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Chapter

A Brief Look at the Calderón and
Hilbert Operators
Guillermo J. Flores

Abstract

The Calderón operator is the sum of the Hardy averaging operator and its adjoint,
and plays an important role in the theory of real interpolation. On the other hand, the
Hilbert operator arises from the continuous version of Hilbert’s inequality. Both oper-
ators appear in different contexts and have numerous applications within harmonic
analysis. In this chapter we will briefly review the Calderón and Hilbert operators,
showing some of the most relevant results within functional analysis and finally we
will present recent results on these operators within Fourier analysis.

Keywords: Calderón operator, Hilbert operator, Lebesgue spaces, Lipschitz spaces,
BMO spaces, weighted inequalities, Calderón weights

1. Introduction

The Calderón and Hilbert operators are among the most relevant operators in
harmonic analysis, arising from Hilbert’s double series theorem which is one of the
simplest and most beautiful in the theory of double series of positive terms. It was
proved by Hilbert, in the course of his investigations in the theory of integral equa-
tions, that the series

P

m,n∈

am an
amþan

, where an ≥0 for all n∈, is convergent whenever
P

n∈
a2n is convergent.

Other proofs of Hilbert’s double series theorem and generalizations in different
directions were studied and published over time by influential mathematicians such as
H. Weyl, F. Wiener, J. Schur, Fejér and F. Riesz, Pólya and Szegö, Francis and
Littlewood, G.H. Hardy and M. Riesz, among others.

In [1, 2], G.H. Hardy observed that Hilbert’s theorem stated above is an immediate
corollary of another theorem which has interest in itself. This theorem is as follows: If

an ≥0 for all n∈ and
P

n∈
a2n is convergent, then

P

n∈

1
n

Pn
j¼1a j

� �2
is also

convergent.
The first extension of the just stated Hilbert’s and Hardy’s results in which we are

interested is the following (see [3]): Let 1< p<∞ and p0 ¼ p= p� 1ð Þ (i.e. p0 is the

conjugate of p). If
P

∞

n¼1a
p
n and

P

∞

n¼1b
p0

n are convergent, where an and bn are
nonnegative numbers for all n∈, then
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X

∞

m¼1

X

∞

n¼1

ambn
mþ n

≤
π

sin π=pð Þ

X

∞

m¼1

apm

 !1=p
X

∞

n¼1

bp
0

n

 !1=p0

and
X

n∈

1

n

X

n

j¼1

a j

 !p

≤ p0ð Þ
p
X

∞

n¼1

apn:

The constants π= sin π=pð Þ and p0ð Þp ¼ p= p� 1ð Þð Þp are the best possible.
At the same time, the continuous versions of the previous inequalities are the

following (see [3, 4]): Let 1< p<∞ and p0 the conjugate of p. If
Ð

0,∞½ Þ fj jp and
Ð

0,∞½ Þ gj j
p0

are finite, then

ð

0,∞½ Þ

ð

0,∞½ Þ

∣f xð Þ∣ ∣g yð Þ∣

xþ y
dxdy≤

π

sin π=pð Þ

ð

0,∞½ Þ

f xð Þj jpdx

 !1=p
ð

0,∞½ Þ

g xð Þj jp
0

dx

 !1=p0

and

ð

0,∞½ Þ

1

x

ð

0,x½ �

f yð Þdy

 !p

dx≤
p

p� 1

� �pð

0,∞½ Þ

f xð Þj jpdx:

Once again, the constants involved are the best possible.
As usual in harmonic analysis, if E is a measurable subset of n, then Lp Eð Þ,

1≤ p<∞, is the Lebesgue space of all measurable functions f such that ∥f∥
p
Lp Eð Þ ¼

Ð

Ej f xð Þjpdx is finite. Recall that Lp Eð Þ, ∥ � ∥Lp Eð Þ

� �

is a Banach space and in the case

E ¼ 
n, it is denoted ∥ � ∥p ¼ ∥ � ∥Lp Eð Þ.

