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a b s t r a c t

Many classical multivariate statistical process monitoring (MSPM) techniques assume normal distribu-
tion of the data and independence of the samples. Very often, these assumptions do not hold for real
industrial chemical processes, where multiple plant operating modes lead to multiple nominal operation
regions. MSPM techniques that do not take account of this fact show increased false alarm and missing
alarm rates. In this work, a simple fault detection tool based on a robust clustering technique is imple-
mented to detect abnormal situations in an industrial installation with multiple operation modes. The tool
is applied to three case studies: (i) a two-dimensional toy example, (ii) a realistic simulation usually used
as a benchmark example, known as the Tennessee–Eastman Process, and (iii) real data from a methanol
ultivariate statistical process monitoring plant. The clustering technique on which the tool relies assumes that the observations come from mul-
tiple populations with a common covariance matrix (i.e., the same underlying physical relations). The
clustering technique is also capable of coping with a certain percentage of outliers, thus avoiding the
need of extensive preprocessing of the data. Moreover, improvements in detection capacity are found
when comparing the results to those obtained with standard methodologies. Hence, the feasibility of
implementing fault detection tools based on this technique in the field of chemical industrial processes

is discussed.

. Introduction

Arising from the ever growing possibility of collecting immense
mounts of data with modern monitoring and control systems,
here has been increasing interest in pursuing methods that are
apable of grasping the essentials in the data. Multivariate sta-
istical process control (MSPC) tools are data driven techniques
hat generally reduce the dimension of process data and extract
ey features and trends that are of interest to plant personnel
Venkatasubramanian, Rengaswamy, Kavuri, & Yin, 2003). MSPC
ools used to reduce the explaining dimensions of the process
ata, like Principal Component Analysis (PCA) and subsequent
efinements, have shown great success. PCA is a method par-

icularly suited to data sets comprising correlated and collinear
ariables. The methodology projects the process data onto a low
imensional subspace in order to capture the major sources of
ariability associated with the process. The principal eigenvectors

∗ Corresponding author at: PINMATE, Dep. de Industrias, FCEyN, Universidad de
uenos Aires, C1428BGA Buenos Aires, Argentina. Tel.: +54 11 45763383;

ax: +54 11 45763366.
E-mail address: ghorowitzer@ypf.com (G. Horowitz).

098-1354/$ – see front matter © 2009 Elsevier Ltd. All rights reserved.
oi:10.1016/j.compchemeng.2009.05.012
© 2009 Elsevier Ltd. All rights reserved.

(associated with the principal component loadings) of the sample
variance–covariance matrix of the data set conform a base of the
subspace; i.e., a set of orthogonal latent variables formed by linear
combinations of the original process variables. New data of the pro-
cess are projected onto the subspace to detect abnormal situations
by computing statistics that quantify if the new data are within the
limits specified as a normal control region. Relevant information
leading to identification or diagnosis of the problem can be found
by interrogating the contribution of each process variable to the
principal component score.

In spite of the success of applying PCA based MSPC tools to pro-
cess data for detecting abnormal situations, when these tools are
applied to a process with multiple operating modes, many missing
and false alarms can appear even when the process itself is operat-
ing under other steady-state nominal operating conditions (Zhao,
Zhang, & Xu, 2004). This is not fortuitous; it is because many of
the current techniques are based on the assumption that the pro-
cess has one nominal operating region while real processes have

many. Process data generally define different groups based, for
instance, on variations in the operating capacity, seasonal variations
or changes in the feedstock characteristics, and also on modifica-
tions in the operation strategies introduced purposely by the plant
personnel through changes in the set points (Ge & Song, 2008).

http://www.sciencedirect.com/science/journal/00981354
http://www.elsevier.com/locate/compchemeng
mailto:ghorowitzer@ypf.com
dx.doi.org/10.1016/j.compchemeng.2009.05.012
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rom a geometric point of view, whenever such a change occurs,
he process data tend to group into a new cluster in a different loca-
ion in the high dimensional space containing the process normal
meaning not faulty) operation region. If all the data is considered
s belonging to a unique normal operation region, the volume of
his region becomes incorrectly large. A monitoring tool consider-
ng such a region will lead to an increased number of missing and
alse alarms (Zhao et al., 2004; Zhao, Zhang, & Xu, 2006).

