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VARIATIONAL EIGENVALUES OF THE FRACTIONAL

g-LAPLACIAN

SABRI BAHROUNI, HICHEM OUNAIES, AND ARIEL SALORT

Abstract. In the present work we study existence of sequences of variational
eigenvalues to non-local non-standard growth problems ruled by the fractional
g−Laplacian operator with different boundary conditions (Dirichlet, Neumann
and Robin). Due to the non-homogeneous nature of the operator several draw-
backs must be overcome, leading to some results that contrast with the case
of power functions.
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1. Introduction

Given two functionals A and B defined on a suitable space X and a prescribed
number c, the task of analyzing the existence of numbers λ ∈ R and elements u ∈ X
satisfying (in some appropriated sense) equations of the type

B′(u) = λA′(u), A(u) = c,

has been a challenging labor whose beginning dates back to the mid-20th century
(here A′ and B′ denote the Fréchet derivatives of the functionals). The study on
Hilbert spaces was addressed by Krasnoselskij in [37]; for Banach spaces, it can
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be found in the literature the works of Citlanadze [20] and Browder [15, 18, 19],
where the notion of category of sets in the sense of Ljusternik and Schnirelman is
used. See also [30, 31] for some applications to partial differential equations. The
amount of research on these topics is nowadays huge. For practical reasons, for an
introduction to this theory and a comprehensive list of references we refer to the
books [16, 17, 47, 56].

After the introduction of the so-called monotonicity methods by Browder [13, 14],
Minty [44] and Vǎinberg and Kačurovskǐi [54], the study of quasilinear operators
experimented an explosive growth, and both variational and nonvariational tech-
niques were introduced by Browder, Fuč́ık, Ladyzhenskaya, Leray, Lions, Morrey,
Nečas, Rabinowicz, Schauder, Serrin, and Trudinger, among several other mathe-
maticians.

The prototypical p−Laplace operator (p > 1) then became a focus of study, and
in particular, to understand its spectral structure: given an open and bounded set
Ω ⊂ R

n, to determine the existence couples (λ, u) satisfying the equation

(1.1) − div(|∇u|p−2u) = λ|u|p−2u in Ω, u = 0 on ∂Ω

in a suitable sense. In the seminal work of Garćıa Azorero and Peral Alonso [35],
it was proved the existence of a variational sequence of eigenvalues tending to +∞,
which however, it is not known to exhaust the spectrum unless p = 2 or n = 1.
Several properties on eigenvalues (and their corresponding eigenfunctions) were
addressed by Anane et al [3, 4] and Lindqvist [41], among others, and also for more
general boundary conditions than Dirichlet. See also [28, 42].

At this point, two possible generalizations of the eigenvalue problem (1.1) could
be considered. First, its non-local counterpart governed by the well-known frac-
tional p−Laplace operator takes the form

(1.2) (−∆p)
su = λ|u|p−2u in Ω, u = 0 in R

n \ Ω
where s ∈ (0, 1) is a fractional parameter, p > 1, and

(−∆p)
su(x) := p.v.

∫

Rn

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|n+sp
dy.

The main difference here arises in the fact that this operator takes into account
interactions coming from the whole space. The same occurs with the boundary
condition. Problem (1.2) was introduced in [40]. Existence of a sequence of (vari-
ational) eigenvalues to (1.2) and its behavior as s ↑ 1 was dealt in [11]. Several
properties on eigenvalues and eigenfunctions were obtained in [12, 22, 33, 40].

A second possible generalization of (1.1) can be obtained keeping the local struc-
ture of the operator but allowing a growth behavior more general than a power.
These considerations lead to the well-known g−Laplace operator and the problem

−∆gu = λg(|u|) u

|u| in Ω, u = 0 on ∂Ω,

where ∆gu := div
(

g(|∇u|) ∇u
|∇u|

)

. The function g = G′ is given in terms of a so-

called Young function G. Here the structure of the spectrum radically changes
due to the non-homogeneity of the operator, fact that is key in the arguments
corresponding to results related to problems (1.1) and (1.2). Here several important
differences appear: the spectrum may not be discrete, then it is not clear the notion
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of a first eigenvalue nor of a sequence of them. However, when restricting the energy
level of functions, some properties of operators with p−structure are recovered: in
[34, 36, 45, 46] existence of eigenvalues was studied, and in [25, 53] the existence of
a discrete sequence of eigenvalues was obtained. It is worth of mention that under
these settings, eigenvalues are not in general variational, so less information can be
retrieved when using standard techniques.

The object of study of this manuscript is the eigenvalue problem ruled by the
fractional g−Laplacian, which can be seen as the non-local non-standard growth
counterpart of (1.1). Given an open and bounded set Ω ⊂ R

n and a fractional
parameter s ∈ (0, 1), we are concerned with the following eigenvalue problems:

• Dirichlet problem:
{

(−∆g)
su = λg(|u|) u

|u| in Ω

u = 0 in R
n \ Ω,

(D(Ω))

• Neumann problem:
{

(−∆g)
su = λg(|u|) u

|u| in Ω

Ngu = 0 in R
n \ Ω.

(N(Ω))

• Robin problem: given β ∈ L∞(Rn \ Ω)
{

(−∆g)
su = λg(|u|) u

|u| in Ω

Ngu+ βg(|u|) u
|u| = 0 in R

n \ Ω.(R(Ω))

The precise notion of eigenvalues and eigenfunctions to these problems is defined
in Section 3.

Here, the fractional g−Laplacian is defined as

(1.3) (−∆g)
su := p.v.

∫

Rn

g (|Dsu|)
Dsu

|Dsu|
dy

|x− y|n+s
,

where G is a Young function (see Section 2 for the precise definition) such that g =

G′ and Dsu := u(x)−u(y)
|x−y|s . Clearly, (−∆g)

s boils down to the fractional p−Laplacian

when G is a power function and to the p−Laplacian when s ↑ 1. See [26]. The
boundary conditions in the previous problems reflect the non-local nature of the
operator (−∆g)

s: the Dirichlet case corresponds to functions vanishing outside Ω
and not only on ∂Ω, whereas the Neumann and Robin equations make use of the
nonlocal normal derivative Ng introduced in [6].

Throughout this article we assume the Young function G =
∫ t

0
g(t) dt to satisfy

the following structural conditions:

(G1) 1 < p− ≤ tg(t)

G(t)
≤ p+ < ∞ ∀t > 0,

(G2) t 7→ G(
√
t), t ∈ [0,∞) is convex,

(G3)

∫ 1

0

G−1(τ)

τ
n+s
n

dτ < ∞ and

∫ +∞

1

G−1(τ)

τ
n+s
n

dτ = ∞.

