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Chapter

A Brief Look at the Calderén and
Hilbert Operators

Guillermo ]. Floves

Abstract

The Calderén operator is the sum of the Hardy averaging operator and its adjoint,
and plays an important role in the theory of real interpolation. On the other hand, the
Hilbert operator arises from the continuous version of Hilbert’s inequality. Both oper-
ators appear in different contexts and have numerous applications within harmonic
analysis. In this chapter we will briefly review the Calderén and Hilbert operators,
showing some of the most relevant results within functional analysis and finally we
will present recent results on these operators within Fourier analysis.

Keywords: Calderdn operator, Hilbert operator, Lebesgue spaces, Lipschitz spaces,
BMO spaces, weighted inequalities, Calderén weights

1. Introduction

The Calderén and Hilbert operators are among the most relevant operators in
harmonic analysis, arising from Hilbert’s double series theorem which is one of the
simplest and most beautiful in the theory of double series of positive terms. It was
proved by Hilbert, in the course of his investigations in the theory of integral equa-

tions, that the series ), , . :’"f{; , where a,, > 0 for all # €N, is convergent whenever
b m n

>, end2 is convergent.
Other proofs of Hilbert’s double series theorem and generalizations in different
directions were studied and published over time by influential mathematicians such as
H. Weyl, F. Wiener, J. Schur, Fejér and F. Riesz, Pdlya and Szego, Francis and
Littlewood, G.H. Hardy and M. Riesz, among others.
In [1, 2], G.H. Hardy observed that Hilbert’s theorem stated above is an immediate

corollary of another theorem which has interest in itself. This theorem is as follows: If

2
a,>0forallneNand Y, a2 is convergent, then Y, (% >4 j) is also

convergent.

The first extension of the just stated Hilbert’s and Hardy’s results in which we are
interested is the following (see [3]): Let1<p <ocoandp’ =p/(p — 1) (i.e. p’ is the
conjugate of p). If 3% a4l and 3% b¥ are convergent, where a, and b, are
nonnegative numbers for all # €N, then

1 IntechOpen
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0 oo n p oo
Zzsz:; <= ﬂ/p <Zap> (ZM) and%(lza]) s(p’)PZaﬁ.
m=1n=1 ne j=1 n—1

The constants z/ sin (z/p) and (p')¥ = (p/(p — 1))’ are the best possible.
At the same time, the continuous versions of the previous inequalities are the

following (see [3, 4]): Let 1 <p < oo and p’ the conjugate of p. If ﬁo,m) IfIF and f[O’m) Lg|pl
are finite, then

1/p 1/p
J[O,w)J[O,w) x+y d 4 < sin (z/p) (J[O’w)lf( Fd ) (J[O’W)Lg( W )

and

/

J[o,»o) <1J[Ox]f 0y ) < (p%)pj[om)U (o) [Pl

Once again, the constants involved are the best possible.
As usual in harmonic analysis, if E is a measurable subset of R”, then L? (E),
1<p < oo, is the Lebesgue space of all measurable functions f such that ||f||ip( B =

Jglf ()| dex is finite. Recall that (L?” E) - I Lp(E)) is a Banach space and in the case
E=R", itis denoted || - |l, = || - llzr(g)
Now, consider the operators H and P defined by

Hf (x) = J &dt and Pf(x) = %J{O ]f(t)dt,

[0,00) X +1

which naturally arise from the inequalities presented above. Also consider

Q) = j{x m)@dt

t

being the adjoint operator of P and satisfying

(Qf (x))dx = S 4y pdxsc (f(x))dx,
[0,00) [0,00) \ Jpesoo) T [0,00)

forallf € L?([0, 0)), 1 <p < oo, where C is a positive constant (see [4]). Therefore,
P and Q are bounded operators from L ([0, e0)) in itself, that is,

P Nl j0,00)) < ClIf N1 12 (10,00)) A0 1QF Nl ((0,00)) < ClIf 112 (0,000 fOTallf €LF ([0, 00)).

It is immediate that for nonnegative functions f,

Hf (x) <Pf(x) + Qf (x) <2Hf (x) forall x> 0.

Consequently H is a bounded operator on L? ([0, o)), that is,
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IHf e (10,00)) SCIf llzr 0,0y forall fELP([0, 00)).

It is well known that P is called the Hardy averaging operator and H is called the
Hilbert operator. Also, the Calderon operator S is defined by S = P + Q, being then a
bounded operator from L? ([0, o)) in itself.

We end this section with some of the first and most important direct applications
obtained from Hilbert’s and Hardy’s inequalities.

Theorem 1.1 Let E be the interval (0,1) and f € L*(E) not null in E. Then

ﬁ (JEx"f (x)dx> 2 < nJE 2 (x)dx

and the constant z is the best possible. The integrals fEx”f (x)dx,n = 0,1, ... are
called the moments of f in E and are important in many theories.