Some approaches have been proposed to address the issues asso-
iated with multiple operating modes under different assumptions.
ane, Martin, Kooijmans, and Morris (2001) adopted a common sub-
pace model to monitor a semibatch process to produce several
ifferent products. The method is based upon the assumption that
common eigenvector subspace exists for the variance–covariance
atrices of the individual product grades or recipes, and through
pooled sample variance–covariance matrix the principal compo-
ent loadings of the multi-group model can be calculated. Hwang et
l. (1999) proposed a monitoring method using a super-PCA model
hich considers that the number of retained eigenvectors is the

ame in each of the clusters defined by hierarchical clustering of
he data. Chen and Liu (1999) proposed a method called Mixture
rincipal Component Analysis (MixPCA). In their approach, PCA

s used to compress and extract process features and a heuristic
moothing clustering (HSC) algorithm based on the Gaussian fil-
er automatically determine the proper number of clusters. Choi,
oo, and Lee (2003) proposed a method based on Partial Least
quares (PLS) and credibilistic fuzzy-c-means (CFCM) for model-
ng and monitoring processes that undergo operating condition
hanges. Yoo, Vanrolleghem, and Lee (2003) used PCA to reduce
he dimensionality and to remove collinearity of the data. Then,
hey applied adaptive credibilistic fuzzy-c-means to model diverse
inds of operating conditions, and also proposed an adaptive dis-
rimination monitoring (ADM) method to distinguish between a
arge process change and a simple fault. In the approach proposed
y Srinivassan, Wang, Ho, and Lim (2004), process data are first
egmented based on regions of steady-state operations into modes
nd transitions. Then, a dynamic PCA (DPCA) based similarity factor
lusters the transitions.

Different clusters certainly have different means; however,
ince the physical rules governing the process are the same, the
ovariance structures share common characteristics (Hwang et al.,
999). To enhance the monitoring performance considering the
nchanged physical grounds, a statistical model of multiple normal
istributions sharing a common covariance matrix is considered.
herefore, the robust clustering method proposed by Gallegos
nd Ritter (2005) can be used. This method considers that all
he clusters share a common covariance matrix, computed as a
ooled covariance matrix. Moreover, while defining the clusters,
he method is able to cope with potential contamination of the
ata. This constitutes an important advantage considering that
ontamination of the data is unavoidable when monitoring real
rocesses.

Standard monitoring tools can be easily extended using this
odel. In this work, examples are given with the statistics asso-

iated with Principal Component Analysis (PCA). The advantage of
his approach is illustrated through its application to a toy exam-
le in two dimensions. Then, its performance is demonstrated by
pplying the tool to the Tennessee–Eastman Process (TEP) simu-
ation benchmark and to industrial data belonging to a methanol
lant subsection.
. Model development and implementation

Clusters can be described as continuous regions of space con-
aining relatively high densities of points, separated from other
igh-density regions by regions containing relatively low densi-
al Engineering 34 (2010) 223–231

ties of points (Choi et al., 2003). Statistical approaches to cluster
analysis have a strong theoretical background, and offer the advan-
tages of being able to compute the cluster criteria to be optimized
and to yield algorithms that effectively and efficiently reduce them
(Gallegos & Ritter, 2005).

We propose to use a statistical model consisting of several
normal distributions sharing a common covariance matrix for pro-
cesses with multiple operation modes (MOM) where due to the
physical relations between variables, the covariance structures
share common characteristics. This will let us use a very power-
ful method to find the different clusters even in the presence of
outliers.

The method proposed by Gallegos and Ritter (2005) consid-
ers precisely a contaminated set of n observations on d variables
coming from g different, normally distributed, populations with a
common covariance matrix. In their work, they first introduce a
criterion for the clustering procedure (the trimmed determinant
criterion—TDC) and demonstrate that it leads to maximum like-
lihood estimates of the parameters of the model (i.e., the means
and the common covariance matrix of the g normal distributions).
Moreover, they develop an algorithm and demonstrate that con-
verges to the required minimum of the TDC in a finite number of
steps. Finally, they compute the asymptotic breakdown values of the
estimators and find results consistent with the robustness claim.
Readers interested in the theoretical background are referred to the
work by Gallegos and Ritter.

