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The paper “Euclidean algorithms are Gaussian” [V. Baladi, B. Val-
lée, Euclidean algorithm are Gaussian, J. Number Theory 110 (2005)
331–386], is devoted to the distributional analysis of three variants
of Euclidean algorithms. The Central Limit Theorem and the Local
Limit Theorem obtained there are the first ones in the context of
the “dynamical analysis” method. The techniques developed have
been applied in further various works (e.g. [V. Baladi, A. Hachemi,
A local limit theorem with speed of convergence for Euclidean
algorithms and Diophantine costs, Ann. Inst. H. Poincaré Probab.
Statist. 44 (2008) 749–770; E. Cesaratto, J. Clément, B. Daireaux,
L. Lhote, V. Maume, B. Vallée, Analysis of fast versions of the Euclid
algorithm, in: Proceedings of Third Workshop on Analytic Algo-
rithmics and Combinatorics, ANALCO’08, SIAM, 2008; E. Cesaratto,
A. Plagne, B. Vallée, On the non-randomness of modular arith-
metic progressions, in: Fourth Colloquium on Mathematics and
Computer Science. Algorithms, Trees, Combinatorics and Probabil-
ities, in: Discrete Math. Theor. Comput. Sci. Proc., vol. AG, 2006,
pp. 271–288]). These theorems are proved first for an auxiliary
probabilistic model, called “the smoothed model,” and after, the
estimates are transferred to the “true” probabilistic model. In this
note, we remark that “the smoothed model” described in [V. Bal-
adi, B. Vallée, Euclidean algorithm are Gaussian, J. Number Theory
110 (2005) 331–386] is not adapted to this transfer and replaces it
by an adapted one. However, the results remain unchanged.
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1. Introduction

The paper “Euclidean algorithms are Gaussian” by V. Baladi and B. Vallée [2] appeared in the Jour-
nal of Number Theory in 2005. It performs a distributional analysis of three Euclidean algorithms. A
Central Limit Theorem and a Local Limit Theorem are obtained for a wide variety of additive costs.
These results are the first ones about distributional analysis in the context of the “dynamical analysis”
method, which mixes tools from analysis of algorithms and dynamical systems theory. The Central
and Local Limit Theorems are proved first for an auxiliary probabilistic model, called “the smoothed
model,” and after, the estimates are transferred to the “true” probabilistic model. This work is done
in Section 4.2, more specifically in Lemmata 11, 12, 13 and 14. In this note, we remark that “the
smoothed model” described in [2] is not adapted to this transfer and replaces it by an adapted one.
However, the statements of Lemmata 11, 12, 13 and 14 remain unchanged when the new “smoothed
probabilistic model” replaces the old one. Moreover, only the proof of Lemma 14 needs a modifi-
cation. This note is motivated by the fact that the techniques introduced in [2] and, in particular
the smoothed model, have been used in further various works. Such instances are the analysis of
the Knuth–Schönage algorithm [3], the study of Arnold’s constant for modular arithmetic progres-
sions [5], and also various extensions of the results of [2] for more general costs [1]. An alternative
method which also “repairs” Baladi–Vallée’s paper is due to L. Lhote and is explained in [4]. It does
not introduce an auxiliary probabilistic model and uses other computations, of different style.

1.1. Euclidean algorithms, costs and probabilistic setting

The paper [2] analyzes three different variants of the Euclid algorithm: the standard, the centered,
and the odd Euclidean algorithms. Briefly, on the integer pair (u, v) so that u

v ∈ I (for some inter-
val I ⊂ [0,1] which depends on the algorithm), each algorithm performs a sequence of Euclidean
divisions for computing the gcd of the pair. Each Euclidean division, of the form v = mu + εr with
r/u ∈ I , creates a digit (m, ε), with conditions on digits which also depend on the algorithm. Each
algorithm applied to the rational u/v builds a specific continued fraction

u

v
= 1

m1 + ε1

m2+ ε2

. . . + εP−1
mP

,

of depth P = P (u, v).
The costs considered on the execution of any of the Euclidean algorithm over a pair (u, v) are

defined as follows: Given a digit-cost function c : N → R
+ , the cumulative cost C(u, v) is equal to

C(u, v) =
P (u,v)∑

i=1

c
(
mi(u, v)

)
.

This kind of costs includes a variety of costs of great interest for algorithmical studies; for instance,
the number P of steps of the algorithm is obtained by setting c = 1.

1.2. The probabilistic model of interest

In probabilistic analysis of algorithms, the set of inputs with size bounded by a given natural
N is endowed with a probability measure. The cost C is, then, considered as a random variable.
Average-case analysis estimates the asymptotic expectation of C (when N → ∞), whereas distribu-
tional analysis determines the asymptotic distribution of C .

