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Abstract

Polymorphisms of the BoLA-DRB3 gene are located primarily in the second exon
[antigen binding site (ABS)] and, to a lesser extent, in the upstream regulatory region
(URR). It can be hypothesised that exon 2 and the URR are under different types of
natural selection. The aim of this work was to determine the URR-exon 2 haplotypes;
34 Holstein samples were genotyped by direct sequencing. A total of 7 URR alleles
and 23 exon 2 alleles were detected, and 3 of the URR alleles were novel. Our
results may suggest that no relationship exists between the URR and exon 2 of
the BoLA-DRB3 gene (linkage disequilibrium P value > 0.05), most likely due to
recombination over time. Our results also suggest that both regions of class II genes
may be included in the development of new genotyping methods based on next-
generation DNA sequencing technologies.

BoLA-DRB3 is a class II gene that plays a major role in the
immune response (1, 2). BoLA-DRB3 polymorphisms, which
are located primarily in the second exon that encodes the
ABS of the molecule (1, 3), have been extensively studied
in various cattle breeds (4–6). A number of these polymor-
phisms have been associated with resistance/susceptibility to
infectious and autoimmune diseases, such as leukaemia virus,
dermatophilosis and mastitis (1, 6–11).

Additional variation has also been detected in other gene
regions, such as the upstream regulatory region (URR)
(12–16). Polymorphisms found in conserved consensus
sequences could affect DNA–protein interactions (17, 18).
Consequently, these mutations may confer allelic differences
in expression, inducibility and/or tissue specificity of class
II molecules, affecting the transcriptional levels and the
immune response.

It can be hypothesised that the second exon and the URR are
under different types of natural selection. The unusually high
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levels of polymorphism found in the second exon may have
been maintained by overdominance or balancing selection
(19); this possibility is supported by the high number of non-
synonymous changes in the ABS (3). Conversely, the URR
presents a moderate degree of polymorphism that may be
purged by positive selection. For this reason, the aim this
present work was to determine the URR-exon 2 haplotypes of
the BoLA-DRB3 gene.

Blood samples from 34 Holstein cattles were obtained
from various Argentine dairy farms, and the sample size
was sufficient to detect the most frequent BoLA-DRB3 exon
2 alleles in this breed. Genomic DNA was extracted using
Wizard

®
Genomic DNA Purification kits (Promega, Madison,

WI) following the manufacturer’s instructions. The regions
were genotyped by sequencing based typing methods [poly-
merase chain reaction-sequence based typing (PCR-SBT)], as
described by Ripoli et al. (13) and Takeshima et al. (20). The
alleles were identified using assign 400 atf ver 1.0.2.41.
Linkage disequilibrium (LD) among the single nucleotide
polymorphisms (SNPs) of the URR was determined by phase
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Table 1 Polymorphic sites that defined the upstream regulatory region (URR) haplotypes of the BoLA-DRB3 gene detected in the studied Holstein
population, and their gene frequencies

Polymorphic sites (bp)

Haplotype −161 −138 −135 −27 −20 Gene frequency Previous allele

URR-DRB3-Hol*1 C G T A A 0.25 DRB-H5-R-Ua

URR-DRB3-Hol*2 C G T A G 0.03 DRB-H8-R-Ua

URR-DRB3-Hol*3 C G T G A 0.40 New
URR-DRB3-Hol*4 C G C A A 0.16 BoLA-DRB-Db

URR-DRB3-Hol*5 C A T A A 0.12 New
URR-DRB3-Hol*6 C A T A G 0.01 New
URR-DRB3-Hol*7 T G T G A 0.03 BoLA-DRB-Bb, DRB-H19-R-Ua

aWang et al. (16).
bRipoli et al. (13).

(21, 22) and visualised on haploview (23), while URR-exon
2 haplotypes were determined by phase. P value of LD was
performed using the G-test implemented in genepop 4.0 (24).