The algorithm partitions the r regular observations into g clus-
ters and simultaneously detects n–r outliers. It does so by choosing
a subset of size r from the n observations and partition it into g clus-
ters so that the pooled sum of squares and products (SSP) matrix has
minimum determinant (TDC). The maximum likelihood estimate of
the mean vectors of the different underlying normal distributions
are the sample mean vectors of the various clusters, whereas that
of the common covariance matrix is the pooled SSP matrix divided
by r. The number n–r of rejected data is a parameter of the model
and the estimated means are fairly insensitive to the choice of this
parameter provided it is not too large in comparison with the total
available process data.

Starting from a configuration R (i.e., a subset of the data together
with its partition into g clusters), the key step of the algorithm is
to look for another configuration Rnew such that the sum of square
distances is smaller than the one in configuration R. This is done by
assigning each observation to the cluster that minimizes the square
distance dR(i, j)2. It has been demonstrated that the determinant of
the pooled covariance matrix corresponding to the new configu-
ration is smaller than the one corresponding to the previous one
(Gallegos & Ritter, 2005).

The algorithm can be briefly described as follows: Given a start-
ing configuration R, together with its mean vectors mR, and its SSP
matrix WR,

WR =
g∑

j=1

∑
x ∈ Rj

(x − mR(j))(x − mR(j))T (1)

(i) Compute the Mahalanobis distance from each data point to the
mean of each cluster:

dR(i, j)2 = (xi − mR(j))T W−1
R (xi − mR(j)),

i ∈ 1, . . . , n, j ∈ 1, . . . , g (2)
(ii) For each i ∈ 1, . . ., n, find j ∈ 1, . . ., g that minimizes dR(i, j)2; that
is, for each i determine the optimal cluster j.

(iii) Sort the square distances in ascending order.
(iv) Construct the new configuration Rnew, considering the data

subset corresponding to the first r sorted distances calculated
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in (iii) and assign to each point its optimal cluster j. Compute
the new mean vectors mRnew and SSP matrix WRnew rejecting
data whose distances sorted in (iii) are in the last n–r places
(now considered outliers).

(v) If det(WRnew) = det(WR), stop. Else, WR = WRnew and
mR = mRnew, go to (i).

y iterating these steps, a sequence of configurations Rk that
atisfies det(WRk+1

) ≤ det(WRk
) is obtained. The process becomes

tationary after a finite number of steps. The final configuration is
ne approximation to the minimum trimmed determinant. Multi-
tart optimization (i.e., starting by randomly assigning each data
o any of the clusters) is applied to the foregoing iterative pro-
ess; the limit configuration with the least value of the determinant
f the corresponding SSP matrix is the final approximation to the
inimum. Geometrically, the reduction in the determinant of the

ooled covariance matrix represents a reduction in the volume of
ts associated ellipsoid (Bersimis, Psarakis, & Panaretos, 2007).

It is worth mentioning that the computed pooled covariance
atrix could be biased. Since the algorithm willingly excludes

he farthest n–r points, the variance will be underestimated if the
umber of actual outliers is less than n–r. This is not a problem

or identifying the clusters, but the computed pooled covariance
atrix will not be an appropriate estimator of the covariance
atrix.

The partitioning procedure of assigning randomly each data
oint to a cluster has no physical meaning if successive data points
orrespond to successive times. The plant operation mode will
ever jump randomly from one cluster to another; points adjacent

n time generally belong to the same cluster. Taking into account
his consideration, the initial configuration is generated dividing
he data set in g groups of consecutive (meaning sequential in
ime) data, imposing randomly the separation dates. In this way,
ast convergence to minimum values of the trimmed determinants
s attained.

. Determination of the number of clusters

In the algorithm, the parameter g (number of clusters) is
ssumed to be given “a priori”. This is a limitation because, in
eal multivariate processes, the number of clusters is very often
nknown. To overcome this limitation, a heuristic rule based on
eometric considerations is proposed.

Taking into account that the determinant of the pooled covari-
nce matrix is related to the volume of its associated ellipsoid
Bersimis et al., 2007), the algorithm is run for different number of
lusters, g, and the volume associated with the underlying normal
odel, V, is computed as the square root of the pooled covariance
atrix determinant of the final configuration.