In the case of powers (i.e. G(t) = tp) these conditions mean that 2 ≤ p ≤ np
n−sp

.
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The following functionals have an essential role in the study of eigenvalue prob-
lems for the fractional g−Laplacian

(1.4) I(u) :=
∫

Ω

G(|u|) dx, J (u) :=

∫∫

Rn×Rn

G(|Dsu|)
dxdy

|x− y|n .

and

(1.5) Jβ(u) :=

∫∫

R2n\(Ωc)2
G(|Dsu|)

dxdy

|x− y|n +

∫

Rn\Ω

βG(|u|) dx

(see Section 3 for details).

Problem D(Ω) was recently studied in [49, 50], where, once established existence
of a minimizer of the associated problem under energy constraint

ΛD
α := min {J (u) : I(u) = α}

for a given value α > 0, then by means of a version of the Lagrange multipliers
rule it is deduced existence of an eigenvalue λD

α of D(Ω) in a suitable sense, and in
general ΛD

α 6= λD
α . A further extension of this result for problems N(Ω) and R(Ω)

is provided in [6]. Other very recent results involving eigenvalues of the fractional
g−Laplacian can be found in [1, 2, 5, 7, 8, 9, 10, 23, 27, 29, 49, 51].

In the wake of the non-homogeneity of the operator, many of the properties
that eigenvalues of the fractional p−Laplacian fulfill are possibly not inherited in
the non-homogeneous case: for instance, isolation, simplicity and a variational
characterization of the first eigenvalue, or a variational formula for the second one
(see [22, 33, 40]). Moreover, the spectrum of D(Ω) could be continuous when G is
a general Young function, and in principle, it is not clear the meaning of a first or
second eigenvalue. Due to these drawbacks, the main aim of this manuscript is to
understand under which conditions it is possible to build a sequence of eigenvalues
to problems D(Ω), N(Ω) and R(Ω).

Our arguments are based in the fact that existence of sequences of variational
eigenvalues can be established when prescribing some energy level. First, when the
quantities J (u) or Jβ(u) involving the s−Hölder quotient are prescribed, by means
of the Ljusternik-Schnirelman theory we can infer existence of a discrete sequence of
critical points of I(u) which allow us to build a sequence of non-negative eigenvalues.
With the notation introduced in Section 2, our first result reads as follows.

Theorem 1.1. For any α > 0 there exist sequences of non-negative numbers
{λD

k,α}k∈N, {λN
k,α}k∈N and {λR

k,α}k∈N which are eigenvalues of problems D(Ω), N(Ω)

and R(Ω), respectively. Moreover, these sequences diverge as k → ∞.

The corresponding eigenfunctions

{uD
k,α}k∈N ⊂ W s,G

0 (Ω), {uN
k,α}k∈N ⊂ W s,G

∗ (Ω) and {uR
k,α}k∈N ⊂ Xβ(Ω)

satisfy the constraints

J (uD
k,α) = J0(u

N
k,α) = Jβ(u

R
k,α) = α

and

I(uD
k,α) = cDk,α, I(uN

k,α) = cNk,α, I(uR
k,α) = cRk,α

where the critical values are obtained as

cDk,α = sup
K∈CD

k

inf
u∈K

I(u), cNk,α = sup
K∈CN

k

inf
u∈K

I(u), cRk,α = sup
K∈CR

k

inf
u∈K

I(u)
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where, denoting by γ(K) the Krasnoselskii genus of K, we define

CD
k := {K ⊂ MD

α compact, symmetric with I(u) > 0 on K and γ(K) ≥ k},
and

MD
α := {u ∈ W s,G

0 (Ω): J (u) = α},
MN

α := {u ∈ W s,G
∗ (Ω): J0(u) = α},

MR
α := {u ∈ Xβ(Ω): Jβ(u) = α}.

The sets CN
k and CR

k are defined analogously by changing the superscript D by N
and R, respectively.

Secondly, when the quantity I(u) is prescribed, by using the so-called minimax
theory we obtain a sequence of critical points of J (u) which provides for a (different)
sequence of eigenvalues:

Theorem 1.2. For any α > 0 there exist sequences of non-negative eigenvalues
{ΛD

k,α}k∈N, {ΛN
k,α}k∈N and {ΛR

k,α}k∈N of D(Ω), N(Ω) and R(Ω), respectively.

The corresponding eigenfunctions

{uD
k,α}k∈N ⊂ W s,G

0 (Ω), {uN
k,α}k∈N ⊂ W s,G

∗ (Ω) and {uR
k,α}k∈N ⊂ Xβ(Ω)

satisfy the constraints

I(uD
k,α) = I(uN

k,α) = I(uR
k,α) = α

and

J (uD
k,α) = CD

k,α, J0(u
N
k,α) = CN

k,α, Jβ(u
R
k,α) = CR

k,α

where the critical values are obtained as

CD
k,α = inf

h∈Γ(Sk−1,MD
α )

sup
w∈Sk−1

J (h(w))

and Γ(Sk,MD
α ) = {h ∈ C(Sk,MD

α ) : h is odd}, being Sk the unit sphere in R
k+1.

The numbers CN
k,α and CR

k,α are defined analogously by changing the superscript

D by N and R, respectively, and the functional J by J0 and Jβ, respectively. MD
α ,

MN
α and MR

α denote the sets

MD
α := {u ∈ W s,G

0 (Ω): I(u) = α},
MN

α := {u ∈ W s,G
∗ (Ω): I(u) = α},

MR
α := {u ∈ Xβ(Ω): I(u) = α}.

In contrast to what happens in the case of powers, the Ljusternik-Schnirelman
and minimax eigenvalues obtained in Theorems 1.1 and 1.2, in general, are neither
the same nor easily comparable each other. As a consequence, in principle we cannot
ensure that the minimax sequences built in Theorems 1.2 diverge as k → ∞. For
a discussion of this situation in the case G(t) = tp see [24, 43]. However, in the
Dirichlet case we are able to compare miminax eigenvalues of the g−Laplacian
with eigenvalues of the p−−Laplacian (where p− is given in (G1)), giving as a
consequence the following:

Theorem 1.3. With the notation of Theorem 1.2,

ΛD
k,α → ∞ as k → ∞, CD

k,α → ∞ as k → ∞.
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In the case of powers, eigenvalues and critical points obtained in Theorems 1.1
and 1.2 coincide, i.e., λk = ck and Λk = Ck for all k ∈ N. It does not occur for a
general Young function, although the following comparison result holds.

Theorem 1.4. Let {λD
k,α}k∈N and {cDk,α}k∈N be as in Theorem 1.1, and let {ΛD

k,α}k∈N

and {CD
k,α}k∈N be as in Theorem 1.2. Then

αp−

p+
≤ cDk,α · λD

k,α ≤ αp+

p−
,

p−

αp+
≤

ΛD
k,α

CD
k,α

≤ p+

αp−
,

where p+ and p− are the numbers defined in (G1).