The observed (ho) and unbiased expected heterozygosity
(he) were estimated according to Nei (25), using arlequin
3.5 (26), and deviations from Hardy–Weinberg equilibrium
(HWE) were estimated by F IS statistics (27), using the exact
test included in genepop 4.0. The Ewens–Watterson–Slatkin
exact neutrality test was estimated using the method described
by Slatkin (28) and was implemented in the arlequin 3.5
program. Genetic diversity at the DNA sequence level was
estimated through nucleotide diversity (π) and the mean
number of pairwise differences (NPD) using arlequin 3.5.
Pairwise genetic distances between BoLA-DRB3 exon 2
DNA sequences were estimated on the basis of Kimura’s
two-parameter model (29). The gene tree was constructed
from a distance matrix that was based on the neighbor joining
(NJ) method of Saitou and Nei (30).

The URR-BoLA-DRB3 DNA sequences obtained in this
study and those previously reported (AF510446, AJ488500,
AY040327, AY364454, AY364455, AY550181, AY550183,
AY550184, AY550185, AY550186, AY550187, AY550188,
AY550189, AY550190, AY550191, AY550192,AY570362,
AY858800,FQ482091, FQ482110, JN803939, JN803940,
JN803941, JN803942, JN803943, JN803944, and JN803945,
JN803946) were aligned to identify polymorphic sites. This
comparison allowed us to detect five SNPs in the studied
Holstein population; however, none of them corresponded
to new polymorphic sites. Previous studies showed that the
URR is composed of highly conserved sequence motifs that
include from 5′ to 3′, the W, X, Y, CCAAT and TATA-like
boxes (12, 13, 17, 18). Although these motifs are highly
conserved among mammals, polymorphisms have been
reported within and between boxes (12, 17). However,
all SNPs detected in this work were transitions located in
interconsensus regulatory regions (Figure S1, Supporting
Information).

LD analysis revealed seven URR haplotypes. Four of them
matched with haplotypes previously reported: BoLA-DRB-B

(accession number: AY364454; also named DRB-H19-R-U,
accession number: JN803945), BoLA-DRB-D (accession
number: AY570362), DRB-H8-R-U (accession number: JN80
3941) and DRB-H5-R-U (accession number: JN803939). The
remaining three corresponded to new haplotypes (accession
number: KF576968, KF576969, KF576970) (Figures S1 and
S2, and Table 1). The gene frequencies of the detected haplo-
types varied from 0.015 (URR-DRB3-Hol*6) to 0.397 (URR-
DRB3-Hol*3) (Table 1).

A distinguishing feature of the second exon of the DRB
gene is the high degree of polymorphism in combination with
a relatively even distribution of allele frequencies. Further-
more, a significant excess of heterozygous genotypes was
reported in different populations (9, 19, 31). It had been
proposed that this extensive polymorphism is maintained by
a selective mechanism(s), such as overdominace or balanc-
ing selection, maternal–foetal interactions and non-random
mating (19, 31). In contrast, mutations on most of DNA
sequences, such as URR, are expected to be purged by positive
selection (13, 32). For this reason, a different degree of diver-
sity is expected depending on the studied DNA region: URR
or exon 2 (ABS). Comparison of diversity values at both allele
and nucleotide levels showed a considerably higher diversity
in exon 2 than in URR, although a moderate degree of vari-
ability was detected in URR (Table 2). In this way, 23 alleles
were detected in exons 2 and 7 in the URR. Nucleotide diver-
sity values were 0.010 for URR and 0.103 for exon 2, and
for the NPD, 1.14 and 25.75. HWE and neutrality tests nei-
ther showed significant deviation from theoretical proportions,
nor overdominace or balancing selection in URR and exon 2
(Table 2).