=
√

det(Spool) (3)

Then, an objective function, Y, that relates the occupied vol-
me of the space, V, with the number of clusters, g, and the space
imension, d, is defined as:

= V · g, g > d (4)

=
(

g

d

)
V · g +

(
1 − g

d

)
V · 2g, g ≤ d (5)

The objective function considers that, when a new cluster is
roperly added, the space occupied by the ellipsoid associated with

he pooled covariance matrix determinant should decrease with a
actor related to the number of clusters. A cluster in excess will
ead to a decrease of the associated volume which is less signifi-
ant. The dimension of the space (i.e., the number of variables) will
lso affect the shrinking of the ellipsoid, which will be more impor-
al Engineering 34 (2010) 223–231 225

tant when the dimension is larger than the number of clusters. If
a proper factor is used, the objective function will indicate when
the addition of a new cluster does not reduce significantly the vol-
ume any more. Then, the value of g that minimizes Y will indicate
the optimum number of clusters. Many factors have been tested
with different simulations considering space dimensions between
2 and 100 and 2–20 clusters, and those indicated in Eqs. (4) and
(5) gave the best results. Notwithstanding, research is still ongoing
particularly comparing the developed heuristic method with oth-
ers, more computing demanding, statistical procedures described
in the literature, like the GAP statistic method (Tibshirani, Walther,
& Hastie, 2000), to establish the best methodology for determining
the number of clusters.

4. Standard and clustered statistics

A common procedure for reducing the dimensionality of the
variable space is the use of projection methods like Principal Com-
ponents Analysis (PCA) (Bersimis et al., 2007). These methods are
based on reducing the sample variance–covariance matrix S, to a
diagonal matrix L by premultiplying and postmultiplying it by a
particular orthonormal matrix U such that UTSU = L. The diagonal
elements of L, �1 ≥ �2 ≥ · · · ≥ �d are the eigenvalues of S, and the
columns of U are the eigenvectors of S, also called the loading vec-
tors (ui). The covariance matrix S is calculated from a given a set
of n vectors, corresponding to measurements of d variables under
normal plant operation. When variables are measured in different
units, the vectors must be normalized to standard units. In those
conditions, the covariance matrix S calculated with the normalized
vectors is the correlation matrix R of the original vectors. New mea-
surements properly normalized and arranged in a m × d matrix Y,
are then projected by T = YU, or ti = Yui i = 1, 2, . . ., d. The ti, called
the score vectors, are the columns of T and different statistics can
be calculated to decide whether the measurements remain under
control or not. For instance, charts based on the Hotelling’s T2 can be
plotted based on the first a principal components (Eq. (6)). Another
useful statistics is the Q statistics (Eq. (7)). Each statistics defined
by Eqs. (6) and (7) provide complementary information.

T2 on the a retained eigenvectors : T2
a =

a∑
i=1

t2
i

�i
(6)

Q statistics : Q =
d∑

i=a+1

t2
i (7)

This procedure can be easily extended to the case where multiple
clusters are present, considering the different cluster means and
the pooled covariance matrix instead of the global mean and the
standard covariance matrix.

5. Results and discussion

5.1. Case 1: toy example

To exemplify the performance of the clustering technique, we
have applied it to an artificially generated data set. The controlled
data set consists of four uncontaminated clusters with the param-
eters detailed in Table 1.

The result of applying the algorithm with multistart optimiza-
tion to the artificially generated data set is shown in Fig. 1. As

observed in the figure, the proposed method succeeds in determin-
ing the clusters in spite of their different density.

To analyze the robustness of the method for handling contam-
inated data, the same data set is contaminated with 200 outliers,
following a Gaussian distribution with a standard deviation of 10.
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Table 1
Parameters of the artificially generated data set for illustrating the clustering
method.

Cluster Covariance matrix Mean Number of points

1 [8 8] 400
2
3
4

N
5

t
r
f
t
t
s
a

5

p
p
e
d
p
t
t
a
e
a
t
i
m
m
c
v
T
f
a
t

F
e

[
8.5 7.5
7.5 8.5

]
[4 −4] 800
[−4 4] 1600
[−8 −8] 2000

ote that the number of outliers represents 4% of the data set and
0% of the less dense cluster.

The algorithm shows its robustness by successfully partitioning
he data despite the presence of outliers. Fig. 2a and b shows the
esults of running the algorithm changing the parameter to account
or 200 and 500 outliers, respectively. The former case corresponds
o the “true” number of outliers, while the latter is more conserva-
ive, overestimating the number of outliers. Both cases lead to the
ame results (i.e., the same means and clusters sets) and can be used
s a good starting point for a robust covariance matrix calculation.