Finally, our last result establishes the closedness of the spectrum of the fractional
g−Laplacian in the following sense:

Theorem 1.5. Fixed α0 > 0, let {αk}k∈N ⊂ (0, α0). Let {λαk
}k∈N be a se-

quence of eigenvalues of D(Ω) with eigenfunctions {uαk
}k∈N ⊂ W s,G

0 (Ω) such that
ΦG,Ω(uαk

) = αk.

Then, if limk→∞ λαk
= λ, we have that λ is an eigenvalue of D(Ω) with eigen-

function u ∈ W s,G
0 (Ω) such that ΦG,Ω(u) = β ∈ (0, α0).

A similar assertion holds for sequences of eigenvalues of N(Ω) and R(Ω).

As a consequence we get the following.

Corollary 1.6. Fixed α0 > 0, the numbers

λ̂D
k := inf

α∈(0,α0)
λD
k,α, λ̂N

k := inf
α∈(0,α0)

λN
k,α, λ̂R

k := inf
α∈(0,α0)

λR
k,α

are eigenvalues of D(Ω), N(Ω) and R(Ω), respectively.

The same claim is true for the numbers Λ̂D
k , Λ̂N

k and Λ̂R
k defined in an analogous

way.

2. Definitions and preliminary results

In this section we introduce the classes of Young function and fractional Orlicz-
Sobolev functions, the suitable class where the fractional g-Laplacian is well defined.

2.1. Young functions. An application G : R+ → R+ is said to be a Young func-

tion if it admits the integral formulation G(t) =
∫ t

0 g(τ) dτ , where the right contin-
uous function g defined on [0,∞) has the following properties:

g(0) = 0, g(t) > 0 for t > 0,(g1)

g is non-decreasing on (0,∞),(g2)

lim
t→∞

g(t) = ∞.(g3)

From these properties it is easy to see that a Young function G is continuous,
nonnegative, strictly increasing and convex on [0,∞).

The following properties on Young functions are well-known. See for instance
[38] for the proof of these results.
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Lemma 2.1. Let G be a Young function satisfying (G1) and a, b ≥ 0. Then

min{ap−

, ap
+}G(b) ≤ G(ab) ≤ max{ap−

, ap
+}G(b),(L1)

G(a+ b) ≤ C(G(a) +G(b)) with C := 2p
+

,(L2)

G is Lipschitz continuous.(L3)

Condition (G1) is known as the ∆2 condition or doubling condition and, as it is
showed in [38, Theorem 3.4.4], it is equivalent to the right hand side inequality in
(G1).

The complementary Young function G̃ of a Young function G is defined as

G̃(t) := sup{tw −G(w) : w > 0}.
From this definition the following Young-type inequality holds

(2.1) ab ≤ G(a) + G̃(b) for all a, b ≥ 0,

and the following Hölder’s type inequality
∫

Ω

|uv| dx ≤ ‖u‖LG(Ω)‖v‖LG̃(Ω)

for all u ∈ LG(Ω) and v ∈ LG̃(Ω). Moreover, it is not hard to see that G̃ can be
written in terms of the inverse of g as

(2.2) G̃(t) =

∫ t

0

g−1(τ) dτ,

see [48, Theorem 2.6.8].

Since g−1 is increasing, from (2.2) and (G1) it is immediate the following relation.

Lemma 2.2. Let G be an Young function satisfying (G1) such that g = G′ and

denote by G̃ its complementary function. Then

G̃(g(t)) ≤ p+G(t)

holds for any t ≥ 0.

The following convexity property proved in [39][Lemma 2.1] will be useful.

Lemma 2.3. Let G be a Young function satisfying (G1) and (G2). Then for every
a, b ∈ R,

G(|a|) +G(|b|)
2

≥ G

(∣

∣

∣

∣

a+ b

2

∣

∣

∣

∣

)

+G

(∣

∣

∣

∣

a− b

2

∣

∣

∣

∣

)

.

2.2. Fractional Orlicz-Sobolev spaces. Given a Young function G such that
G′ = g, a parameter s ∈ (0, 1) and an open and bounded set Ω ⊆ R

n we consider
the spaces

LG(Ω) := {u : Ω → R measurable such that ΦG,Ω(u) < ∞} ,
W s,G(Rn) :=

{

u ∈ LG(Rn) such that Φs,G,Rn(u) < ∞
}

,

W s,G
0 (Ω) :=

{

u ∈ W s,G(Rn) : u = 0 a.e. in R
n \ Ω

}
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where the modulars ΦG,Ω and Φs,G,Rn are defined as

ΦG,Ω(u) :=

∫

Ω

G(|u(x)|) dx

Φs,G,Rn(u) :=

∫∫

Rn×Rn

G(|Dsu(x, y)|) dµ,

where the s−Hölder quotient is defined as

Dsu(x, y) :=
u(x)− u(y)

|x− y|s ,

being dµ(x, y) := dx dy
|x−y|n . These spaces are endowed with the so-called Luxemburg

norms

‖u‖LG(Ω) := inf
{

λ > 0: ΦG,Ω

(u

λ

)

≤ 1
}

,

‖u‖W s,G(Ω) := ‖u‖LG(Ω) + [u]W s,G(Rn),

where the (s,G)-Gagliardo semi-norm is defined as

[u]W s,G(Rn) := inf
{

λ > 0: Φs,G,Rn

(u

λ

)

≤ 1
}

.

Since we assume (G1), the space W s,G(Ω) is a reflexive Banach space. Moreover
C∞

c is dense in W s,G(Rn). See [26, Proposition 2.11] and [23, Proposition 2.9] for
details.

Observe that, in light of the modular Poincaré inequality for W s,G(Ω) (see [50]),

it follows that [ . ]W s,G(Rn) is an equivalent norm in W s,G
0 (Ω). We observe that

W s,G
0 (Ω) is the natural space to deal with Dirichlet problems.

The space of fractional Orlicz-Sobolev functions is the appropriated one where
to define the fractional g−Laplacian operator

(−∆g)
su := 2 p.v.

∫

Rn

g(|Dsu|)
Dsu

|Dsu|
dy

|x− y|n+s
,

where p.v. stands for in principal value. This operator is well defined between

W s,G(Rn) and its dual space W−s,G̃(Rn) (see [26] for details). In fact, it follows
that

〈(−∆g)
su, v〉 =

∫∫

Rn×Rn

g(|Dsu|)
Dsu

|Dsu|
Dsv dµ,

for any v ∈ W s,G(Rn).

As proved in [6, Proposition 2.6], the following integration by parts formula arise
naturally for u ∈ C2 functions

〈(−∆g)
su, v〉∗ =

∫

Ω

v(−∆g)
su dx+

∫

Rn\Ω

vNgu dx ∀v ∈ C2

where the normal derivative Ng is defined as

Ngu(x) =

∫

Ω

g(|Dsu|)
Dsu

|Dsu|
dy

|x− y|n+s
.

and the product 〈·, ·〉∗ is defined as

〈(−∆g)
su, v〉∗ =

∫∫

R2n\(Rn\Ω)2
g(|Dsu|)

Dsu

|Dsu|
Dsv dµ.