Theorem 1.2 (Carlema’s inequalities) Let {4, } be a sequence of positive numbers
and 1<p < oo. Then

(oo}
=1

n 14 o o n 1/n oo
Z (12%1/]’) < (pL)pZan and Z (Hak> <eZan.
n n k=1 -1 n=1 n=1 \k=1 n=1

The constants involved are the best possible.
The corresponding integral version for the second inequality of Carlema’s inequal-
ity is: If f is a positive function belonging to L*([0, o)), then

J exp <EJ logf(t)dt) dx = J eP1of)) gy < eJ f(x)dx.
[0r°°) [O’x} [0’°°)

X [O’°°)

where the constant e is the best possible.
Theorem 1.3 Let 1 <p <2 and p’ the conjugate of p. If Lf (s) = [°f (t)e " dt, i.e. Lf is
the Laplace transform of f, then

J:Lf (5)"ds < %’f (J:f (s)”ds)p//p forall f €L7([0, o0)).

Therefore L is a bounded operator from L? ([0, «0)) into L? ([0, o)), 1<p <2, and
ILf 1y < 22/p') 7 If

The number of applications and results that arise from Hilbert’s and Hardy’s
inequalities is by now very large and it would be impossible to give a detailed survey
of all of them in a reasonable amount of text. We have simply made a very brief
introduction about them in this section.

2. Calder6n weights and LP-weighted inequalities

A function @ defined on R” is called a weight if it is locally integrable and positive
almost everywhere. For a measurable set E C R”, |[E| denote its Lebesgue measure,
w(E) = |pw, and E° the complement of E in R”. Given a ball B, B is the ball with the

3
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same center as B and with radius ¢ times as long, and f, = ﬁ 5f - As usual, yp denotes

the characteristic function of E and B(x, ) denotes a ball centered at x with radius 7.
Also, C denotes a positive constant.
Let w be a weight in R” and 1 <p < c. A Lebesgue measurable function f belongs to

17 (o) if
i = ([ 1#0) " <o

We say that an oprator T is a bounded operator on L () if
”Tf”Lp(w) SC'”f”Ll”(w)’ foralleLp(w)'

Given 1<p < oo, it is said that w is a Calderén weight of class C,, that is w € C,, if
the Calderén operator S is bounded on L? () (see [5]) or, equivalently, if P and Q are
both bounded on L (@) (see also [6]). It is well known that the class C, for p >1is
given by the conditions

p o7 (1) 1y
M, : (J co(t)dt) (J ; dt) <C for all x>0;
0.4 o)

olt) 1/p 1/p’
M ((J —dt) (J a)l_p/(t)dt> <C for all x>0.
br,o0) B [0.x]

The Calderén operator plays an important role in the theory of real interpolation
and such theory related to Calderén weights is developed in [5]. On the other hand, in
[7], the authors considered a maximal operator N on (0, o) associated to the basis of
open sets of the form (0, b), given by

for measurable functions f. Then, for nonnegative functions f, we have
P(x) <Nf(x) <Sf(x) forall x> 0.

The classes of weights w associated to the boundedness of N on L? (w) are those
that satisfy the Muckenhoupt-A, condition, 1<p < oo, only for the sets of the form
(0,b). These classes are denoted by A, o and defined as follows:

Aip: No(x)<Cw(x) for almost all x> 0;

p—1
Appo: lj ® }J w7 <C for all x>0,wherel<p <oo.
X J[o.x] X J[0.]

Then, in [7] is proved that N and S are bounded operators on L? () if and only if
w € Apo for 1<p < co. This result implies, in particular, that the classes of weights C,
and A, o coincide for 1<p < oo.
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Taking into account these results it is natural to wonder for the action of the
Calderén and Hilbert operators over suitable spaces such as BMO or Lipschitz spaces.
Also, another interesting question is: which are, in these cases, the Calderén weights in
order to obtain weighted inequalities between these spaces?

These problems were treated for instance in the case of the fractional integral
operator in [8, 9], which have been the main motivation for the article [10] and for
the development of the following sections.

3. The n-dimensional Calderén and Hilbert operators

For 0 <a<mn,f a Lebesgue measurable function and x € R”, x # 0, the general
n-dimensional Calderén and Hilbert operators are defined by

S0) = P 6) + Quf ) and Hf o) = [ otV

where Pof (x) = == [, < . of 0)dy and Q. f (x) = [, %dy.

Again, it is immediate that for nonnegative functions f, the following pointwise
inequalities hold

Hof (%) <Sof (x) 277 H,f (x), (1)

and consequently, all weighted-L? inequalities obtained for S are true for H and
reciprocally.

In spite of the punctual comparison (1), we will show in Section 4 that the results
obtained for S, and H, are not analogous when the BMO" and Lipschitz spaces are
involved.