.2. Case 2: Tennessee–Eastman Process (TEP)

The Tennessee–Eastman Process (TEP) simulation benchmark,
resented by Downs and Vogel (1993), is the simulation of a com-
lex industrial chemical process. It has been used as a benchmark,
specially for studying advanced control strategies. In the last
ecade, it has increasingly been used to test the performance of
roposed MSPC tools. Fig. 3 gives the well known flow sheet of
he TEP (Ricker, 1996). The process has five major units: a reac-
or, a condenser, a vapor–liquid separator, a recycle compressor,
nd a product stripper. It involves two simultaneous gas–liquid
xothermic reactions that produce two desired products (G and H)
nd a byproduct F which is produced from two additional reac-
ions, from four reactants A, C, D and E. Within the process there
s also an inert B. The process has 12 manipulated variables and 41

easured variables for monitoring and control. About half of the
easured variables are component compositions, available at dis-

rete sampling intervals of 0.1 or 0.25 h. The remaining 22 measured
ariables are available at significantly higher sampling frequency.

he original process is open-loop unstable and, in the absence of
eedback, small perturbations eventually lead to a shutdown; then,
control strategy must be introduced. Here, the advanced decen-

ralized control strategy presented by Ricker (1996) is employed for

ig. 1. Normal operation regions identified by the clustering methods for the toy
xample in two dimensions with uncontaminated data.

Fig. 2. Normal operation regions identified by the clustering methods for the toy

example in two dimensions imposing different values of the parameter r to establish
the number of outliers: (a) n–r = 200, outliers representing 4% of the total data; (b)
n–r = 500, outliers representing 10% of the total data. Black dots indicate the outliers
identified by the method.

its capability of less variability in the product rate and quality, and of
operating on-spec for long periods without feedback from composi-
tion measurements. The involved control loops for the considered
strategy are indicated in Fig. 3. For the sake of practical consid-
eration, the 22 continuous outputs among the 41 measurements
are used for monitoring and the sampling interval is 0.01 h. The
simulation programs are available at Ricker’s home page (Ricker,
2008).

The simulation programs have been implemented and data cor-

responding to a set of two “normal process operation” in the sense
that they lead to a product with the same specification are obtained
by imposing modifications in the operation strategy. The imposed
modifications are indicated in Table 2 and arise from a controlled
change in reactor pressure for which drifts in the production output

Table 2
Different steady-state modes of operation that define the clusters considered for the
TEP example.

Reactor pressure (kPa) Stripper underflow drifts (m3/h)

Cluster 1 2800 22.4–18.6 and 17.9–17.2
Cluster 2 2680 22.9–21 and 19.1–17.2
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Fig. 3. Flow sheet of the Tennessee–Eastman Process (TEP) indicating the control loops used by Ricker (1996).

Fig. 4. Normal operation regions identified by the proposed clustering method for the TEP example considering no outliers.

Fig. 5. Detection capability of the joint output of the complementary statistics, T2
a (Eq. (6)) and Q (Eq. (7)), using the standard and the proposed clustering method when

forcing an out-of-range error of each of the supervised variables in the TEP for each instant. Levels of univariate drift: (a) 1 standard deviation; (b) 3 standard deviations.



228 M. Maestri et al. / Computers and Chemical Engineering 34 (2010) 223–231

Table 3
List of the standardized faults in the TEP simulation benchmark.

Fault Description Type

1 A/C feed ratio, B composition constant
(Stream 4)

Step

2 B composition, A/C ratio constant (Stream
4)

Step

3 D feed temperature (Stream 2) Step
4 Reactor cooling water inlet temperature Step
5 Condenser cooling water inlet temperature Step
6 A feed loss (Stream 1) Step
7 C header pressure loss – reduced

availability (Stream 4)
Step

8 A, B, C feed composition (Stream 4) Random variation
9 D Feed Temperature (Stream 2) Random variation

10 C feed temperature (Stream 4) Random variation
11 Reactor cooling water inlet temperature Random variation
12 Condenser cooling water inlet temperature Random variation
13 Reaction kinetics Slow drift
14 Reactor cooling water valve Sticking
15 Condenser cooling water valve Sticking
16 Unknown –
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Table 4
Comparison between missing and false alarm rates arising from monitoring with
the standard statistics and the one computed by present method for the faults in the
TEP example (similar cluster sizes).