To analyse the LD between the URR and the second exon
and to determine whether certain groups of alleles of exon
2 were associated with haplotypes of the URR, a NJ tree
of the second exon was constructed, and the associated URR
haplotypes were overlapped (Figure S3). This analysis showed
that each URR haplotype was associated with a range of exon
2 variants that varied from 1 to 15. The URR haplotypes
were spread among the tree and linked to exon 2 alleles
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Table 2 Standard and molecular diversity were estimated through the number of alleles (na), observed (ho) and expected heterozygosities (he),
nucleotide diversity (π), mean number of pairwise differences (NPD), for the upstream regulatory region (URR) and the second exon in the studied
Holstein population. Hardy–Weinberg equilibrium (HWE), measure through FIS, and Slatkin’s exact neutrality test were calculated for the cattle breeds
studied.

Gene region na ho (he) π NPD HWEFIS –P value Slatkin’s exact P value

URR 7 0.18 0.75 0.103 1.14 0.767–< 0.00 0.608
Exon 2 22 0.912 0.935 0.005 25.75 0.025–0.900 0.191

Table 3 BoLA-DRB3 exon 2 alleles associated with each BoLA-DRB3-
URR haplotypes

URR haplotype Exon 2 haplotypes

URR-DRB3-Hol*1 BoLA-DRB3*0101, 0301, 1001, 14011, 1601,
1801, 2502, 2703, 2707

URR-DRB3-Hol*2 BoLA-DRB3*0701
URR-DRB3-Hol*3 BoLA-DRB3*0101, 0201, 0601, 0801, 0901,

0902, 1001, 1101, 1102, 1104, 1201, 1501,
2402, 2703, 3601

URR-DRB3-Hol*4 BoLA-DRB3*0101, 0301, 1101, 14011, 2006
URR-DRB3-Hol*5 BoLA-DRB3*0301, 0601, 0901, 0902, 1001
URR-DRB3-Hol*6 BoLA-DRB3*0902
URR-DRB3-Hol*7 BoLA-DRB3*0902, 1201

that belonged to different clusters. Moreover, several exon 2
alleles were linked to more than one URR haplotype (Table 3;
Figure S3). G-test confirmed the lack of LD (P value of
LD > 0.05).

In large effective size populations, even though recombina-
tion between tightly linked SNPs occurs slowly, LD is main-
tained through generations over short distances, given that the
LD represents a balance between mutation, drift and recom-
bination (33). Recently, whole genome LD studies showed
that the mean block size varied from 5.7 to 15.7 kb across
breeds (with a mean block size of 10.3 kb over all breeds),
and the r2 values were high only at small distances (33–35).
Because the URR and exon 2 of BoLA-DRB3 are located
approximately 8 kb away (GeneID:282530), URR – second
exon of BoLA-DRB3 LD is expected to be maintained over
the time. However, our results suggest that no relationship
occurs between the URR and exon 2 of the BoLA-DRB3
gene, most likely due to recombination.

In conclusion, these results increase our knowledge of the
co-evolution of two DNA sequences under different types
of selection. Description of the URR-exon 2 LD would be
useful for further studies of resistance/susceptibility to infec-
tion and autoimmune diseases because the immune response
might depend on the major histocompatibility complex (MHC)
molecule – antigen binding affinity and the level of MHC
gene expression. For this reason, both regions of class II
genes may be included in the development of new genotyping
methods based on next-generation DNA sequencing technolo-
gies.
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Supporting Information

The following supporting information is available for this
article:

Figure S1. Alignment of the nucleotide sequences of the
upstream regulatory region (URR) of BoLA-DRB3 previously
reported and obtained in this work (Hol*1 to Hol*7) URR-
BoLA-DRB3.The A of ATG is designated as +1. Dots
indicate nucleotide identity to the consensus sequence, and
dashes (−) represent gaps introduced to achieve the best
alignment. Boxed sequences represent the W, X, Y, CCAAT
and TATA regions. Arrows indicate the location of the primers.

Figure S2. Linkage disequilibrium (r2) plot obtained
in upstream regulatory region of BoLA-DRB3 gene with
HAPLOVIEW 3.31 (21). Solid lines mark the block identified.

Figure S3. Neighbour joining tree of the BoLA-DRB3 exon
2 alleles. Arrows indicate the BoLA-DRB3-URR associated
haplotypes.
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