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We revise the simplest possible approximations to solve numerically the vertex equations for the single

impurity Anderson model (SIAM) within the finite U non-crossing approximation (UNCA), considering

the self-energies at lowest order in the 1=N diagrammatic expansion. We introduce an approximation to

the vertex corrections that includes the double energy dependence and compare it with an

approximation (NCAf2v) that neglects a second energy argument. Finally, we analyse the influence of

the different approximations on the estimated Kondo scale for simple electronic models.
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1. Introduction

One of the most studied models for strongly correlated
electron systems is the single Anderson impurity model (SIAM),
which can account for the Kondo regime, where conduction
electrons scatter off a localized magnetic impurity and form a
local singlet. Among the several methods proposed to solve the
SIAM, the so-called non-crossing approximation (NCA) occupies a
special place due to its computational simplicity. NCA can be
thought of as a perturbative expansion with respect to 1=N, where
N is the degeneracy of the impurity levels. In particular, the NCA
has been widely used to solve the SIAM in the infinite U limit, in
which the double occupancy of the impurity site is prohibited.
This scheme was successfully applied to theoretical models [1]
and real materials [2], in order to analyse different physical
properties, like magnetic susceptibilities, crystal-field splittings
and spectral properties.

For U!1 and large N degeneracy of the local states, NCA
captures the Kondo temperature (TK ) scale and provides a
qualitative description of the formation of the Kondo resonance
when the temperature approaches the Kondo regime ðT ! TK Þ

from above [1]. However, this is not the case for temperatures
much lower than TK (T5TK ), where NCA yields unphysical results.
Furthermore, the TK ’s are often underestimated in the infinite U

limit.
The deficiencies that restrict the usefulness of NCA are greatly

reduced if a finite on-site Coulomb repulsion U is considered
together with the inclusion of vertex corrections [3]. While NCA in
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the infinite U limit contains all non-crossing diagrams up to the
order ð1=NÞ1, with a finite U there appear crossing diagrams of
order ð1=NÞ0 which have to be included at least through vertex
corrections.

An extension of the NCA technique has been introduced by
Haule et al. [5]. This extension, known as the symmetrized finite-
U NCA (SUNCA), treats the fluctuation processes into the empty
and into the doubly occupied intermediate states on an equal
footing, by means of a proper symmetrization of the vertex
corrections. Although SUNCA provides the correct energy scale, its
practical computation is not easy due to the double energy
dependence of the vertex functions, even considering a very
simple function for the conduction electron band. Recently, Sakai
et al. [4] have introduced the NCAf2v approximation, that
simplifies the vertex functions by neglecting its second energy
argument.

In this contribution we apply an approximation to the vertex
functions that includes the double energy dependence in two
different ways within U non-crossing approximation (UNCA),
working at lowest order in 1=N and study the influence of this
treatment on TK .
2. Auxiliary particle representation and the large-N limit

The Anderson impurity model with finite U is described by the
Hamiltonian

Ĥ ¼
X
km

�kmĉ
y

kmĉkm þ
X

m

�mf̂
y

mf̂ m þ U
X
mon

N̂mN̂n

þ
X
km

ðVkmf̂
y

mĉkm þ V�kmĉ
y

kmf̂ mÞ, (1)
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Fig. 2. Diagrammatic representation of the integral equation for the vertex

function in the ladder approximation.
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where the indices m;n label the quantum numbers of the impurity
levels. The operators ĉ

y

km; f̂
y

m create a conduction and a localized
electron state, respectively, and N̂m ¼ f̂

y

mf̂ m is the f-number
operator. The last term represents the hybridization between
conduction and localized electrons, and Vkm are the hybridization
matrix elements. In the auxiliary particle representation the
Hamiltonian becomes

Ĥ ¼
X
km

�kmĉ
y

kmĉkm þ
X

m

�mŝ
y

mŝm þ
X
mon

ð�m þ �n þ UÞd̂
y

mnd̂mn

þ
X
km

ðVkmŝ
y

mb̂ĉkm þ h.c.Þ

þ
X

kmm0 ðm0amÞ

ðVkmd̂
y

mm0 ŝm0 ĉkm þ h.c.Þ, (2)

where the operators b̂, ŝm and d̂mn represent the vacuum, single
and double occupied states, respectively.

In the context of the NCA, the simplest picture that contains
the two elementary spin-flip scattering processes, involving
empty and doubly occupied intermediate states, respectively, is
obtained with the inclusion of vertex corrections in a large-N

expansion, retaining only the lowest order diagrams in ð1=NÞ, that
is, ð1=NÞ0 [6], see Figs. 1 and 2. The order of the diagrams is
clarified in Ref. [7]. In this approximation, called from now on
UNCAð0Þ, the self-energy of the heavy boson propagator vanishes.
Consequently, Green’s function of the doubly occupied states can
be written in the simple form G�1

mnðzÞ ¼ z� �m þ �n þ U: On the
other hand, the self-energy for the pseudo-fermion propagators
contains only the contribution coming from the heavy boson
while the self-energy of the light boson propagator contains
vertex corrections.