Standard Clustered

T2
a Q Joint T2

a Q Joint

False alarms (%) 1.00 1.00 2.00 1.00 1.00 1.99

Missing alarms (%)
Fault 1 58.50 24.13 23.50 63.50 17.63 17.13
Fault 2 91.88 36.38 35.63 94.00 27.88 27.25
Fault 3 98.88 98.50 97.50 99.00 100.00 99.00
Fault 4 86.50 86.88 84.63 85.38 100.00 85.38
Fault 5 98.88 98.63 97.50 98.63 100.00 98.63
Fault 6 98.38 64.25 63.50 97.88 49.88 49.25
Fault 7 71.25 10.38 7.88 50.38 4.75 2.38
Fault 8 98.00 70.38 69.38 94.25 62.88 61.63
Fault 9 98.88 98.50 97.38 98.63 100.00 98.63
Fault 10 98.75 98.50 97.38 98.88 100.00 98.88
Fault 11 12.13 16.13 10.50 10.63 90.50 10.63
Fault 12 98.13 98.75 96.88 98.25 100.00 98.25
Fault 13 98.88 98.50 97.50 98.88 100.00 98.88
Fault 14 10.25 14.25 9.25 8.63 100.00 8.63
Fault 15 99.00 98.63 97.63 99.00 100.00 99.00
Fault 16 98.88 98.50 97.50 98.88 100.00 98.88
Fault 17 93.50 89.63 85.50 90.50 83.50 80.00

faults are listed in Table 3. Again, the statistics are calculated in the
same way, but in this case the control limits are set to achieve, in
all cases, 1% of false alarms as recommended by Russell, Chiang,
and Braatz (2000). Two different situations are also compared. In

Table 5
Comparison between missing and false alarm rates arising from monitoring with
the standard statistics and the one computed by present method for the faults in the
TEP example (different cluster sizes).

Standard Clustered

T2
a Q Joint T2

a Q Joint

False alarms (%) 1.00 1.00 2.00 1.00 1.00 1.99

Missing alarms (%)
Fault 1 44.75 23.63 22.75 65.75 16.75 16.25
Fault 2 89.75 35.50 35.00 94.88 28.00 27.38
Fault 3 98.88 98.75 97.63 98.88 100.00 98.88
Fault 4 87.13 86.38 84.38 85.63 100.00 85.63
Fault 5 98.88 98.75 97.63 98.63 100.00 98.63
Fault 6 98.00 58.38 57.50 97.88 49.50 48.88
Fault 7 47.25 14.88 8.50 48.00 5.50 3.00
Fault 8 97.75 70.88 69.88 93.63 61.88 60.50
Fault 9 99.00 99.00 98.00 98.75 100.00 98.75
Fault 10 98.75 99.00 97.75 98.88 100.00 98.88
Fault 11 12.25 14.50 10.50 10.63 89.75 10.63
Fault 12 98.50 98.38 96.88 98.38 100.00 98.38
Fault 13 98.88 99.00 97.88 98.88 100.00 98.88
Fault 14 10.75 12.75 8.75 8.88 100.00 8.88
Fault 15 98.88 99.00 97.88 99.00 100.00 99.00
17 Unknown –
18 Unknown –
19 Unknown –
20 Unknown –

re imposed. It should be mentioned that previous works analyz-
ng multiple operation modes for the TEP example have considered

odes that lead to products with different compositions (Chen &
iu, 1999; Ge & Song, 2008; Zhao et al., 2004), which is not the
oal of the present work. We have particularly analyzed the case
f different operation modes that lead to a product with the same
pecification. It is also worthwhile to mention that the method per-
ormance highly increase its capabilities if the obtained products
ave modified composition, since the differences considered in this
ase are extremely more subtle.

Fig. 4 illustrates how the implemented algorithm clusterizes the
ata considering the 22 variables measured with relatively high fre-
uency (0.01 h). The minimum in the heuristically defined objective
unction (Eqs. (4) and (5)) to estimate the number of clusters is
btained with two clusters. The figure presents typical relations
ound among several of the considered variables.

It can be observed that the method does separate operation
erformed under different reactor pressure. However, the drift in
roduction output remains within the same cluster, even if a dis-
ontinuity in the drift was purposely imposed. This result arises
rom no changes in the majority of the physical relations which
overn the correlation between variables under a given operation
trategy, within a reasonable production output.