Both operators S, and H, appear in several different contexts and applications, see
for instance [4, 11-17].

Next, we introduce the spaces of functions and the classes of weights which appear
in our main results.

Recall that a measurable function f defined on E CR” is said to be essentially
bounded provided there is some M > 0, called an essential upper bound for f, for which
[f (x)] <M for almost all x € E. As usual, the class of all functions that are essentially
bounded on E is denoted by L*(E) and |[f]|,, is the infimum of the essential upper
bounds for f € L*(E). Then, (L*(E), || - ||.) is a Banach space.

Now, a Lebesgue measurable function f belongs to L= (w) if [|f w||,, < oo.

Also recall that L} _(R") denotes the space of locally integrable functions f
satisfying that ||f yz||; is finite for every ball BC R".

Definition 3.2. Let @ be a weight in R” and 0 <y <1/zn. A locally integrable
function f belongs to BMO’ (w) if there exists a constant C such that for every ball
BcR”,

1
B} 7416 >

The seminorm of f € BMO (), ||f llpmor («)> is the infimum of all such C.
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Definition 3.4. Let w be a weight in R” and 0 <y <1/x. A locally integrable
function f belongs to BM} (w) if there exists a constant C such that

1
B J1C )

for every ball BCR” centered at the origin.

The norm of f € BMj(w), denoted by ||f l| g () is the infimum of all such C. We
will denote by BMy (@) = BMY ().

Observe that with these definitions the space BMO®(w) is the weighted version of
BMO introduced by Muckenhoupt and Wheeden in [18]. Also, the family of spaces
BMO' (w) is contained in the family of weighted Lipschitz spaces 7,,(y) defined and
studied in [8], and BMO’ (w) for w = 1 is the well known Lipschitz integral space.
Furthermore, we note that L (w ') ¢ BMo(w) NBMO(w).

Given p > 1, it is known that a weight o satisfies the reverse Holder inequality with
exponent p, denoted by w € RH(p), if

1 o1
GELM> <Cig ), ®

for all balls BC R” and some constant C.

Definition 3.7. Given p > 1, a weight @ belongs to RH (p) if it satisfies (4) but only
for balls centered at the origin.

Definition 3.8. A weight o belongs to Dy if it satisfies the doubling condition
w(2B) < Cw(B) for every ball BCR" centered at the origin and some constant C.

Definition 3.9. Let 7 > 1, a weight @ belongs to D, if it satisfies the doubling
condition

w0(2B(x, [x|47)) _ o(B(x.7))
B, K+ = Bl

every ball B(x,r) CR” and some constant C.

It is immediate that D, C Dy for all 7, and D, is increasing in #. It is well known that
each weight in the Muckenhoupt class A, is in RH(p) N D, for some p and for some 7,
see for instance [19]. On the other hand, there exist weights belonging to D, for some
1, such that it is not in A.., see [20].

Also, we observe the following property that we will use along this chapter. If
o € D, there exists a constant C such that

o(B) < Co (B\ %B) (5)

for every ball BCRR” centered at the origin.
Definition 3.11. Let 0 <a <z and 1<p < o0. A weight @ belongs to Hy(a, p) if there
exists a constant C such that

/ 1/p’
Y ay| <c ©)
(JB[ b/|(n_a+1)P/ y) |B|1+1/p—a/n+1/n
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for every ball BCR" centered at the origin.
A weight w belongs to Hy(a, o) if there exists a constant C such that

o(y) w(B)
|, =€ e ”

for every ball BCR” centered at the origin.
The classes of weights Ho(a, p) and Ho(a, o) satisfying (6) and (7) respectively but
for all ball B c R”, were introduced and studied in [8].

4. Weighted Lebesgue and BMO” norm inequalities for S, and H,

Before beginning our study of the generalized Calderén operator, we notice that S,f
can be identically infinite for some functions f belonging to L? (o) or BM}(w). For
example, for o = 1and a > 0, if f (x) = |x| “ype(01)(x) and n/a <p, thenf € L (w™?) but
Sof = oo. For the case n/a = p, ifg(x) = |x| *(log |x|)_(1+1/p)/2;(3c(0’2) (x), then
gELF(w ) but S,g = co. Also, if h(x) = yp(,1)(%), then h € BMj(w) but Sph = oo for all
0 <a<n. However, in Lemma 4.7 we will show that if f belongs to L (o ? )UBM} (w)
and S,f (x) is finite for some x # 0, then S,f is finite on R”\{0}. This also happens for
the generalized Hilbert operator since the comparison (1).

Therefore, throughout the following sections we shall consider S, and H, defined
on functions f belonging to L” (w™?) or BM},(w) such that S,f and H,f are finite for
some x # 0.

Also, note that S,f is finite on R"\{0} for all compactly supported functions
f€L”(w™ '), and the same holds for H,f. These functions belongs to L” (v ?) and
those such that zero is not in their support belongs to BM{(w).