Now, consider the operators H and P defined by

Hf xð Þ ¼

ð

0,∞½ Þ

f tð Þ

xþ t
dt and Pf xð Þ ¼

1

x

ð

0,x½ �

f tð Þdt,

which naturally arise from the inequalities presented above. Also consider

Qf xð Þ ¼

ð

x,∞½ Þ

f tð Þ

t
dt

being the adjoint operator of P and satisfying

ð

0,∞½ Þ

Qf xð Þð Þpdx ¼

ð

0,∞½ Þ

ð

x,∞½ Þ

f tð Þ

t
dt

 !p

dx≤C

ð

0,∞½ Þ

f xð Þð Þpdx,

for all f ∈Lp 0,∞½ Þð Þ, 1< p<∞, where C is a positive constant (see [4]). Therefore,
P and Q are bounded operators from Lp 0,∞½ Þð Þ in itself, that is,

∥Pf∥Lp 0,∞½ Þð Þ ≤C∥f∥Lp 0,∞½ Þð Þ and ∥Qf∥Lp 0,∞½ Þð Þ ≤C∥f∥Lp 0,∞½ Þð Þ forall f ∈Lp 0,∞½ Þð Þ:

It is immediate that for nonnegative functions f ,

Hf xð Þ≤Pf xð Þ þ Qf xð Þ≤ 2Hf xð Þ forall x>0:

Consequently H is a bounded operator on Lp 0,∞½ Þð Þ, that is,
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∥Hf∥Lp 0,∞½ Þð Þ ≤C∥f∥Lp 0,∞½ Þð Þ forall f ∈Lp 0,∞½ Þð Þ:

It is well known that P is called the Hardy averaging operator and H is called the
Hilbert operator. Also, the Calderón operator S is defined by S ¼ Pþ Q, being then a
bounded operator from Lp 0,∞½ Þð Þ in itself.

We end this section with some of the first and most important direct applications
obtained from Hilbert’s and Hardy’s inequalities.

Theorem 1.1 Let E be the interval 0, 1ð Þ and f ∈L2 Eð Þ not null in E. Then

X

∞

n¼0

ð

E
xnf xð Þdx

� �2

< π

ð

E
f 2 xð Þdx

and the constant π is the best possible. The integrals
Ð

Ex
nf xð Þdx, n ¼ 0, 1, … are

called the moments of f in E and are important in many theories.
Theorem 1.2 (Carlema’s inequalities) Let anf g be a sequence of positive numbers

and 1< p<∞. Then

X

∞

n¼1

1

n

X

n

k¼1

ak
1=p

 !p

<
p

p� 1

� �p
X

∞

n¼1

an and
X

∞

n¼1

Y

n

k¼1

ak

 !1=n

< e
X

∞

n¼1

an:

The constants involved are the best possible.
The corresponding integral version for the second inequality of Carlema’s inequal-

ity is: If f is a positive function belonging to L1 0,∞½ Þð Þ, then

ð

0,∞½ Þ

exp
1

x

ð

0,x½ �

log f tð Þdt

 !

dx ¼

ð

0,∞½ Þ

eP log fð Þ xð Þdx< e

ð

0,∞½ Þ

f xð Þdx:

where the constant e is the best possible.
Theorem 1.3 Let 1< p≤ 2 and p0 the conjugate of p. If Lf sð Þ ¼

Ð

∞

0 f tð Þe�stdt, i.e. Lf is
the Laplace transform of f , then

ð

∞

0
Lf sð Þp

0

ds≤
2π

p0

ð

∞

0
f sð Þpds

� �p0=p

forall f ∈Lp 0,∞½ Þð Þ:

Therefore L is a bounded operator from Lp 0,∞½ Þð Þ into Lp0 0,∞½ Þð Þ, 1< p≤ 2, and

∥Lf∥p0 ≤ 2π=p0ð Þ1=p
0

∥f∥p.

The number of applications and results that arise from Hilbert’s and Hardy’s
inequalities is by now very large and it would be impossible to give a detailed survey
of all of them in a reasonable amount of text. We have simply made a very brief
introduction about them in this section.

2. Calderón weights and Lp-weighted inequalities

A function ω defined on 
n is called a weight if it is locally integrable and positive

almost everywhere. For a measurable set E⊂
n, ∣E∣ denote its Lebesgue measure,

ω Eð Þ ¼
Ð

Eω, and Ec the complement of E in 
n. Given a ball B, tB is the ball with the
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same center as B and with radius t times as long, and f B ¼ 1
∣B∣

Ð

Bf . As usual, χE denotes

the characteristic function of E and B x, rð Þ denotes a ball centered at x with radius r.
Also, C denotes a positive constant.