In our framework, the inputs of the Euclidean algorithms are the integer pairs (u, v) with u/v ∈ I
and the size of an input (u, v) is the positive integer v . The set of the inputs with size bounded by
N is endowed with the uniform probability measure. Notice that the cumulative cost C only depends
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on the continued fraction expansion of the rational u/v , and does not depend on the gcd of the
pair (u, v). This entails that the study of the cost C can be restricted to the set

ΩN =
{
(u, v) ∈ N

2
�; gcd(u, v) = 1,

u

v
∈ I, v � N

}
(1)

endowed with the uniform probability PN .
Results about the average number of steps in the standard Euclidean algorithm were obtained

independently by Heilbronn [7] and Dixon [6] and for the centered algorithm by Rieger [9]. Later,
Hensley [8] proved that the number of steps of the standard Euclidean algorithm follows asymptot-
ically a Gaussian distribution. The dynamical analysis method introduced by Vallée in the nineties
provided a unified framework for the average-case analysis of Euclidean algorithms for a large class
of costs. The paper [2] gave rise to the distributional analysis in the context of the Dynamical Analysis
Method. The techniques developed in that paper allow to revisit the previous results about the
average-case in order to obtain results about the distribution.

2. The rôle of the “smoothed probabilistic model”

The methods developed in [2] mainly rely on precise estimates for the moment generating function
EN [exp(wC)], when w belongs to some complex neighborhood of 0.

The hard technical work of the paper is devoted to obtain estimates of the function

Ψw(N) :=
∑

Q �N

∑
n�Q

cn(w) =
∑

Q �N

Φw(Q ), (2)

where

Φw(N) :=
∑
n�N

cn(w), and cn(w) :=
∑

(u,n) gcd(u,n)=1

exp
[

wC(u,n)
]
.

The double sum Ψw(N) appears because the authors use as a main tool the Perron formula of order
two. It does not seem possible to obtain direct estimates on the “simple” sum Φw(N). However, this
is the final purpose of the authors, since the moment generating function En(exp[wC]) is expressed
with Φw(N) under the form

EN
[
exp(wC)

] = Φw(N)

Φ0(N)
. (3)

Then, they proceed in three steps.

(1) They first obtain estimates about Ψw(N). At the end of Section 3, it is proved that

Ψw(N) := A(w)N2σ (w)+1(1 + O
(
N−α

))
, (4)

where A and σ are analytic functions of w , α is a positive number and the O term is uniform
for w in a neighborhood of 0.

(2) Then, the authors introduced an auxiliary model, the so-called smoothed model, in order to ex-
ploit the estimates of the Cesàro sums Ψw(N). This model depends on some function T �→ ε(T )

and is denoted by (ΩN (ε),PN (ε)). Lemmata 11, 12, and 13 of the paper [2] prove that, with the
smoothed model, the cost C follows an asymptotic Gaussian law as N → ∞.

(3) Under some hypothesis on ε(T ), Lemma 14 states that the smoothed model is close enough to
the “true” probabilistic model (ΩN ,PN ) to ensure the transfer of estimates from (ΩN (ε),PN (ε))

to (ΩN ,PN ).
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Baladi and Vallée describe their intermediary model as follows (see [2]): “Associate to some non-
negative function T �→ ε(T ), with ε(T ) � 1, the probabilistic models (ΩN (ε),PN (ε)) as follows: For any
integer N, set ΩN (ε) = ΩN ; next, choose uniformly an integer Q between N − �Nε(N)	 and N, and draw
uniformly an element (u, v) of ΩQ . Slightly abusing language, we refer to the function C in the model
(ΩN (ε),PN (ε)) as the smoothed cost. The cumulative value of exp[wC] for PN (ε) is

Φw(N) := 1

�Nε(N)	
N∑

Q =N−�Nε(N)	

∑
n�Q

cn(w), (5)

so that the moment generating function of the smoothed cost is just

EN
[
exp(wC)

] = Φw(N)

Φ0(N)
.” (6)

Eqs. (5), (6) are exactly like Eqs. (4.4), (4.5) of [2]. With the relation

Φw(N) = 1

�Nε(N)	
[
Ψw(N) − Ψw

(
N − ⌊

Nε(N)
⌋)]

,

together with equality (6), Baladi and Vallée exploit the estimates Ψw(N), and transfer them into
estimates on EN [exp(wC)].

However, Eqs. (5), (6) are false. The actual expected value of the random variable exp[wC] com-
puted with the smoothed probabilistic model is

EN
[
exp(wC)

] = 1

�Nε(N)	
N∑

Q =N−�Nε(N)	

1

|ΩQ |
∑

n�Q

cn(w), (7)

and it does not coincide with the value computed in (6).