The operator P is naturally bounded from BM into L* and analogously, Q is
naturally bounded from BM, into BMO (see Proposition 3.5 in [13]). So, immediately
the Calderdn operator is bounded from BM, into BMO. This natural boundedness is
our motivation in order to consider the BM, (w) spaces and obtain Theorems 1.5 and
1.7. Likewise, since L (o) C BM(w), we get Corollaries 4.1 and 4.2.

We now state the main results of this chapter.

Theorem 1.4 Suppose a> 0, n/a<p<n/(a —1)",n =1+1/n +1/p — a/n and
8 = a/n — 1/p. The operator S, is bounded from L (w?) into BMO®(w) and o' € Dy if
and only if w € RHo(p') N D,,.

Theorem 1.5 Suppose 0<a<1,0<y<1/n—a/n,n=1+1/n —a/n —yand 6 =
a/n + y. The operator S, is bounded from BM%(w) into BMO®(w) and w € Dy if and
only if weD,.

Corollary 4.1. Let n = 1+ 1/n. Then S is bounded from L” (o) into BMO(w) and
w €Dy if and only if w €D,

Theorem 1.6 Suppose a>0,n/a<p<n/(a —1)",n =1+1/n+1/p — a/n and
8 = a/n — 1/p. The operator H, is bounded from L? (»?) into BMO®(w) if and only if
w € Hy ((X,p) NRH, (p/) ﬁD,].

Theorem 1.7 Suppose 0<a<1,0<y<1/n—a/n,n=1+1/n—a/n —yand é =
a/n + y. The operator H, is bounded from BM}(w) into BMO’(®) if and only if
w €Ho(a+ny, o) ND,,.

7
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Corollary 4.2. Let n = 1+ 1/n. Then H is bounded from L™ (w™') into BMO(w) if and
only if € Ho(0,00) N D,,.

Remark 4.3. It is classic the study of the boundedness of operators between L* and
BMO spaces. In [10], the results obtained in Corollaries 4.1 and 4.2 are originals, even
in the unweighted case for H. The unweighted case for S is contained in Proposition
3.5 of [13].

Remark 4.4. The limit case p = o (p’ = 1) of Theorem 1.4 is contained in Theorem
1.5 with y = 0, since the hypotheses on the weights coincide. This also is true to
Theorems 1.6 and 1.7.

Let a,p and 5 be as in Theorems 1.4 and 1.6. It is not difficult to show that if
o €Ay then w € Ho(a, p) NRHo(p') N D,. Also, if o(x) = |x|’ with
pe€(0,1+n/p — a), then o? ¢ Ay but w € Ho(a,p) NRHo(p') N D,. Furthermore, if
w(x) = |x|’ with f =1+ n/p — a, then w € RHo(p') N D, but w & Ho(a, p). Now, if in
addition 0 <a<1and p'>n/(1— a), we have that if @ €A,,1, then
weHo(a,p) NRHy(p") nD,. In fact, the Hy(a, p)-condition is obtained directly from
the A,/ 1,0-condition, and by Hélder inequality we have that

/ 1/p’ n
(aﬂ’ (B(O,Z(]xOHV)))) P SC|B(O 2(Joco|+7))] SC(lxol —|—V> @ (B(x0,7))

B(0, 2(|xo|+7))| @~ 1(B(x0,7)) r |B(x0,7)]

<C lxo| +7 1_a+n/pw(3(xo,1’))
- r |B(x0,7)|

for all balls B(xg,7) C R". Thus, the RH((p’) and D, conditions follow from the last
expression.

On the other hand, suppose that a, y and 5 be as in Theorems 1.5and 1.7. If w € A4 o
then w € Hy(a + ny, 00) N D,,. Also, if o(x) = |x|’ with & (0,1 — a — ny), then
w & A1 but we Ho(a + ny, 00) nD,. Finally, if w(x) = |x\ﬁ with f =1 — a — ny, then
weD, but w & Ho(a + ny, ).

We shall denote by A(x,7,R) with 0 <7 <R the annulus centered at x with radii »
and R, and by C and ¢ positive constants not necessarily the same at each occurrence.

Before proceeding to the proofs of the main theorems we give some previous
lemmas.