Let ω be a weight in 
n and 1≤ p<∞. A Lebesgue measurable function f belongs to

Lp ωð Þ if

∥f∥Lp ωð Þ ¼

ð


n
fj jpω

� �1=p

<∞:

We say that an oprator T is a bounded operator on Lp ωð Þ if

∥Tf∥Lp ωð Þ ≤C∥f∥Lp ωð Þ, forall f ∈Lp ωð Þ:

Given 1< p<∞, it is said that ω is a Calderón weight of class Cp, that is ω∈ Cp, if
the Calderón operator S is bounded on Lp ωð Þ (see [5]) or, equivalently, if P and Q are
both bounded on Lp ωð Þ (see also [6]). It is well known that the class Cp for p> 1 is
given by the conditions

Mp :

ð

0,x½ �

ω tð Þdt

 !1=p
ð

x,∞½ Þ

ω1�p0 tð Þ

tp0
dt

 !1=p0

≤C for all x>0;

Mp
:

ð

x,∞½ Þ

ω tð Þ

tp
dt

  !1=p
ð

0,x½ �

ω1�p0 tð Þdt

 !1=p0

≤C for all x>0:

The Calderón operator plays an important role in the theory of real interpolation
and such theory related to Calderón weights is developed in [5]. On the other hand, in
[7], the authors considered a maximal operator N on 0,∞ð Þ associated to the basis of
open sets of the form 0, bð Þ, given by

Nf xð Þ ¼ sup
b> x

1

b

ð

0,b½ �

∣f tð Þ∣dt

for measurable functions f . Then, for nonnegative functions f , we have

P xð Þ≤Nf xð Þ≤ Sf xð Þ forall x>0:

The classes of weights ω associated to the boundedness of N on Lp ωð Þ are those
that satisfy the Muckenhoupt-Ap condition, 1≤ p<∞, only for the sets of the form
0, bð Þ. These classes are denoted by Ap,0 and defined as follows:

A1,0 : Nω xð Þ≤Cω xð Þ for almost all x>0;

Ap,0 :

1

x

ð

0,x½ �

ω

 !

1

x

ð

0,x½ �

ω1�p0

 !p�1

≤C for all x>0,where1< p<∞:

Then, in [7] is proved that N and S are bounded operators on Lp ωð Þ if and only if
ω∈Ap,0 for 1< p<∞. This result implies, in particular, that the classes of weights Cp

and Ap,0 coincide for 1< p<∞.
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Taking into account these results it is natural to wonder for the action of the
Calderón and Hilbert operators over suitable spaces such as BMO or Lipschitz spaces.
Also, another interesting question is: which are, in these cases, the Calderón weights in
order to obtain weighted inequalities between these spaces?

These problems were treated for instance in the case of the fractional integral
operator in [8, 9], which have been the main motivation for the article [10] and for
the development of the following sections.

3. The n-dimensional Calderón and Hilbert operators

For 0≤ α< n, f a Lebesgue measurable function and x∈
n, x 6¼ 0, the general

n-dimensional Calderón and Hilbert operators are defined by

Sαf xð Þ ¼ Pαf xð Þ þ Qαf xð Þ and Hαf xð Þ ¼

ð


n

f yð Þ

jxj þ jyjð Þn�α dy,

where Pαf xð Þ ¼ 1
xj jn�α

Ð

∣y∣ ≤ ∣x∣f yð Þdy and Qαf xð Þ ¼
Ð

∣y∣> ∣x∣
f yð Þ
yj jn�α dy.

Again, it is immediate that for nonnegative functions f , the following pointwise
inequalities hold

Hαf xð Þ≤ Sαf xð Þ≤ 2n�αHαf xð Þ, (1)

and consequently, all weighted-Lp inequalities obtained for S are true for H and
reciprocally.

In spite of the punctual comparison (1), we will show in Section 4 that the results
obtained for Sα and Hα are not analogous when the BMOγ and Lipschitz spaces are
involved.

Both operators Sα and Hα appear in several different contexts and applications, see
for instance [4, 11–17].

Next, we introduce the spaces of functions and the classes of weights which appear
in our main results.

Recall that a measurable function f defined on E⊂
n is said to be essentially

bounded provided there is some M≥0, called an essential upper bound for f , for which
∣f xð Þ∣ ≤M for almost all x∈E. As usual, the class of all functions that are essentially
bounded on E is denoted by L∞ Eð Þ and ∥f∥

∞
is the infimum of the essential upper

bounds for f ∈L∞ Eð Þ. Then, L∞ Eð Þ, ∥ � ∥
∞

ð Þ is a Banach space.
Now, a Lebesgue measurable function f belongs to L∞ ωð Þ if ∥fω∥

∞
<∞.