To illustrate the advantages of clustering the data in such a way,
wo examples based on the TEP are presented. In both cases, the
CA statistics are calculated for each test point with respect to the
ean of each cluster, using the pooled covariance matrix result-

ng from the application of the proposed clustering technique. Each
ata is assigned to a particular cluster according to the minimum
istance. The number of principal components is selected to explain
5% of the variability of the data, resulting in 6 for all cases. The
ontrol limit is set at the 99 percentile of the statistics calculated
rom data corresponding to normal operation. Then, missing and
alse alarms are compared with those obtained when the standard
tatistics (i.e., without clustering) are used. Given that PCA involves
wo different statistics, the results are summarized considering the
oint information (i.e., if any statistic is over the control limit, a

ault is detected, and both statistics under the control limit indicate
ormal operation).

In the first example, a drift is artificially introduced in each vari-
ble of each data point to simulate malfunctions in instruments. It is
mportant to start from each data point to make sure that the results
Fault 18 98.88 98.50 97.50 98.88 100.00 98.88
Fault 19 99.13 98.63 97.75 98.88 100.00 98.88
Fault 20 97.50 96.13 94.13 98.13 85.75 84.50

do not depend on the starting point. Then, the number of detections
(i.e., occasions when the statistics is greater than its control limit)
is computed using either the standard or the clustered statistics.
Results are shown in Fig. 5, proving improvement in the sensibility
to different drifts in measured variables at two levels of deviations
from the mean.

The second example consists in the simulation of all the 20 faults
defined for the TEP, starting from the same initial condition. The
Fault 16 98.88 99.00 97.88 98.88 100.00 98.88
Fault 17 93.88 89.38 85.00 90.50 85.00 81.25
Fault 18 98.88 99.00 97.88 98.88 100.00 98.88
Fault 19 99.00 99.13 98.13 99.00 100.00 99.00
Fault 20 96.00 93.75 91.13 98.50 85.63 84.50
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ig. 6. Separation among clusters predicted by the algorithm, as different numbers
f clusters, g, are imposed.

he first, the two clusters corresponding to normal operation have a
imilar number of points, whereas, in the second case, the number
f points in cluster 1 is ten times larger than the number of points
n cluster 2. Results of the statistics defined by Eqs. (6) and (7) are
etailed in Tables 4 and 5, respectively, for similar and different
luster sizes. Missing and false alarm rates evaluated through the
oint information of the complementary statistics T2

a and Q are also
etailed in the tables. From the results, it comes out that, even if

ig. 8. Normal operation regions identified by the proposed clustering method for the m
lack dots).
Fig. 7. Evolution of the objective function defined by Eqs. (4) and (5) as the number
of clusters is progressively increased. Minimum found for g = 15 clusters.

many faults are not detected by either method, whenever there is a
significant change in the missing alarm rate, the clustered statistics
have improved detection capability. Note that the non-faulty testing

data is different from the training data and that the control strategy
is very strong. Actually, if a less advanced control strategy is used,
the percentage of missing alarms noticeably diminishes for both
methods and the performance of the clustered method is highly
superior to the standard PCA.

ethanol plant example considering that 5% of the data are outliers (identified by
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Following the same procedure as in the TEP example, a drift
in each variable of each data point was artificially introduced to
test the improvement in the sensibility of the proposed monitoring
tool with respect to the standard methodology. For an explained
ig. 9. Detection capability of the joint output of the complementary statistics T2
a

orcing an out-of-range error of each of the supervised variables in the methanol p
eviations.

.3. Case 3: methanol purification plant

Process data collected for monitoring the operation of the purifi-
ation section of a methanol plant owned by YPF are employed
or assessing the strategy in an actual industrial environment. The
urification section consists of a standard arrangement of two dis-
illation columns. The first column separates the light products
rom the methanol–water mixture. The bottoms of this column are
reated in the second column, where the methanol is distilled in
he top and process water is extracted from the bottom.

For monitoring and analysis, 46 variables were continuously fol-
owed for more than 3 years. The process data collected during
eriods of normal operation were used for identifying the clusters
orresponding to different operation modes and for training the
ools.