Suppose that 1 <p < oo and w € RH(p’), then it is easy to see that there exists C
such that

w(B) _
Jse i) Q

for all f € L? (w7 )and for every ball BC R" centered at the origin.
Lemma 4.6. (i) Let 0 <a<nand 1<p < oo. If w€ Ho(a, p) then there exists C such that

Fo)l »(B)
i <C A lle o
JB” Iy|7l a+1 Y |B|1+1/p—a/n+1/n lf P (07?)

for allf € L? (w?) and for every ball BCR” centered at the origin.
(ii) Let 0<a<1, 0<y<l/m—a/nandn=1+1/n —a/n —y. If
w € Ho(a + ny, o0) N D, then there exists C such that

8
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If )l w(B)
JBC e dy<C B I 13z ()

for all f € BM{(w) and for every ball BCR” centered at the origin.
Proof: The part (i) is immediate from Hoélder’s inequality and Definition 3.11. For
(i), since the hypothesis on @ and (3.10), for B = B(0, ) we have
Jzkr< yl <21

o)l
J |y|n a+1 y CZ
= (B(0,24)

< Cllf llzne Z ( o

k=0

<Ol 3 “g zk; IAB0.2)

If 0)ldy

»(B)
VBT

< Cllf llzar (w)

Lemma 4.7. (i) Let a> 0, 1<p <ooand w €RHy(p’'). If f € LF (w™?) and there exists
x # O such that S,f (x) is finite, then S,f is finite on R"\{0} and S,f € L;, .(R"). The claim
also holds for H,,.

(ii) Let w € D, If f € BM,(w) and there exists x # 0 such that S,f (x) is finite, then Sof
is finite on R"\{0} and Sf € L, (R"). The claim also holds for H,,.

Proof: Since (3.1) we will only consider the operator S,. Suppose f is a nonnegative

function in L (R") such that Sf (x¢) < oo for some x¢ # 0. Then Qf (x) < oo for
lx| > |xol|, and if O < |x| < |xo| then

Q)< 1j FO)dy + Quf (o) <o

bel <yl <lxol

Furthermore, since

| @@ -afwuxs|  fonidy<e

B(0,r) B(0,r)

where |v] = 7, then Q f € L}, .(R").

If > 0 it is immediate that P,f € L} _(R"). Therefore, (i) follows from (4.5). For

(ii) it remains to show that P,f € L}, (R") in the case a = 0. Let B; = B(0,27r),j =
0,1, ..., by (3.10) we have

J 1 J f()dydx SC“]C”BM{)(C,,)J %dx
B B(0,]x| N

0 ‘x’ )
e Vny n

<CllIf ll g J w(B;)dx
Pl 3>, 03

. Bj\B ;1)
< CIIf llaaay (o) 72 LIt

i

< CIIf llazy (w7 yw(Bo)-
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Proof of Theorem 1.4: We begin showing the sufficient condition. Let B =
B(xg,7). If xg = 0, let u = re;/2 and v = 3re; /4, wheree; = (1, ..., 0). If xo # 0, let
u = (|xo|4+7/2)x0/lx0| and v = (|xxo|+37/4)x0/|x0]. Thus, we consider the following
two regions

U=B(u,r/8)n{u+h :sign(u;) =sign(h;) i=1, ...,n},

V =B(v,r/4)n{v +h :sign(v;) =sign(h;) i =1, ...,n}, ©)

where u = (uq, ..., 4,), v = (v1, ...,0,) and b = (hy, ..., h,). In the case u; = 0 for
some i, we choose /; > 0. Clearly, we have the estimates dist (U, V) = Cr,

1 1
Ul = 5 1B(u,7/8)| = CIB| and  |V| = 5 |B(v,r/4)| = C|Bl.

Let f a nonnegative function in L? (w™?) such that supp ( f) CB(0, |xo|+7/2), where
supp ( f) is the closure of the set {x : f(x) # 0}. Then

C
Sy ) S s Sof (x) — Sof (2)|dzdx
RN MEBPQLLlﬂ> f(@)
; J J < : ; )J
2 | n—a ~ |_n—a )d |dde
w(B)|BI"" Julv \Ix| 2] B<o,\xo|+r/z>f v
Note that, for x € U and 2 € V we have ML, — ‘Zﬁw >C (\xo\+:)""’“' Then

Crtt J
" a f)dy. (10)
1B’ (|xco|+7)" =" JB(0, ol /2]

Sa ) 2
| f”BMoﬁ() (B)

Thus, taking f(y) = a)p'(y))(B(OJonr/z)(y) in (10) and since the boundedness of S,
and o € Dy, we have

o (B(O, krol+1)\ " _ (ol +7\ " w(B)
1B(0, |xo|+7)| B r 1Bl

Taking x¢ = 0 in the last expression, we have that @ € RH(p’). Then, applying the
Holder’s inequality, we obtain that w satisfies the desired condition D,,.