Also recall that L1
loc 

nð Þ denotes the space of locally integrable functions f
satisfying that ∥f χB∥1 is finite for every ball B⊂

n.
Definition 3.2. Let ω be a weight in 

n and 0≤ γ < 1=n. A locally integrable
function f belongs to BMOγ ωð Þ if there exists a constant C such that for every ball
B⊂

n,

1

ω Bð Þ Bj jγ

ð

B
∣f � f B∣ ≤C: (2)

The seminorm of f ∈BMOγ ωð Þ, ∥f∥BMOγ ωð Þ, is the infimum of all such C.
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Definition 3.4. Let ω be a weight in 
n and 0≤ γ< 1=n. A locally integrable

function f belongs to BMγ
0 ωð Þ if there exists a constant C such that

1

ω Bð Þ Bj jγ

ð

B

∣f ∣ ≤C (3)

for every ball B⊂
n centered at the origin.

The norm of f ∈BMγ
0 ωð Þ, denoted by ∥f∥BMγ

0 ωð Þ, is the infimum of all such C. We

will denote by BM0 ωð Þ ¼ BM0
0 ωð Þ.

Observe that with these definitions the space BMO0 ωð Þ is the weighted version of
BMO introduced by Muckenhoupt and Wheeden in [18]. Also, the family of spaces
BMOγ ωð Þ is contained in the family of weighted Lipschitz spaces Iω γð Þ defined and
studied in [8], and BMOγ ωð Þ for ω � 1 is the well known Lipschitz integral space.
Furthermore, we note that L∞ ω�1ð Þ⊂BM0 ωð Þ∩BMO ωð Þ.

Given p> 1, it is known that a weight ω satisfies the reverse Hölder inequality with
exponent p, denoted by ω∈RH pð Þ, if

1

∣B∣

ð

B
ωp

� �1=p

≤C
1

∣B∣

ð

B
ω (4)

for all balls B⊂
n and some constant C.

Definition 3.7. Given p> 1, a weight ω belongs to RH0 pð Þ if it satisfies (4) but only
for balls centered at the origin.

Definition 3.8. A weight ω belongs to D0 if it satisfies the doubling condition
ω 2Bð Þ≤Cω Bð Þ for every ball B⊂

n centered at the origin and some constant C.
Definition 3.9. Let η≥ 1, a weight ω belongs to Dη if it satisfies the doubling

condition

ω 2B x, jxjþrð Þð Þ

B x, jxjþrð Þj jη
≤C

ω B x, rð Þð Þ

B x, rð Þj jη

every ball B x, rð Þ⊂
n and some constant C.

It is immediate that Dη ⊂D0 for all η, and Dη is increasing in η. It is well known that
each weight in the Muckenhoupt class A

∞
is in RH pð Þ∩Dη for some p and for some η,

see for instance [19]. On the other hand, there exist weights belonging to Dη for some
η, such that it is not in A

∞
, see [20].

Also, we observe the following property that we will use along this chapter. If
ω∈Dη there exists a constant C such that

ω Bð Þ≤Cω Bn
1

2
B

� �

(5)

for every ball B⊂
n centered at the origin.

Definition 3.11. Let 0≤ α< n and 1< p<∞. A weight ω belongs to H0 α, pð Þ if there
exists a constant C such that

ð

Bc

ωp0 yð Þ

yj j n�αþ1ð Þp0
dy

 !1=p0

≤C
ω Bð Þ

Bj j1þ1=p�α=nþ1=n
(6)
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for every ball B⊂
n centered at the origin.

A weight ω belongs to H0 α,∞ð Þ if there exists a constant C such that

ð

Bc

ω yð Þ

yj jn�αþ1 dy≤C
ω Bð Þ

Bj j1�α=nþ1=n
(7)

for every ball B⊂
n centered at the origin.

The classes of weights H0 α, pð Þ and H0 α,∞ð Þ satisfying (6) and (7) respectively but
for all ball B⊂

n, were introduced and studied in [8].