EIGENVALUES OF THE FRACTIONAL g-LAPLACIAN 9

The previous definitions induce the following notation

Φs,G,∗(u) =

∫∫

R2n\(Ω)2
G(|Dsu(x, y)|) dµ

[u]
W

s,G
∗

(Rn) = inf
{

λ > 0: Φs,G,∗

(u

λ

)

≤ 1
}

.

Hence, it is natural to defined the space

W s,G
∗ (Ω) := {u ∈ LG(Ω) such that Φs,G,∗(u) < ∞},

which will be the appropriated one when dealing with the Neumann boundary
condition.

The suitable space in which to define a Robin boundary condition of the type
Ngu+ βg(|u|)u/|u| in R

n \ Ω (where β is a fixed function in L∞(Rn \ Ω)) is:
Xβ(Ω) =

{

u measurable: Φs,G,∗(u) + ΦG,Ω(u) + ΦG,β,Rn\Ω(u) < ∞
}

where

ΦG,β,Rn\Ω(u) =

∫

Rn\Ω

βG(|u|) dx.

This space can be proved to be a reflexive Banach space endowed with the norm

‖u‖Xβ
:= [u]

W
s,G
∗

(Rn) + ‖u‖LG(Ω) + ‖u‖LG,β(Rn\Ω),

being

‖u‖LG,β(Rn\Ω) = inf

{

λ > 0:

∫

Rn\Ω

β G

( |u|
λ

)

dµ ≤ 1

}

.

See [6] for more details.

Remark 2.4. Observe that, with the notation introduced in this section, the func-
tionals introduced in (1.4) and (1.5) can be identified as

I : W s,G(Ω) → R, I(u) = ΦG,Ω(u),

J : W s,G
0 (Ω) → R, J (u) = Φs,G,Rn(u),

Jβ : (Ω) → R, Jβ(u) = Φs,G,∗(u) + ΦG,β,Rn\Ω.

(2.3)

In order to state some embedding results for fractional Orlicz-Sobolev spaces
we recall that given two Young functions A and B, we say that B is essentially
stronger than A or equivalently that A decreases essentially more rapidly than B,
and denoted by A ≺≺ B, if for each a > 0 there exists xa ≥ 0 such that A(x) ≤
B(ax) for x ≥ xa.

When the Young function G fulfills condition (G3), the critical function for the
fractional Orlicz-Sobolev embedding is given by

G−1
∗ (t) =

∫ t

0

G−1(τ)

τ
n+s
n

dτ.

With these preliminaries the following compact embeddings hold.

Proposition 2.5. Let G be a Young function satisfying (G1) and (G3) and let
s ∈ (0, 1). Let Ω ⊂ R

n be a C0,1 bounded open subset. Then for any Young
function B such that B ≺≺ G∗ it holds that

(i) the embedding W s,G(Ω) →֒ LB(Ω) is compact;
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(ii) the embedding Xβ(Ω) →֒ LB(Ω) is compact.

The proof of (i) can be found in [1][Theorem 9.1], [8][Theorem 1.2]; for the proof
of (ii) see [6][Lemma 3.2].

The following relation between modulars and norms holds. See [32, Lemma 2.1].

Lemma 2.6. Let G be a Young function satisfying (G1) and let ξ−(t) = min{tp−

, tp
+},

ξ+(t) = max{tp−

, tp
+}, for all t ≥ 0. Then

(i) ξ−(‖u‖LG(Rn)) ≤ ΦG,Rn(u) ≤ ξ+(‖u‖LG(Rn)) for u ∈ LG(Rn),

(ii) ξ−([u]W s,G(Rn)) ≤ Φs,G,Rn(u) ≤ ξ+([u]W s,G(Rn)) for u ∈ W s,G(Rn).

3. Lagrange multipliers and the eigenvalue problem

In this section we define the notion of Dirichlet, Neumann and Robin eigenvalue
problems in the context of fractional Orlicz-Sobolev spaces. We recall some exis-
tence results already proved in [49] and [50] for the Dirichlet case, and state further
extension to more general boundary conditions.

We say that

λ is an eigenvalue of D(Ω) with eigenfunction u ∈ W s,G
0 (Ω) if

(3.1) 〈(−∆g)
su, v〉 = λ

∫

Ω

g(|u|) u

|u|v dx ∀v ∈ W s,G
0 (Ω).

λ is an eigenvalue of N(Ω) with eigenfunction u ∈ W s,G
∗ (Ω) if

〈(−∆g)
su, v〉∗ = λ

∫

Ω

g(|u|) u

|u|v dx ∀v ∈ W s,G
∗ (Ω).

λ is an eigenvalue of R(Ω) with with eigenfunction u ∈ Xβ(Ω) if

〈(−∆g)
su, v〉∗ = λ

∫

Ω

g(|u|) u

|u|v dx−
∫

Rn\Ω

βg(|u|) u

|u|v dx ∀v ∈ Xβ(Ω).

As mentioned, eigenvalues for non-homogeneous eigenproblems strongly depend
on the energy level α > 0. It is possible to prove existence of an eigenvalue by a mul-
tiplier argument once it is proved existence of the following associated minimization
problems

ΛD
α := min{J (u) : u ∈ MD

α }, where MD
α = {u ∈ W s,G

0 (Ω): I(u) = α}
ΛN
α = min{J0(u) : u ∈ MN

α }, where MN
α = {u ∈ W s,G

∗ (Ω): I(u) = α}
ΛR
α := min{Jβ(u) : u ∈ MR

α }, where MR
α = {u ∈ Xβ(Ω): I(u) = α}.

As pointed out in [6], by standard computations of the calculus of variations, for
each α > 0 the quantities ΛD

α , ΛN
α and ΛR

α are attained by suitable functions uD
α ,

uN
α and uR

α , respectively. Since condition (G1) is assumed on G, the functionals J ,
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Jβ and I are class C1 with Frechét derivatives given by

〈(J ′(u), v〉 = 〈(−∆g)
su, v〉 ∀v ∈ W s,G

0 (Ω),

〈(J ′
0(u), v〉 = 〈(−∆g)

su, v〉∗ ∀v ∈ W s,G
∗ (Ω),

〈(I ′(u), v〉 =
∫

Ω

g(|u|) u

|u|v dx ∀v ∈ LG(Ω),

〈(J ′
β(u), v〉 = 〈(−∆g)

su, v〉∗ +
∫

Rn\Ω

βg(|u|) u

|u|v dx ∀v ∈ W s,G
∗ (Ω),

(3.2)

and therefore, by an application of the Lagrange multipliers rule, there exist num-
bers λD

α , λN
α and λR

α which are eigenvalues of D(Ω), N(Ω) and R(Ω) with eigenfunc-
tions uD

α , u
N
α and uR

α , respectively. Furthermore, as proved in [6, Proposition 5.6
and 5.8], minimizers are comparable each other; more precisely, ΛN

α ≤ ΛR
α ≤ ΛD

α ,
and a similar relation for the eigenvalues holds, up to a multiplicative constant.