Now, let us show the necessary condition. Let f € ¥ (w™?) such that S,f (x) is finite
for some x # 0 and let @ € RHo(p') N D,. It is immediate that @ € Dy. Thus

S.f €L}, .(R") by (i) of Lemma 4.7. First, we consider B = B(0,7), x €B and x # 0. Let
v be such that |v| = 7, and let

. |y|n—a} ) { \y|n—a}
K,(x,y) = minq1, “——— > — min< 1, =———>5.
)= min{2. & ]

Then, since K, (x,y) = 0 for |y| > |v|, we have

Sof (x) = Sof (v) = J K, (x,y) f0) dy. (11)

bl<lv] "

10



A Brief Look at the Calderon and Hilbert Operators
DOI: http:/dx.doi.org/10.5772/intechopen.106027

If [y| < |v| then K, (x,y) >0, so

ﬁj;&f(x) —Sof W)ldx < ﬁJBJBK"(x’” gﬁ/)a dydx

_ b o) 1 Fo)l
- o )J J bl <kl At " adyderw(B)J Jlx|<l}'|<r i y)W w
(12)

Now we estimate each term in (12).
If |y| < |x| then K, (x,7) < [y[" “|x| "~*. So, by (8) we have

b Fo)l oo 1 [ 1 )
“)(BJBJMSM W0y) e < D )JB " Jlf(y)ldyd

For the second term, since 0 <K, (x,y) <1 and (8), we have

1 Fol, o 1 [ 1 )
w(B) JBJ|3€|<D}|<V () Vi adydx < o (B) JB | Jlxl<|y|5rlf(y)|dyd
¢ . (13)
< o | 1FoI

<Cllf (o) B

Then, by (12) and (13), we have proved

1
@(B)|B|’
for every ball B centered at the origin.

We now consider B = B(x, ) with 7 < |x¢|/8. By (14) it is enough to consider only
these balls B. Let x € B and v = (|xo|+7)x0/|x0|. In the same way as (11), we have

L'S“f(’“) S W)ldx <Clf iy (14)

S (x) — S ) = JM (5,3) ;}9 ) by,

Now, we note that if |y| <|v| then K, (x,y) > 0. Applying the mean value theorem
and using |v| ~ |x|, then

( ’y) |),| —a |y| —a <C Vb/| —a

T T

(15)

v

Thus, by (8) and @ € D,,, we have

1 r
@JBISaf (x) = Sof (v)dx < WJ JIyISIUI If () \dydsx

T w(B(0
< C“f”Lp(afP) |y|n—a+1+n/p (

s [])) (16)
)

w

<CIlf llr (@) Bl

11
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Therefore, (14) and (16) complete the proof of the theorem.
Proof of Theorem 1.5: We begin showing the sufficient condition. Let B = B(x, 7)
and let u, v, U and V as in (9) of the proof of Theorem 1.4. Then, we again have

CVVH—I

||Saf||BMO‘7(w) f)dy, (17)

Z ) n—a-+1 J
o(B)|B|°(|xo|+7) B(0,}xo|+7/2)

for every nonnegative function f in BM}(w) such that supp ( f) c B(0, |xo|+7/2).
Now, if y = 0 we take f(y) = @(y)¥p(0, x| +r/2) () in (17) and since |[f l|gar (o) <1, the
boundedness of S, and w € Dy, we have w € D,,.

Ify>0,letf(y) =P, <a);(B 0,x0|+r/2) > (), then |[fllpn () <C and

| foy=c| w2 i
(0,x0+/2) B(0,|xo|+7/2) (18)

> C(jxo|+r)" w(B(0, (|xo|+7/2)/2)).

Therefore, using this function f in (17), the boundedness of S,, (18) and @ € Dy,
we have w €D,

Now, let us show the necessary condition. Let f € BM{(®) such that S,f (x) is finite
for some x # 0 and let @ € D,,. Thus S,f €L}, (R") by (ii) of Lemma 4.7. We begin

considering B = B(0,7), x € Band x # 0. Let v be such that || = . In the same way as
we did in (12), we have

U ) — S < N
15y 5 - swies | [ Ko [y

(19)

1 JJ )l
+—= , e dydx,
w(B) Jg el <yl <7 Ko y>b’| !
where K, (x,y) = min {1, m%} — min {1, m%}

We estimate the first term of (19). Let B; = B(O, Z_jV),j = 0,1, .... Thus, since
K, (x,y) <[y" x| "™ for |y| < |x| and (5), we have

b ol , oo 1 [ 1 )
(B) JBJIJ'KIxI (x ’y)IJ'I" < = o) JB o[ J|y|s|x|lf<y>|dyd

< Clf g (o) — Ja’(B(O’ D) g

w(B) Jp |x["
e S (B \B j1)
< ClIf lsnay ) (B)Z S (20)
j=0
C |B| N B
< |[f||BM{)( 0 ]\ ]+1
]=O
= CIIfllBM{)(w)|B|5-

12
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For the second term of (19), since 0 <K, (x,y) <1, we have

- VOl g <L [ SO ’
®(B) JBLxISI}/Kr :7) " aydx < »(B) JB " JMSMM dy o
SC|[f||BMg(w)|B|5.

Therefore, by (19)-(21) we have proved

1
»(B)|B|

for every ball B centered at the origin.