4. Weighted Lebesgue and BMOγ norm inequalities for Sα and Hα

Before beginning our study of the generalized Calderón operator, we notice that Sαf
can be identically infinite for some functions f belonging to Lp ω�pð Þ or BMγ

0 ωð Þ. For
example, for ω � 1 and α>0, if f xð Þ ¼ xj j�α

χBc 0,1ð Þ xð Þ and n=α< p, then f ∈Lp ω�pð Þ but

Sαf � ∞. For the case n=α ¼ p, if g xð Þ ¼ xj j�α log jxjð Þ� 1þ1=pð Þ=2
χBc 0,2ð Þ xð Þ, then

g∈Lp ω�pð Þ but Sαg � ∞. Also, if h xð Þ ¼ χBc 0,1ð Þ xð Þ, then h∈BMγ
0 ωð Þ but Sαh � ∞ for all

0≤ α< n. However, in Lemma 4.7 we will show that if f belongs to Lp ω�pð Þ∪BMγ
0 ωð Þ

and Sαf xð Þ is finite for some x 6¼ 0, then Sαf is finite on 
nn 0f g. This also happens for

the generalized Hilbert operator since the comparison (1).
Therefore, throughout the following sections we shall consider Sα and Hα defined

on functions f belonging to Lp ω�pð Þ or BMγ
0 ωð Þ such that Sαf and Hαf are finite for

some x 6¼ 0.
Also, note that Sαf is finite on 

nn 0f g for all compactly supported functions

f ∈L∞ ω�1ð Þ, and the same holds for Hαf . These functions belongs to Lp ω�pð Þ and
those such that zero is not in their support belongs to BMγ

0 ωð Þ.
The operator P is naturally bounded from BM0 into L∞ and analogously, Q is

naturally bounded from BM0 into BMO (see Proposition 3.5 in [13]). So, immediately
the Calderón operator is bounded from BM0 into BMO. This natural boundedness is
our motivation in order to consider the BMγ

0 ωð Þ spaces and obtain Theorems 1.5 and

1.7. Likewise, since L∞ ω�1ð Þ⊂BM0 ωð Þ, we get Corollaries 4.1 and 4.2.
We now state the main results of this chapter.

Theorem 1.4 Suppose α>0, n=α≤ p< n= α� 1ð Þþ, η ¼ 1þ 1=nþ 1=p� α=n and

δ ¼ α=n� 1=p. The operator Sα is bounded from Lp ω�pð Þ into BMOδ ωð Þ and ωp0 ∈D0 if
and only if ω∈RH0 p0ð Þ∩Dη.

Theorem 1.5 Suppose 0≤ α< 1, 0≤ γ < 1=n� α=n, η ¼ 1þ 1=n� α=n� γ and δ ¼

α=nþ γ. The operator Sα is bounded from BMγ
0 ωð Þ into BMOδ ωð Þ and ω∈D0 if and

only if ω∈Dη.

Corollary 4.1. Let η ¼ 1þ 1=n. Then S is bounded from L∞ ω�1ð Þ into BMO ωð Þ and
ω∈D0 if and only if ω∈Dη.

Theorem 1.6 Suppose α>0, n=α≤ p< n= α� 1ð Þþ, η ¼ 1þ 1=nþ 1=p� α=n and

δ ¼ α=n� 1=p. The operator Hα is bounded from Lp ω�pð Þ into BMOδ ωð Þ if and only if
ω∈H0 α, pð Þ∩RH0 p0ð Þ∩Dη.

Theorem 1.7 Suppose 0≤ α< 1, 0≤ γ < 1=n� α=n, η ¼ 1þ 1=n� α=n� γ and δ ¼

α=nþ γ. The operator Hα is bounded from BMγ
0 ωð Þ into BMOδ ωð Þ if and only if

ω∈H0 αþ nγ,∞ð Þ∩Dη.
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Corollary 4.2. Let η ¼ 1þ 1=n. Then H is bounded from L∞ ω�1ð Þ into BMO ωð Þ if and
only if ω∈H0 0,∞ð Þ∩Dη.

Remark 4.3. It is classic the study of the boundedness of operators between L∞ and
BMO spaces. In [10], the results obtained in Corollaries 4.1 and 4.2 are originals, even
in the unweighted case for H. The unweighted case for S is contained in Proposition
3.5 of [13].

Remark 4.4. The limit case p ¼ ∞ (p0 ¼ 1) of Theorem 1.4 is contained in Theorem
1.5 with γ ¼ 0, since the hypotheses on the weights coincide. This also is true to
Theorems 1.6 and 1.7.