Proceeding as in [49, Theorem 1.3] (see Theorem 1.5) it can be proved that for
each fixed α0 > 0 it holds that

λ̂D := inf{λD
α : α ∈ (0, α0)},

λ̂N := inf{λN
α : α ∈ (0, α0)},

λ̂R := inf{λR
α : α ∈ (0, α0)}

are eigenvalues of D(Ω), N(Ω) and R(Ω), respectively.

In contrast with p−Laplacian type problems, when dealing with non-homogeneous
eigenproblems, eigenvalues are not variational in general. One could consider the
variational quantity

λ̄D = inf
u∈W

s,G
0 (Ω)\{0}

∫∫

Rn×Rn g(|Dsu|)|Dsu| dµ
∫

Ω g(|u|)|u| dx ,

but in general this number cannot be probed to be an eigenvalue. In an analogous
way, we can define λ̄R and λ̄N , and the same assertion holds. However, the following
result is true:

Theorem 3.1. It holds that λ̄D ≤ λ̂D and there is no eigenvalue λ of D(Ω) such
that λ < λ̄D.

The same holds by changing the superscript D with N or R.

Proof. First observe that, since λ̂D is an eigenvalue ofD(Ω), there exists a nontrivial

eigenfunction û ∈ W s,G
0 (Ω) such that (3.1) holds, therefore

λ0 = inf

{ 〈(−∆g)
su, u〉

∫

Ω
g(|u|)|u| dx : u ∈ W s,G

0 (Ω)

}

≤ 〈(−∆g)
sû, û〉

∫

Ω
g(|u|)|u| dx = λ̂D.

If we suppose that there exists λ < λ0 which is an eigenvalue of problem D(Ω)

with eigenfunction uλ ∈ W s,G
0 (Ω), we arrive to a contradiction since

λ =
〈(−∆g)

suλ, ûλ〉
∫

Ω g(|uλ|)|uλ| dx
< λ0 = inf

{ 〈(−∆g)
su, u〉

∫

Ω g(|u|)|u| dx : u ∈ W s,G
0 (Ω)

}

.

The proofs of the Robin and Neumann case run analogously. �

We finish this section by proving Theorem 1.5.
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Proof of Theorem 1.5. Let {λαk
}k∈N be a sequence of eigenvalues ofD(Ω) such that

λαk
→ λ and let {uαk

}k∈N ⊂ W s,G
0 (Ω) be the corresponding sequence of associated

eigenfunctions such that ΦG,Ω(uαk
) = αk with αk ∈ (0, α0) for all k ∈ N. Then, it

holds that
(3.3)
∫∫

Rn×Rn

g(|Dsuαk
|) Dsuαk

|Dsuαk
|Dsv dµ = λαk

∫

Ω

g(|uαk
|) uαk

|uαk
|v ∀v ∈ W s,G

0 (Ω).

Observe that {uαk
}k∈N is bounded in W s,G

0 (Ω) since by (G1) and (3.3)

Φs,G,Rn(uαk
) ≤ 1

p−

∫∫

Rn×Rn

g(|Dsuαk
|)|Dsuαk

| dµ

=
λαk

p−

∫

Ω

g(|uαk
|)|uαk

| ≤ p+

p−
λαk

αk

≤ p+

p−
(1 + λ)α0

for k big enough. Then, by using the compact embedding given in Proposition 2.5

(i), up to a subsequence, there exists u ∈ W s,G
0 (Ω) such that

(3.4)
uαk

→ u strongly in LG(Ω),
uαk

→ u a.e. in R
n.

From the continuity of t 7→ g(t) t
|t| and (3.4) we deduce that

g(|Dsuk|)
Dsuk

|Dsuk|
→ g(|Dsu|)

Dsu

|Dsu|
a.e. in Ω

and also from (3.4)
lim sup
k→∞

ΦG,Rn(uαk
) ∈ (0, α0).

Hence, taking limit as k → ∞ in (3.3) we obtain that
∫∫

Rn×Rn

g(|Dsu|)
Dsu

|Dsu|
Dsv dµ = λ

∫

Ω

g(|u|) u

|u|v for all v ∈ W s,G
0 (Ω)

from where the proof in the Dirichlet case follows.

The proof for the Neumann and Robin case follows analogously by replacing

W s,G
0 (Ω) with W s,G

∗ (Ω) or Xβ(Ω), respectively, and using the compact embedding
given in Proposition 2.5 item (ii) to deduce (3.4). �

4. Ljusternik-Schnirelman eigenvalues

In order to build a sequence of eigenvalues for problems D(Ω), N(Ω) and R(Ω),
the idea is to apply an abstract theorem of the so-called Ljusternik-Schnirelman
theory. See for instance [17, 47, 56]. We will particularly use the result stated in
[47, Theorem 9.27].

Given α > 0, assume that A, B are two functionals defined in a reflexive Banach
space X , such that

(h1) A,B are C1(X ,R) even functionals with I(0) = B(0) = 0 and the level set

Mα := {u ∈ X : B(u) = α}
is bounded.
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(h2) A′ is strongly continuous, i.e.,

uk ⇀ u in X =⇒ A′(uk) → A′(u).

Moreover, for any u in the closure of the convex hull of Mα,

〈A′(u), u〉 = 0 ⇐⇒ A(u) = 0 ⇐⇒ u = 0.

(h3) B′ is continuous, bounded and, as k → ∞, it holds that

uk ⇀ u, B′(uk) ⇀ v, 〈B′(uk), uk〉 → 〈v, u〉 =⇒ uk → u in X .

(h4) For every u ∈ X \ {0} it holds that

〈B′(u), u〉 > 0, lim
t→+∞

B(tu) = +∞, inf
u∈Mα

〈B′(u), u〉 > 0.

Define max-min values

ck,α =

{

supK∈Ck
infu∈K A(u), Ck 6= ∅,

0, Ck = ∅,
where, for any k ∈ N,

Ck := {K ⊂ Mα compact, symmetric with A(u) > 0 on K and γ(K) ≥ k},
and the Krasnoselskii genus of K is defined as

γ(K) := inf{p ∈ N : ∃h : K → R
p \ {0} such that h is continuous and odd}

see [37] for details.

Thus, {ck,α}k≥1 forms a nonincreasing sequence

+∞ > c1,α ≥ c2,α ≥ . . . ≥ ck,α ≥ . . . ≥ 0.

Under these considerations, the Ljusternik–Schnirelmann principle stated in [47,
Theorem 9.27] establishes that there exists a sequence {(µk,α, uk,α)}k≥1 such that

〈A′(uk,α), v〉 = µk,α〈B′(u), v〉 ∀v ∈ X ∗

such that uk,α ∈ Mα, A(uk,α) = ck,α, µk,α 6= 0, µk,α → 0, and uk,α ⇀ 0 in X .