The final result is the following set of non-coupled equations
for the self-energies, SmðoÞ and SbðoÞ and for the vertex
correction Lmðo; �Þ:

SmðoÞ ¼
X

m0am

Z
d�
p

f ð�ÞGm0 ð�ÞGmm0 ðoþ �Þ, (3)

Lmðo; �Þ ¼ 1þ
X

m0am

Z
d�0

p Lm0 ðo; �0Þf ð�0ÞGm0 ð�0Þ

�Gm0 ðoþ �0ÞGmm0 ðoþ �0 þ �Þ,
(4)

SbðoÞ ¼
X

m

Z
d�
p f ð�ÞGmð�ÞLmðo; �ÞGmðoþ �Þ. (5)

Here, f ð�Þ is the Fermi function and Gmð�Þ ¼ p
P

k VkmV�kmdð�� �kmÞ

are the hybridization functions between the conduction electron
band and the impurity states, m. It is easy to see that, using the
self-energies for the pseudo-fermions computed from (3), one can
= +

= +

Fig. 1. Dyson’s equation for the pseudo-fermion and light boson propagators

within the non-crossing approximation up to ð1=NÞ0 order. The full, wiggly, dashed,

and curly lines stand for pseudo-fermion, light boson, conduction electron, and

heavy boson propagators, respectively. The bold (light) lines represent the full

(free) propagators. The big dot represents the vertex function.
obtain the vertex functions through (4). Finally, the self-energy
for the light boson propagator is obtained directly from (5). The
crucial advantage of this scheme is that the system of equations
does not need to be solved in a self-consistent way after having
performed some approximation to vertex equation.
3. Approximations to the vertex functions

A complete solution of the set of integral equations (4) implies
a lot of computational effort, hence, some simplification could be
useful in view of future extensions of these impurity solvers
within Dynamical Mean Field Theory (DMFT). In this section we
compare the simplest possible approximations to solve numeri-
cally the vertex equations and analyse their influence on the
calculated Kondo temperature for different values of the on-site
Coulomb repulsion U. Recently, Sakai et al. [4] have pointed out
that the exchange coupling due to virtual transitions to the doubly
occupied state can be obtained even when the � energy
dependence of the vertex function Lmðo; �Þ is neglected,

Lmðo; �Þ ! LðaÞm ðoÞ. (6)

In this way, (4) and (5) are simplified as follows:

LðaÞm ðoÞ þ
X

m0am

LðaÞm0 ðoÞ
�m þ U

Fm0 ðoÞ ¼ 1, (7)

FmðoÞ ¼
Z

d�
p f ð�ÞGmð�ÞGmðoþ �Þ, (8)

SðaÞb ðoÞ ¼
X

m

LðaÞm ðoÞFmðoÞ. (9)

The second energy dependence, �, can be recovered in the
vertex functions, avoiding at the same time to solve the integral
equations, if we interchange energy variables in the integrand of
(4) as follows:

Lm0 ðo; �0Þ ! LðbÞm0 ðo; �Þ. (10)

This procedure is justified under the assumption that the �
dependence of the vertex functions is relatively weak [6]. Under
this approximation, the vertex equations (4) become a set of linear
algebraic equations for given values of o and �,

LðbÞm ðo; �Þ ¼ 1þ
X

m0am

LðbÞm0 ðo; �Þ
Z

d�0

p f ð�0Þ

�Gm0 ð�0ÞGm0 ðoþ �0ÞGmm0 ðoþ �0 þ �Þ. (11)

To further simplify the integral, we can evaluate the doubly
occupied Green’s functions at some specific value of o, as before.
The energy dependence on � of the doubly occupied Green’s
functions could be kept if we set oþ �0 ¼ �m0 ,

Gmm0 ðoþ �0 þ �Þjoþ�0¼�m0
¼

�1

�m þ U � �� iZ
.

The final form of the vertex function is again obtained from a set
of linear algebraic equations. This and the corresponding self-
energy of the boson propagator are given, respectively, by

LðbÞm ðo; �Þ þ
X

m0am

Fm0 ðoÞLðbÞm0 ðo; �Þ
�m þ U � �� iZ

¼ 1, (12)
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Table 1
Results for the Kondo temperature, in Kelvin, obtained from different approxima-

tions to the vertex functions.