The proposed clustering algorithm is applied to the process data,
onsidering different number of clusters (i.e., different values of g),
nd assuming that 5% of the data are outliers. The number of out-
iers is generally established based on the experience of the plant
ersonnel since they depend mostly on the recollection and trans-
ission processes and also on the periods when the plant should

top or operate with low capacity due to fuel restrictions and fol-
owing starts-up.

The data clusters arising from applying the proposed algorithm
re shown in Fig. 6 represented as a function of time units. Clusters
re marked alternatively in black and white to remark the dates cor-
esponding to a cluster change. It is remarkable that, whatever is the
nitial condition imposed, many cluster separation dates are coin-
ident for different values of g. For instance, for g > 2, the algorithm
lways groups in different clusters data measured before and after
he date corresponding to 15,400 time units, which is coincident
ith a change in plant operation strategy. The same observation

s valid for the outliers (marked in grey); that is, there are points
ecursively classified as outliers by the algorithm independently of
he number of clusters considered.

To establish the optimum number of clusters, the proposed
euristic rule based on minimising the objective function defined
y Eqs. (4) and (5) was applied (Fig. 7). Once more, the number of
lusters corresponding to the minimum of this figure is considered
s a good choice by the YPF personnel, and cluster divisions can be

uccessfully associated to modifications in the plant operation.

Some representative projections of the data, grouped in 15 clus-
ers according to the result of the minimization, are illustrated in
ig. 8.
6)) and Q (Eq. (7)), using the standard and the proposed clustering method when
or each instant. Levels of univariate drift: (a) 1 standard deviation; (b) 3 standard
Fig. 10. Control charts for standard and clustered statistics. Grey points correspond
to normal operation, black points correspond to faults and horizontal lines are the
estimated control limits for each statistics. (a) T2

a (Eq. (6)); (b) Q (Eq. (7)).
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Table 6
Comparison between missing and false alarm rates arising from monitoring with
the standard statistics and the ones computed by present method for two different
faults in the real methanol plant. Joint refers to using the joint information of the T2

a

and the Q.

Standard Clustered

T2
a Q Joint T2

a Q Joint

False alarms (%) 1.0 1.0 1.7 1.0 1.0 1.4

Missing alarms (%)

v
t
a
d
t
p

(
a
t
c
o
t
a
t
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f
c
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i
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m
g
d

6

p
T
t
i

Fault 1 51.0 46.3 33.3 30.2 39.0 22.9
Fault 2 98.5 99.3 98.0 46.1 87.9 46.1
Total 77.9 76.0 69.8 39.7 66.5 36.1

ariance of 95%, the number of retained components was 22 for
he standard methodology and 21 for the clustered one. There is
remarkable increase in detection sensibility at the two levels of
rift examined (Fig. 9). When considering the joint information of
he Q and T2

a , the improvement is remarkable for all the variables
articularly at the drift level of 1 standard deviation.

Fig. 10 shows the charts for standard and clustered statistics
Eqs. (6) and (7)) for a period spanning 40 months of plant oper-
tion. In both cases the limits for the control charts were set as
he 99 percentile of each statistics calculated from the databank
orresponding to normal operation. During this period, two faults
ccurred. The first one involved the malfunction of a manome-
er at the top of the second column (roughly between 01/03/2003
nd 01/09/2003). The second one was an intermittent failure of a
emperature sensor located mid-height of the second distillation
olumn (starting about 2 months after 01/09/2004 and repeated
ntermittently until 01/03/2006).

Both methods succeeded in detecting appropriately the first
ault. However, there is a clear improvement in the detection
apability of the clustered method for the second fault, which is
bserved in the computed statistics. Missing and false alarms aris-

ng from these results are detailed quantitatively in Table 6.
While both methods lead to similar percentages of false alarms,

ignificant differences are found in detecting the two documented
alfunctions. These results highlight the benefits of using the sug-

ested clustering methodology for properly taking into account the
ifferent operating modes that existed in the methanol plant.

. Conclusions
A new MSPC technique is proposed in this paper to address the
roblem of monitoring processes with multiple operations modes.
his approach relies on a robust clustering method, assuming that
he different clusters share a common covariance matrix, preserv-
ng the physical relations between variables. Moreover, the method
al Engineering 34 (2010) 223–231 231

is capable to cope with the presence of outliers. A procedure to
determine the optimum number of clusters is also proposed. The
performance of this technique is tested on the TEP benchmark and
with real data from a methanol plant, thus establishing the feasi-
bility of its implementation in industrial environments.
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