4.1. The Dirichlet case. With these preliminaries, we are in position to prove
Theorem 1.1.

We consider the space X := W s,G
0 (Ω) and the functionals B(u) := J (u) and

A(u) := I(u) defined in (2.3). As mentioned, these functionals are C1 and their
Frechét derivatives are given in (3.2).

Lemma 4.1. The functionals J and I defined above fulfill hypotheses (h1)–(h4).

Proof. (i) Clearly, the maps I,J are even and I(0) = J (0) = 0.

(ii) We notice that

p−ξ−(‖u‖LG(Ω)) ≤ p−I(u) ≤ 〈I ′(u), u〉 ≤ p+I(u) ≤ p+ξ+(‖u‖LG(Ω)).

Then immediately we obtain

〈I ′(u), u〉 = 0 ⇔ I(u) = 0 ⇔ u = 0.
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Thus, it remains to check that I ′ is strongly continuous. Let uk ⇀ u in W s,G
0 (Ω),

then {uk}k∈N is bounded in W s,G
0 (Ω). We need to show that I ′(uk) → I ′(u) in

W−s,G̃(Ω).

|〈I ′(uk)− I ′(u), v〉| =
∣

∣

∣

∣

∫

Ω

(

g(|uk|)
uk

|uk|
− g(|u|) u

|u|

)

v dx

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

Ω

g(|uk|)
(

uk

|uk|
− u

|u|

)

v dx

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

Ω

(g(|uk|)− g(|u|)) u

|u|v dx
∣

∣

∣

∣

:= I1,k + I2,k.

By using Lemma 2.2 and Hölder’s inequality, the first term can be bounded as

I1,k ≤ ‖g(|uk|)‖G̃‖2v‖G → 0, k → +∞.

Similarly, by using the ∆2 condition, Lemma 2.2 and Hölder’s inequality we get

I2,k ≤ ‖g(|uk|)− g(|u|)‖G̃‖v‖G.
Since uk ⇀ u in W s,G

0 (Ω), in light of Proposition 2.5, uk → u strongly in LG(Ω)
and a.e. in R

n, moreover, from Lemma 2.3, g(|uk|) − g(|u|) ∈ L1(Ω), therefore,

by dominated convergence theorem,
∫

Ω G̃(|g(|uk|) − g(|u|)|) dx → 0 and hence
‖g(|uk|)− g(|u|)‖LG̃(Ω) → 0 as k → ∞.

From the last relations it follows that ‖I ′(uk)−I ′(u)‖
W−s,G̃(Ω) → 0 as required.

(iii) One can easily see that J ′ is continuous (see for instance [50, Proposition
4.1]). From Lemma 2.2 and Holder’s inequality

|〈J ′(u), v|〉 ≤ ‖g(|u|)‖
LG̃(Rn×Rn,dµ)‖v‖LG(Rn×Rn,dµ) ≤ p+[u]W s,G(Rn)[v]W s,G(Rn)

from there J ′ is bounded.

It remains to be showed that if {uk}k∈N is a sequence in W s,G
0 (Ω) such that

(4.1) uk ⇀ u, J ′(uk) ⇀ v, 〈J ′(uk), uk〉 → 〈v, u〉
then uk → u in W s,G

0 (Ω).

Since G is convex, we have

G(|Dsu|) ≤ G

(∣

∣

∣

∣

Dsu+Dsuk

2

∣

∣

∣

∣

)

+ g(|Dsu|)
Dsu

|Dsu|
.
Dsu−Dsuk

2

and

G(|Dsuk|) ≤ G

(∣

∣

∣

∣

Dsu+Dsuk

2

∣

∣

∣

∣

)

+ g(|Dsuk|)
Dsuk

|Dsuk|
.
Dsuk −Dsu

2

for every u, v ∈ W s,G
0 (Ω). Adding the above two relations and integrating over Rn

we find that

1

2

∫∫

Rn×Rn

(

g(|Dsu|)
Dsu

|Dsu|
− g(|Dsuk|)

Dsuk

|Dsuk|
)

(Dsu−Dsuk) dµ

≥ Φs,G,Rn(u) + Φs,G,Rn(uk)− 2Φs,G,Rn

(

u+ uk

2

)

(4.2)

for every u, v ∈ W s,G
0 (Ω). By applying Lemma 2.3, the right part of the inequality

above can be bounded by below by 2Φs,G,Rn

(

u−uk

2

)

, and hence we get

〈(−∆g)(u)− (−∆g)(uk), u− uk〉 ≥ 4Φs,G,Rn(u− uk).
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This, together with Lemma 2.6 yields

(4.3) 〈J ′(u)− J ′(uk), u− uk〉 ≥ ξ−([u− uk]W s,G(Rn)).

On the other hand, Proposition 2.5 gives that uk → u in LG(Ω) and a.e. in R
n,

which, mixed up with the assumptions (4.1) allows us to deduce that

lim
k→∞

〈J ′(uk)−J ′(u), uk−u〉 = lim
k→∞

(〈J ′(uk), uk〉 − 〈J ′(uk), u〉 − 〈J ′(u), uk − u〉) = 0.

Hence, from (4.3), [uk − u]W s,G(Rn) → 0 as k → ∞ as required.

(iv) It is clear that, for any u ∈ W s,G
0 (Ω) \ {0},

〈J ′(u), u〉 > 0, lim
t→+∞

J (tu) = +∞, inf
u∈Mα

〈J ′(u), u〉 > 0.

This concludes the proof. �

Proof of Theorem 1.1 (Dirichlet case). In light of Lemma 4.1 and in virtue of [47,
Theorem 9.27], there exist a sequence of positive numbers {µk}k∈N tending to 0

and a corresponding sequence of functions {uD
k,α}k∈N ∈ W s,G

0 (Ω) such that

〈(−∆g)
suD

k,α, v〉 =
1

µD
k,α

∫

Ω

g(|uD
k,α|)

uD
k,α

|uD
k,α|

v dx ∀v ∈ W s,G
0 (Ω).

Moreover, J (uD
k,α) = α and

I(uD
k,α) := cDk,α = sup

K∈Ck

inf
u∈K

I(u) > 0.

Consequently, λD
k,α = 1/µk,α is an eigenvalue of D(Ω) with eigenfunction uD

k,α. �

Remark 4.2. We mention some observations regarding the Ljusternik-Schnirelman
sequence of eigenvalues obtained in Theorem 1.1.

(a) Since in general these functionals are not homogeneous, we cannot claim
that λD

k,α = 1/cDk,α.

(b) The first Ljusternik-Schnirelman eigenvalue λD
1,α is in fact different to the

eigenvalue λD
α obtained in Section 3 by means of the Lagrange multipliers

rule.
(c) The sequence {λD

k,α}k∈N does not exhaust the spectrum of D(Ω). In fact,

the spectrum is not discrete since the parameter α can be taken in R
+.