U (eV) T ðaÞK T ðbÞK
T ðcÞK

5 260 208 183

10 85 81 77

100 33 34 31
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Fig. 3. Real part of the vertex functions as a function of o for U ¼ 5 eV. The second

argument of LðcÞm ðo; �Þ is evaluated at the pole of the boson spectral function, E0.
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Fig. 4. Real part of the vertex functions in the (b) and (c) approximations as a

function of � for U ¼ 5 eV. The first argument of both functions is evaluated at the

pole of the boson spectral function, E0.
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SðbÞb ðoÞ ¼
X

m

Z
d�
p

f ð�ÞGmð�ÞLðbÞm ðo; �ÞGmðoþ �Þ. (13)

The vertex function can be further improved by evaluating
the doubly occupied Green’s functions (11) at the value of oþ �0
that most likely maximizes the rest of the integrand, that is,
oþ �0��̃m0 , where �̃m0 are the renormalized poles of the pseudo-
fermion Green’s functions. From (3), we compute directly the
spectral functions rmðoÞ ¼ �ð1=pÞImGmðoÞ. The poles of rmðoÞ
are the energies �̃m that satisfy �̃m � �m �Smð�̃mÞ ¼ 0.

If we set oþ �0 ¼ �̃m0 in the argument of the doubly occupied
Green’s functions in (11), the vertex functions and the boson self-
energy are then given, respectively, by

LðcÞm ðo; �Þ þ
X

m0am

Fm0 ðoÞLðcÞm0 ðo; �Þ
�̃m þ U � �� iZ ¼ 1, (14)

SðcÞb ðoÞ ¼
X

m

Z
d�
p

f ð�ÞGmð�ÞLðcÞm ðo; �ÞGmðoþ �Þ. (15)

In the following section we analyse the effect of the different
approximations for the vertex functions (a; b and c) described
above on the Kondo temperature, within a simple model. We use a
constant and degenerate hybridization intensity Gmð�Þ ¼ 0:15 eV
for �Bo�oB and 0 otherwise. Here B is the half bandwidth and
we set B ¼ 3 eV. The degeneracy N in this section is taken to be
equal to 6 and we set �m ¼ �2 eV for all m. With these parameters
we solve the UNCAð0Þ set of equations within different
vertex approximations and obtain the spectral functions for the
boson ðrbðo; TÞÞ and pseudo-fermions ðrmðo; TÞÞ, in the T ! 0
limit, in order to calculate the TK . This temperature is obtained
from the difference between the lowest pole of rbðoÞ and
the corresponding one for rmðoÞ [1]. We obtain TK for different
values of the Coulomb interaction U and within the different
approaches to the vertex corrections previously introduced,
taking U ¼ 5, 10 and 100 eV. We consider that U ¼ 100 eV already
gives the U!1 limit. The U!1 limit is characterized by Lm ¼ 1
(to leading order in the large-N expansion) and this limit is
recovered perfectly with U ¼ 100 eV. The results are shown in
Table 1.

In Fig. 3 we compare the real parts of the vertex functions for
approximations (a) and (c) as a function of o. To plot the function
ReLðcÞm ðo; �Þ; we set its second argument equal to the value of the
lowest pole of the boson spectral function, E0. From this figure it
can be seen that the different approximations to the vertex
corrections agree qualitatively among themselves. As it can be
drawn from Table 1, for a given U all the approximations give the
same order of magnitude for the Kondo scale. However, there is a
quantitative difference in the calculated TK ’s that can go up
to 30%.

On the other hand, in Fig. 4 we plot LðbÞm ðE0; �Þ and LðcÞm ðE0; �Þ as
functions of their second arguments. For o we have chosen, just
as an example, the value of the boson propagator pole. Both curves
seem to have been rigidly shifted one with respect to the other, as
a consequence of the different argument values in which Green’s
functions of the heavy bosons are evaluated in the vertex
corrections. These differences show up in the values obtained
for TK.

Comparing Figs. 3 and 4, it can be observed that, as a function
of o; there is an important variation of the functions in a wide
energy range while, as a function of �; the energy window of
variation is narrower. However, in this last case the amplitude of
the variation is up to five times greater than in the first one. From
this fact, it is clear that the second dependence in energy cannot
be neglected for U ¼ 5 eV, if precise values of TK are desired.
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4. Discussion and conclusions

In this work, we have extended the LðaÞm ðoÞ approximation to
the vertex functions introduced by Sakai et al. [4], including the
second energy variable in two different ways LðbÞm ðo; �Þ and
LðcÞm ðo; �Þ. We have calculated and compared the TK obtained
using these three different approximations. Our results confirm
that, even when the LðaÞm approximation gives the correct Kondo
energy scale, the double dependence in energy cannot be
disregarded for small U values.

Summarizing, this work presents an analysis of the different
corrections that can be made on the vertex functions within the
finite U NCA showing, quantitatively, the importance of its double
energy dependence on the Kondo temperature.
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