coefficients.

The explicit entangled state is useful for studying certain salient aspects of holographic
(quantum) gravity and CFT for future work. In emergent gravity, the main application of
this is space-time engineering, it is useful for calculating and studying the characteristics
of the coefficients based on the most general spatial topologies, and then classifying them;
thereby, one would get a reverse engineering program to build up different (non-trivial)
classical spacetimes by suitably preparing the quantum state. Regarding CFT, since the
obtained entangled state is in its diagonal (Schmidt) form for large N, quantities such
as Rényi and von Neumann entropy can be calculated directly, as well as studying other
features of quantum information. We hope that non-trivial topological aspects (e.g. g 6= 0)
can provide non-trivial contributions to them.

The contexts where the hypothesis about topological equivalence is relaxed and how
the recipe may even work should be further explored in future research. In fact, more
studies can be done on the conditions and the range of parameters so that different initial
spatial topologies dominate the geometric dual. The present prescription can be also
applied to study replica wormholes geometries, and some aspects of traversable wormholes.
A potentially interesting framework for it is the Jackiw-Teitelboim gravity in 1 + 1d
spacetimes [36, 37]. Although for clearness we have formulated the recipe (3.2) in the
general 2 + 1d case, the prescription holds for any spacetime dimension.
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