(d) The eigenfunction associated to λD
k,α is one-signed since the Φs,G,Rn(·) and

ΦG,Ω(·) are invariant by replacing uD
k,α with |uD

k,α|.
(e) As mentioned in Section 3, due to the closedness of the spectrum ΣD we

have that the quantity inf{λD
k,α : 0 < α < α0} is also an eigenvalue of D(Ω),

for any α0 > 0 fixed.

4.2. The Neumann/Robin case. To deal with the Robin case we take X :=
Xβ(Ω), A := I(u) and B := Jβ(u). The Neumann case it follows just by setting
β = 0.

Proof of Theorem 1.1 (Neumann/Robin case). The proof of this result is similar to
the proof of the Dirichlet case, just noticing that, the embedding Xβ(Ω) →֒ LG(Ω)
is compact (see Proposition 2.5 (ii)) and the quantities [u]W s,G(Rn) and [u]

W
s,G
∗

(Rn)

play a symmetrical role. �
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5. Minimax eigenvalues

This section is devoted to prove Theorem 1.2. We start with the Dirichlet case.

Given α > 0 we recall that

MD
α := {u ∈ W s,G

0 (Ω): I(u) = α}
defines a C1 manifold. We denote τα the restriction of (−∆g)

s to MD
α , i.e., for each

u ∈ MD
α ,

〈τα(u), v〉 := 〈(−∆g)
su, v〉 ∀v ∈ TuM

D
α

where the tangent space of MD
α at u is defined as

TuM
D
α :=

{

v ∈ W s,G
0 (Ω): 〈I ′(u), v〉 = 0

}

.

Thus, we define

‖ταu‖ := ‖ταu‖(TuMD
α )∗

where (TuM
D
α )∗ is the dual space of TuM

D
α .

We recall that the duality mapping J : W s,G
0 (Ω) → (W s,G

0 (Ω))∗ (where we have
denoted the dual space of the space X as X ∗) is defined as a bijective isometry such
that

(5.1) ‖Ju‖(W s,G
0 (Ω))∗ = [u]

W
s,G
0 (Ω), 〈Ju, u〉 = [u]2W s,G(Rn) ∀u ∈ W s,G

0 (Ω).

See [55, Chapter 18.11c] and [56, Proposition 47.18] for details.

Given α > 0, the idea is to apply the minimax theorem stated in [21] to the
functional J (u) under the constraint I(u) = α to obtain a sequence of critical
points of the form

CD
k,α = inf

h∈Γ(Sk−1,MD
α )

sup
w∈Sk−1

Φs,G,Rn(h(w)).

being Γ(Sk−1k,MD
α ) = {h ∈ C(Sk−1,MD

α ) : h is odd}.
Recall that the derivatives of I and J are given by J ′(u) = (−∆g)

su and

I ′(u) = g(|u|)u
|u| for any u ∈ LG(Ω).

Definition 5.1. We say that J satisfies the Palais-Smale condition on MD
α at level

c if any sequence {un}n∈N ⊂ MD
α such that J (un) → c and ‖ταun‖ → 0, possesses

a convergent subsequence.

The key ingredient is to analyze the validity of the Palais-Smale condition.

Lemma 5.2. Given α > 0 the functional J satisfies the Palais-Smale condition
on MD

α at level CD
k,α.

Proof. We follow closely the construction of [52, Theorem 5.3]. Given k ∈ N, let
{un}n∈N be a sequence in MD

α such that

(5.2) I(un) → CD
k,α and ‖τα(un)‖ → 0.

For each u ∈ MD
α define the projection Pu : W

s,G
0 (Ω) → TuM

D
α such that

Puv = v − 〈I ′(u), v〉
‖I ′(u)‖2

(W s,G
0 (Ω))∗

J−1 (I ′(u)) .
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Observe first that Pu is well defined: given v ∈ W s,G
0 (Ω) and u ∈ MD

α we have

〈I ′(u), Puv〉 = 〈I ′(u), v〉 − 〈I ′(u), v〉
‖I ′(u)‖2

(W s,G
0 (Ω))∗

〈I ′(u), J−1 (I ′(u))〉 = 0

since due to (5.2), 〈I ′(u), J−1 (I ′(u))〉 = ‖I ′(u)‖2
(W s,G

0 (Ω))∗
.

Moreover, for every v ∈ W s,G
0 (Ω) we get the inequality

〈I ′(u), v〉 ≤ ‖I ′(u)‖(W s,G
0 (Ω))∗ [v]W s,G(Rn).

and by (5.1) it follows that
[

J−1 (I ′(u))
]

W s,G(Rn)
= ‖I ′(u)‖(W s,G

0 (Ω))∗ .

Therefore we get that [Puv]W s,G(Rn) ≤ 2[v]
Ws,G(Rn)

, which implies that, for any

v ∈ W s,G
0 (Ω)

〈(−∆g)
su, Puv〉 = 〈τα(u), Puv〉 ≤ 2‖τα(u)‖[v]W s,G(Rn).

Consequently, by (5.2)

sup
[v]

Ws,G(Rn)
≤1

|〈(−∆g)
sun, Pun

v〉| ≤ sup
[v]

Ws,G(Rn)
≤1

2‖τα(un)‖[v]W s,G(Rn) → 0 as n → ∞.

Hence we get that

〈(−∆g)
sun, Pun

v〉 = 〈(−∆g)
sun, v〉 −

〈

(−∆g)
sun,

〈I ′un, v〉
‖I ′(u)‖2

(W s,G
0 (Ω))∗

J−1(I ′(un))

〉

= 〈(−∆g)
sun, v〉 −

〈

(−∆g)
sun, J

−1(I ′(un))
〉 〈I ′(un), v〉
‖I ′(u)‖2

(W s,G
0 (Ω))∗

= 〈(−∆g)
sun, v〉 −

〈

〈

(−∆g)
sun, J

−1(I ′(un))
〉

‖I ′(u)‖2
(W s,G

0 (Ω))∗

I ′(un), v

〉

→ 0,

that is

(−∆g)
sun −

〈

(−∆g)
sun, J

−1(I ′(un))
〉

‖I ′(u)‖2
(W s,G

0 (Ω))∗

I ′(un) ⇀ 0 weakly in W s,G
0 (Ω).

From (5.2), up to a subsequence un ⇀ u weakly in W s,G
0 (Ω) and strongly in

LG(Ω) to some u ∈ W s,G
0 (Ω) due to Proposition 2.5. Observe that in Lemma

4.1 we have proved that I ′ satisfies property (h2) of Section 4, i.e., I is strongly
continuous, which implies that I ′(un) → I ′(u).

Moreover, (5.2) also gives that (−∆g)
sun is bounded and un is bounded away

from zero. Therefore, up to a subsequence

(5.3) (−∆g)
sun ⇀ v weakly in (W s,G

0 (Ω))∗

In Lemma 4.1 we have proved that J ′ = (−∆g)
s satisfies property (h3) of

Section 4, from where, in view of (5.3) we have that un → u strongly in W s,G
0 (Ω).