We now consider B = B(xg,7) with 7 <|xo|/8. By (22) it is enough to consider only
these balls B. Let x € Band v = (|xo|+7)x0/|x0|. In the same way as we obtained (11)
and (15) in the previous proof, we have

S JBlsaf(x) T Sof(v)|dx < C”f”BMg((u)’ (22)

S (%) — Sf (&) = jw (5,9) L{rﬁy JO) 4

and K, (x,y) < Crly["“|v| """V, By w € D,, we have

+1

- d
o(B)[y[" " JIJ/ISIVIlf(y)l g

1 w(B(0, 1)) (23)
< C”f”BMg(w) |y|n—a+1—n;/ a)(B)

< C||f||BMg(w)|B|5~

1
(B) L'Sof (x) = Sof (V)ldx <C

Therefore, (22) and (23), complete the proof of the theorem.
Letx,v€R", v # 0, then

1 1
B0~ HFOIS| Ol e G Y .
4 1
o I Ll e e 2

Proof of Theorem 1.6: We begin showing the sufficient condition. Let B =
B(xo,7) and let #, v, U and V as in (9) of the proof of Theorem 1.4. Note that if x € U,
z €V then forally e R”,

1 1 7

(1 D™ Rl DI = (ol

(25)

Hence, if f is a nonnegative function in L” (@) such that supp ( f) cA(0,»,m) and
taking xo = 0 in (25), we have

CVn-i—l f(y)
IS Z—J 0)_y, (26)
S lamorio (B)B Jatorom "1

13
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for every ball B centered at the origin.

Thus, taking f,,;(y) = y|"" """ Ve (y)y,, () in (26) where 4,,; =
A0,r,m)n{y:1/j<w(y)<j}, m,j =1,2, ..., using the boundedness of H, and letting
m — oo, j — oo we obtain that w € Hy(a, p).

On the other hand, if f is a nonnegative function in L¥ (@ ?) such that
supp ( f) €B(0,2(|xo|+7)), then by (25)

n+1
gr fy)dy. 27)

”Ha ” 9w 2 ¢ J
Herio) 2 B B ool 177" Do:(fons

Thus, taking f;(y) = a)p'(y);(Aj(y) in (27) where A; =

B(0,2(|xo|+7))n{y : 1/j <fw(y) <j},j = 1,2, ..., and using the boundedness of H,, we
have

(J ‘wP'(y)dy> v <C ('x°| + V>MH «(B)

; r |B['?

Letting j — oo and taking x¢ = O in the last expression, we can obtain that
w €RH(p'). Then, applying Hélder’s inequality, we obtain w € D,,.

Now, let us show the necessary condition. Let f € L? (o™ ?) such that H,f (x) is finite
for some x # 0 and let @ such that w € Ho(a,p) NRH(p') N D,. Hence H,f € L}, (R")
since (i) of Lemma 4.7. We begin considering B = B(0,7), x €B and x # 0. Let v be
such that [v| = 7. We estimate the two terms of (24). By (8), we have

1 J J fo) fo)
PNz n—a n—a dydx
@(B) Jp) < | (lx] + y]) D
C J J fO)]
< o dydx (28)
w(B) Jp)s k[
1
<C pjidx:c \|BP°.
1 12 oy NN £ 12 (2 |B]
To analyze the second term of (24), we use the mean value theorem, then
1 _ 1 < r
(el + D™ (el + D™ 7 et

Thus, by (7) of Lemma 4.6

1 fO o | Cr Fol
waJWMOM+WW” uw+WW”<yx§waJ}mnﬁlyx (29)
<CIllr (@ B
Therefore, by (24)-(29), we have proved
1
WLWW) ~Hf )l <Clf o), (30)
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for every ball B centered at the origin.

We now consider B = B(x¢, ) with r < |x|/8. By (28) it is enough to consider only
these balls B. Let x € Band v = (|xo|+7)x0/|x0l, then |v| ~ |x| and |x| ~ |xo|. Using
ly| < |v| and the mean value theorem

1 B 1
(el + D™ (el + )™

Then, by (8) and we D,

Z A

CVn—i-l

G)(B) ’xO |n—a+1

r
n—oa+1"

[xo|

1 B 1
(el + D™ (ol + D)™

| o
l<lvl

dydx

(31)
1
<Cllf llzr (or) WW(B(O, v]))
= Clf e wr) Bl
Now, using the mean value theorem
1 - 1 < r
(el + D™ (el + D" ™
Then, by (i) of Lemma 4.6
1 JJ /) f») CVJJ IfF ol
— — — —=|dydx < g dydx
o(B) Jp )y T+ W7 el + WD 1™ = 0B) sl pp =2 (32

= Cllf @ #)|BI"-
Therefore, by (24) with v = (|xo|+7)x0/lx0l, (31) and (32), we have

1
@(B)|B|’

LIHof(x) ~Hof (0)ldx < Cllf 0>

for every ball B = B(x, ) considered. This completes the proof of the theorem.