3. An adapted smoothed probabilistic model

We now introduce another smoothed probabilistic model for which the key equation (6) is true.
The new smoothed probabilistic model is denoted with an underline. Consider, for the same function
ε as in [2], the (disjoint) union

ΩN(ε) :=
⋃

N−�Nε(N)	�Q �N

ΩQ × {Q }

endowed with the uniform probability PN . The cost function C (defined on ΩN ) is extended to ΩN(ε)

by the relation C(u, v, Q ) := C(u, v) for any Q which satisfies N − �Nε(N)	 � Q � N . In this proba-
bilistic model, the cumulative value of exp(wC) is

Φw(N) :=
N∑

Q =N−�Nε(N)	

∑
n�Q

cn(w), with Φ0(N) = ∣∣ΩN(ε)
∣∣,

so that the expectation of exp(wC) in our smoothed model is:

EN
[
exp(wC)

] = Φw(N)

Φ (N)
. (8)
0
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There is a close relation between Φw and Φw :

Φw(N) = ⌊
Nε(N)

⌋ · Φw(N),

and finally, Φw can be expressed as a function of Ψw , via

Φw(N) = Ψw(N) − Ψw
(
N − ⌊

Nε(N)
⌋)

. (9)

Now we can exploit the estimates (4), and then, in the new model, Lemma 10 implies Lemma 11 in
the same lines as [2].

3.1. A new proof for Lemma 14

We now provide a new proof for our version of Lemma 14 of [2], where we replace their smoothed
model (overlined) by our model (underlined). Our version of Lemma 14 is the following:

Lemma 14. Suppose that limN→∞ ε(N) = 0 with ε(N)−1 = O (N/log N). Then the distance between the
distributions PN and PN (ε) on ΩN is O (ε(N)).

Proof. In the following, we denote by N ′ := N − �Nε(N)	. First recall (as in [2]) that there is K > 0
so that

|ΩN | = K N2
(

1 + O

(
log N

N

))
, PN(u, v) = 1

K N2

(
1 + O

(
log N

N

))
, (10)

for all (u, v) ∈ ΩN . There exist precise estimates for K (see [2]). Now, thanks to the hypothesis on ε ,
we know that

log Q

Q
� log N

N ′ = log N

N

(
1 + O

(
ε(N)

)) = O
(
ε(N)

)
, for any Q ∈]N ′, N]. (11)

The definition of ΩN(ε) entails that

∣∣ΩN(ε)
∣∣ =

N∑
Q =N ′

|ΩQ | = K
(
1 + O

(
ε(N)

)) N∑
Q =N ′

Q 2 ∼ K N3ε(N). (12)

Let us observe that now PN and PN are not defined on the same probability space. However, we
are only interested in dealing with sets A ⊂ ΩN (ε) which come from subsets A ⊂ ΩN : we deal with
sets A of the form

A =
⋃

N ′�Q �N

(A ∩ ΩQ ) × {Q }

where A is a subset of ΩN . By abuse of language, for such a subset, PN (A) will mean PN (A). There
are two cases of interest for sets A ⊂ ΩN : The ordinary subsets included in ΩN ′ , for which, with (12),

PN(A) := PN(A) = �Nε(N)	 · |A|
|ΩN(ε)| = |A|

K N2
· [1 + O

(
ε(N)

)]
(13)

and, the exceptional subsets A not included in ΩN ′ .



2272 E. Cesaratto / Journal of Number Theory 129 (2009) 2267–2273
Now, ΩN decomposes into the ordinary subset ON := ΩN ′ and the exceptional subset EN :=
ΩN \ ON . Both probabilities of the exceptional subset are linked by the following inequality

P(EN) < P(EN), (14)

which is proved at the end.
The cardinality of |EN | is O (N2ε(N)) (due to (11)). Then we have

P(EN) < P(EN) := |EN |
|ΩN | = O

( |EN |
N2

)
= O

(
ε(N)

)
.

For any pair (u, v) of the ordinary subset ON , relations (13) and (10) entail the estimate

PN(u, v)

PN(u, v)
= 1 + O

(
ε(N)

)
.

Finally, for any A ⊂ ΩN , the difference |PN (A) − PN (A)| is less than

∣∣PN(A ∩ ON) − PN(A ∩ ON)
∣∣ + ∣∣PN(A ∩ EN) − PN(A ∩ EN)

∣∣ = O
(
ε(N)

)
.

To conclude, we prove (14).

Proof of (14). First, set a j := |Ω j − Ω j−1| with Ω0 = ∅ and 1 � j � N . Let Ak := ∑k
j=1 a j , and A′

k :=∑N
j=k+1 a j . With this notation we have that

P(EN) := |ΩN − ΩN ′ |
|ΩN | = A′

N−N ′

AN

and, in the same manner,

P(EN ) :=
∑N

Q =N ′ |ΩQ − ΩN ′ |∑N
Q =N ′ |ΩQ | =

∑N
j=N−N ′+1(N − j + 1)a j

(N − N ′ + 1)AN−N ′ + ∑N
j=N−N ′+1(N − j + 1)a j

.

We obtain the inequality

A′
N−N ′

AN
>

∑N
j=N−N ′+1(N − j + 1)a j

(N − N ′ + 1)AN−N ′ + ∑N
j=N−N ′+1(N − j + 1)a j

by cross multiplying, canceling and finally observing that N − N ′ + 1 > N − j + 1 in all cases. �
4. Conclusion

We provide here an intermediary model which is adapted to the method of [2], whereas there was
not the case for the intermediary model proposed in [2]. Replacing in the paper [2] their auxiliary
model by the present one corrects the paper [2]. The results and methods of the rest of the paper [2]
remain exact and unchanged.
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