This proves that J satisfies the Palais-Smale condition on MD
α at level CD

k,α which
concludes the proof. �
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Remark 5.3. Observe that in the proof of Lemma 5.2 we have not used any par-

ticular property for functions in W s,G
0 (Ω). With the pertinent changes, the same

arguments can be applied to deduce that, given α > 0, the functional J satisfies
the Palais-Smale condition on MN

α (resp. MR
α ) at level CN

k,α (resp. CR
k,α), where

CN
k,α (resp. CR

k,α) is defined just by changing the superscript D by N (resp. R) in

the definition of CD
k,α. We leave to the reader the remaining details.

Proof of Theorem 1.2 . Due to Lemma 5.2, J (resp. J0 ,Jβ) satisfies the Palais-
Smale condition on MD

α (resp. MN
α , MR

α ) at level CD
α,k (resp. CN

α,k, C
R
α,k) for each

k ∈ N, then by [21, Proposition 2.7] there exists uD
α,k ∈ MD

α (resp. uN
α,k ∈ MN

α ,

uR
α,k ∈ MR

α ) such that

J (uD
k,α) = CD

k,α, (resp. J0(u
N
k,α) = CN

k,α, Jβ(u
R
k,α) = CR

k,α)

and
J ′(uD

k,α) = J ′
0(u

N
k,α) = J ′

β(u
R
k,α) = 0.

Therefore, by the Lagrange multipliers rule, there exists ΛD
α,k ∈ R (resp. ΛN

α,k ∈
R,ΛR

α,k ∈ R) such that

J ′(uD
α,k) = ΛD

α,kI ′(uD
α,k) weakly in Ω,

(resp. J ′
0(u

N
α,k) = ΛN

α,kI ′(uN
α,k), J ′

β(u
R
α,k) = ΛR

α,kI ′(uR
α,k)),

that is, {ΛD
k,α}k∈N, {ΛN

k,α}k∈N and {ΛR
k,α}k∈N are eigenvalues of D(Ω), N(Ω) and

R(Ω), respectively, satisfying that

J (uD
k,α) = CD

k,α, J0(u
N
k,α) = CN

k,α, Jβ(u
R
k,α) = CR

k,α.

The proof is concluded. �

Finally we provide for a proof of the comparison result Theorem 1.4.

Proof of Theorem 1.4. Let uD
k,α be the eigenfunctions corresponding to λD

k,α. By

definition of λD
k,α and property (G1) we get

λD
k,α =

〈(−∆g)
suD

k,α, u
D
k,α〉

∫

Ω g(|uD
k,α|)|uD

k,α| dx
≤ p+

p−
Φs,G,Rn(uD

k,α)

ΦG,Ω(uD
k,α)

=
p+

p−
α

cDk,α
.

In a similar way, if we consider the sequence vDk,α of eigenfunctions corresponding

to ΛD
k,α, by using (G1) we get

Λk,α =
〈(−∆g)

svDk,α, v
D
k,α〉

∫

Ω g(|vDk,α|)|vDk,α| dx
≤ p+

p−
Φs,G,Rn(vDk,α)

ΦG,Ω(vDk,α)
=

p+

p−
CD

k,α

α
.

The lower bounds follow analogously. �

Finally, we provide for a proof of Theorem 1.3

Proof of Theorem 1.3. Step 1. In [27, Corollary 2.10] it is proved that W s,G
0 (Ω) ⊂

W s,p−

0 (Ω), therefore
[u]

W s,p− (Rn) ≤ C[u]W s,G(Rn).

Given u ∈ MD
α we get

J (u) = Φs,G,Rn(u) ≥ ξ−([u]W s,G(Rn)) ≥ Cξ−([u]
W s,p− (Rn))
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where we have used Lemma 2.6. Then

(5.4) C[u]β
W s,p− (Rn)

≤ J (u)

for some β = β(p±).

Step 2. Define

MD
δ := {u ∈ W s,p−

0 (Ω): [u]β
Lp−(Ω)

≤ δ}

where β is the same of step 1.

As in [27, Lemma 2.7] it can be seen that LG(Ω) ⊂ Lp−

(Ω). Then ‖u‖
Lp−(Ω) ≤

C‖u‖LG(Ω).

Given u ∈ MD
α ,

α = I(u) ≥ ξ−(‖u‖LG(Ω)) ≥ Cξ−(‖u‖
Lp−(Ω)).

Therefore, there exists some δ = δ(α, p±) such that ‖u‖β
Lp−(Ω)

≤ δ and then

(5.5) MD
α ⊂ MD

δ .

Step 3. By (5.4) and (5.5)

CD
k,α = inf

h∈Γ(Sk−1,MD
α )

sup
w∈Sk−1

J (h(w))

≥ C inf
h∈Γ(Sk−1,MD

δ
)

sup
w∈Sk−1

[h(w)]β
W s,p−

:= C(µD
k )β

(5.6)

where µD
k is the minimax eigenvalue of the p−−Laplacian with Dirichlet boundary

conditions obtained in [43, Theorem 4.1] (observe that since the p−−Laplacian is
a homogeneous operator, in fact the same eigenvalue is obtained for any δ).

Step 4. From Theorem 1.4 and (5.6) we get

C
p−

αp+
(µD

k )β ≤ p−

αp+
CD

k,α ≤ ΛD
k,α.

Since µD
k → ∞ as k → ∞ we obtain that CD

k,α,Λ
D
k,α → ∞ as k → ∞. �
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[30] S. Fuč́ık and J. Nečas, Ljusternik-Schnirelmann theorem and nonlinear eigenvalue problems,

Mathematische Nachrichten, 53(1-6) (1972), 277-289. 2
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[36] M. Garćıa-Huidobro, V. K. Le, R. Manáasevich and K. Schmitt, On principal eigenvalues for
quasilinear elliptic differential operators: an Orlicz-Sobolev space setting, NoDEA Nonlinear

Differential Equations Appl, 6 (2) (1999), 207-225. MR 1694787. 3
[37] A. Krasnoselskij, Topological methods in the theory of nonlinear integral equations, Pergamon

Press, N. P. 1964. 1, 13
[38] A. Kufner, O. John and S. Fucik, Function spaces(Vol. 3), Springer Science Business Media,

(1979). 6, 7
[39] J. Lamperti, On the isometries of certain function-spaces, Pacific J. Math, 8(3) (1958), 459-

466. 7
[40] E. Lindgren and P. Lindqvist, Fractional eigenvalues, Calc. Var. Partial Differential Equa-

tions, 49 (2014), 795–826. 2, 4
[41] P. Lindqvist, On the equation div(|∇u|p−2∇u) + λ|u|p−2u = 0, Proc. Am. Math. Soc, 109

(1990), 157-164. 2
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