Proof of Theorem 1.7: We begin showing the sufficient condition. Let B = B(xo,7)
and let u, v, U and V as in (9) of the proof of Theorem 1.4. Then, as in (26) of the
proof of Theorem 4 (with x¢o = 0), we again have

Cr'tl fv)
. J g (33)
Flzraora) w(B)IBI Jacorm y"

for every nonnegative function f in BM}(w) such that supp( f) C A(0,7,m) and for
every ball B centered at the origin.

Thus, taking f(y) = [ @(y)xa(0,m) (¥) in (33), using that ||f Il () <1, the
boundedness of H, and letting m — oo, we have that w € Ho(a + ny, ).
On the other hand, as in (27) of the proof of Theorem 1.6 we again have

15
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crtt J
T a f)dy, (34)
1B’ (|xo|+7)" =" JB(0,2(1x0 | +1)]

H, o) =
| f||BM05() (B)

for every nonnegative function f in BM}(w) such that supp (/) € B(0, 2(|xo|+7))
and for every ball B = B(xy, 7).

Ify =0, we take f(y) = @(y)¥p(0,2(xo|++) () i (4.34) and since I llaaz () <1and
the boundedness of H,, we have w € D,,.

Ify>0,letf(y) =Py, <a);(B(O,2(‘xO|+,))> (y) then ||f | () < C and as in (4.18) of the
proof of Theorem 1.5, we have

j FO)dy > Cllxo|+r)" o(B(O, [xol +7)).
B(0,2(|xo|+r))

Therefore, using this function f in (34) and the boundedness of H,, we have w € D,,.

Now, let us show the necessary condition. Let f € BM{(w) such that H,f (x) is finite
for some x # 0 and let w € Ho(a + ny, o) N D,. Hence H,f € L, .(R") by (ii) of Lemma
4.7. We begin considering B = B(0,7), x € B and x # 0. Let v be such that |v| = r. We
estimate the two terms of (24). Then,

1 1 1
57 ol O T B~ G
c [ 1
- @JBWJ Iy|5|v|f(y)dydx (35)
< Ol s || 20 ol

< C“f”BMg(a)) ’B|5
For the second term of (24), using the mean value theorem

1 1 r

n—a n—a S C — . 36
CE T N £
Then, by (i) of Lemma 4.6
1 1 1
N> n—a n—a dyd,
(B) UMV e (L A
Cr fl v (37)
S a)(B) JBJB‘ b,|n—a+1 X
< C||f||BMg(m)|B|§«
Therefore, by (24) and (35)-(37), we have proved
1
T | . ()~ Hof 0l < Clf g, (38)

for every ball B centered at the origin.
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We now consider B = B(xq,7) with 7 <|xo|/8. By (33) it is enough to consider only
these balls B. Let x € B and v = (|xo|+7)x0/|x0l|, then |v| ~ |x| and |x| ~ |xo]. If |y| < v],
by the mean value theorem

1 _ 1 7
(el + D" I+ D" x>
Then, since w € D,,, we have

1 1 1
N2 n—a n—a d d
wwﬂﬁ@wV“UM+ww CET ik

Cr+t1 (39)

P — d

o(B) o[ 11 JMlef 0

< |[f||BMg(w)|B|5-

On the other hand, using again the mean value theorem as in (36) and (i) of
Lemma 4.6, we get
1

1 1
EEﬂJQWyWUM+WW“‘aw+M>

o o
o(B) J|y|>|1/| |~ / (40)

"+ o(B(0, [v]))

= |dydx

<

< C”f”BMg(w)’BP-
Thus, by (24) and (39)-(40), we have proved

1

WJBlHaf(x) — H,f (v)ldx < C|[f||BM{,(w)’

for every ball B = B(x, ) considered. This completes the proof of the theorem.

5. Conclusions

As a conclusion to this chapter, we have given necessary and sufficient conditions
for the generalized Calderén and Hilbert operators to be bounded from weighted
Lesbesgue spaces into suitable weighted BMO and Lipschitz spaces. Then, we have
obtained results on the boundedness of these operators from L* into BMO, even in the
unweighted case for the Hilbert operator. The class of weights involved are close to
the doubling and reverse Holder conditions related to the Muckenhoupt’s classes.

The study of the weighted boundedness for integral operators on function spaces,
like the one we develop in this chapter, is one of the main research fields in harmonic
analysis. In particular, it has had a profound influence in partial differential equations,
several complex variables, and number theory. Evidence of such success and
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importance is the pioneering work of leading mathematicians Bourgain, Zygmund,
Calderén, Muckenhoupt, Wheeden, C. Fefferman, Stein, Ricci, Tao and so on.
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