Let α, p and η be as in Theorems 1.4 and 1.6. It is not difficult to show that if

ωp0 ∈A1,0 then ω∈H0 α, pð Þ∩RH0 p0ð Þ∩Dη. Also, if ω xð Þ ¼ xj jβ with

β∈ 0, 1þ n=p� αð Þ, then ωp0 ∉ A1,0 but ω∈H0 α, pð Þ∩RH0 p0ð Þ∩Dη. Furthermore, if

ω xð Þ ¼ xj jβ with β ¼ 1þ n=p� α, then ω∈RH0 p0ð Þ∩Dη but ω ∉ H0 α, pð Þ. Now, if in

addition 0< α< 1 and p0 > n= 1� αð Þ, we have that if ωp0 ∈Ap0þ1,0 then
ω∈H0 α, pð Þ∩RH0 p0ð Þ∩Dη. In fact, the H0 α, pð Þ-condition is obtained directly from
the Ap0þ1,0-condition, and by Hölder inequality we have that

ωp0 B 0, 2 jx0jþrð Þð Þð Þ

∣B 0, 2 jx0jþrð Þð Þ∣

� �1=p0

≤C
∣B 0, 2 jx0jþrð Þð Þ∣

ω�1 B x0, rð Þð Þ
≤C

∣x0∣þ r

r

� �n
ω B x0, rð Þð Þ

∣B x0, rð Þ∣

≤C
∣x0∣þ r

r

� �1�αþn=p
ω B x0, rð Þð Þ

∣B x0, rð Þ∣

for all balls B x0, rð Þ⊂
n. Thus, the RH0 p0ð Þ and Dη conditions follow from the last

expression.
On the other hand, suppose that α, γ and η be as in Theorems 1.5 and 1.7. If ω∈A1,0

then ω∈H0 αþ nγ,∞ð Þ∩Dη. Also, if ω xð Þ ¼ xj jβ with β∈ 0, 1� α� nγð Þ, then

ω ∉ A1,0 but ω∈H0 αþ nγ,∞ð Þ∩Dη. Finally, if ω xð Þ ¼ xj jβ with β ¼ 1� α� nγ, then
ω∈Dη but ω ∉ H0 αþ nγ,∞ð Þ.

We shall denote by A x, r,Rð Þ with 0< r<R the annulus centered at x with radii r
and R, and by C and c positive constants not necessarily the same at each occurrence.

Before proceeding to the proofs of the main theorems we give some previous
lemmas.

Suppose that 1< p<∞ and ω∈RH0 p0ð Þ, then it is easy to see that there exists C
such that

ð

B
∣f ∣ ≤C

ω Bð Þ

Bj j1=p
fk kLp ω�pð Þ (8)

for all f ∈Lp ω�pð Þand for every ball B⊂
n centered at the origin.

Lemma 4.6. ið Þ Let 0< α< n and 1< p<∞. If ω∈H0 α, pð Þ then there exists C such that

ð

Bc

∣f yð Þ∣

yj jn�αþ1 dy≤C
ω Bð Þ

Bj j1þ1=p�α=nþ1=n
∥f∥Lp ω�pð Þ

for all f ∈Lp ω�pð Þ and for every ball B⊂
n centered at the origin.

iið Þ Let 0≤ α< 1, 0≤ γ < 1=n� α=n and η ¼ 1þ 1=n� α=n� γ. If
ω∈H0 αþ nγ,∞ð Þ∩Dη then there exists C such that
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ð

Bc

∣f yð Þ∣

yj jn�αþ1 dy≤C
ω Bð Þ

Bj jη
∥f∥BMγ

0 ωð Þ

for all f ∈BMγ
0 ωð Þ and for every ball B⊂

n centered at the origin.
Proof: The part ið Þ is immediate from Hölder’s inequality and Definition 3.11. For

iið Þ, since the hypothesis on ω and (3.10), for B ¼ B 0, rð Þ we have

ð

Bc

∣f yð Þ∣

yj jn�αþ1 dy ≤C
X

∞

k¼0

1

2kr
� �n�αþ1

ð

2kr≤ ∣y∣< 2kþ1r
∣f yð Þ∣dy

≤C∥f∥BMγ

0 ωð Þ

X

∞

k¼0

ω B 0, 2kþ1r
� �� �

2kr
� �n�αþ1�nγ

≤C∥f∥BMγ

0 ωð Þ

X

∞

k¼0

ω B 0, 2kþ1r
� �

nB 0, 2kr
� �� �

2kr
� �n� αþnγð Þþ1

≤C∥f∥BMγ

0 ωð Þ

ω Bð Þ

Bj jη
:

Lemma 4.7. ið Þ Let α>0, 1< p<∞ and ω∈RH0 p0ð Þ. If f ∈Lp ω�pð Þ and there exists

x 6¼ 0 such that Sαf xð Þ is finite, then Sαf is finite on 
nn 0f g and Sαf ∈L1

loc 
nð Þ. The claim

also holds for Hα.
iið Þ Let ω∈Dη. If f ∈BMγ

0 ωð Þ and there exists x 6¼ 0 such that Sαf xð Þ is finite, then Sαf

is finite on 
nn 0f g and Sαf ∈L1

loc 
nð Þ. The claim also holds for Hα.

Proof: Since (3.1) we will only consider the operator Sα. Suppose f is a nonnegative

function in L1
loc 

nð Þ such that Sαf x0ð Þ<∞ for some x0 6¼ 0. Then Qαf xð Þ<∞ for
∣x∣ ≥ ∣x0∣, and if 0< ∣x∣< ∣x0∣ then

Qαf xð Þ≤
1

xj jn�α

ð

∣x∣< ∣y∣< ∣x0∣
f yð ÞdyþQαf x0ð Þ<∞:

Furthermore, since

ð

B 0,rð Þ

Qαf xð Þ � Qαf νð Þð Þdx≤

ð

B 0,rð Þ

f yð Þrαdy<∞,

where ∣ν∣ ¼ r, then Qαf ∈L1
loc 

nð Þ.

If α>0 it is immediate that Pαf ∈L1
loc 

nð Þ. Therefore, ið Þ follows from (4.5). For

iið Þ it remains to show that Pαf ∈L1
loc 

nð Þ in the case α ¼ 0. Let B j ¼ B 0, 2�jr
� �

, j ¼

0, 1, … , by (3.10) we have

ð

B0

1

xj jn

ð

B 0,jxjð Þ

f yð Þdydx ≤C∥f∥BMγ

0 ωð Þ

ð

B0

ω B 0, jxjð Þð Þ

xj jn�nγ dx

≤C∥f∥BMγ

0 ωð Þ

X

∞

j¼0

rnγ�n

2 j nγ�nð Þ

ð

B jnB jþ1

ω B j

� �

dx

≤C∥f∥BMγ

0 ωð Þr
nγ
X

∞

j¼0

ω B jnB jþ1

� �

2jnγ

≤C∥f∥BMγ

0 ωð Þr
nγω B0ð Þ:
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Proof of Theorem 1.4:We begin showing the sufficient condition. Let B ¼
B x0, rð Þ. If x0 ¼ 0, let u ¼ re1=2 and v ¼ 3re1=4, where e1 ¼ 1, … , 0ð Þ. If x0 6¼ 0, let
u ¼ jx0jþr=2ð Þx0=∣x0∣ and v ¼ jx0jþ3r=4ð Þx0=∣x0∣. Thus, we consider the following
two regions

U ¼ B u, r=8ð Þ∩ uþ h : sign uið Þ ¼ sign hið Þ i ¼ 1, … , nf g,

V ¼ B v, r=4ð Þ∩ vþ h : sign við Þ ¼ sign hið Þ i ¼ 1, … , nf g,
(9)

where u ¼ u1, … , unð Þ, v ¼ v1, … , vnð Þ and h ¼ h1, … , hnð Þ. In the case ui ¼ 0 for
some i, we choose hi >0. Clearly, we have the estimates dist U,Vð Þ ¼ Cr,

∣U∣ ¼
1

2n
∣B u, r=8ð Þ∣ ¼ C∣B∣ and ∣V∣ ¼

1

2n
∣B v, r=4ð Þ∣ ¼ C∣B∣:

Let f a nonnegative function in Lp ω�pð Þ such that supp fð Þ⊂B 0, jx0jþr=2ð Þ, where
supp fð Þ is the closure of the set x : f xð Þ 6¼ 0f g. Then

∥Sαf∥BMOδ ωð Þ ≥
C

ω Bð Þ Bj j1þδ

ð

B

ð

B
∣Sαf xð Þ � Sαf zð Þ∣dzdx

≥
C

ω Bð Þ Bj j1þδ

ð

U

ð

V
∣

1

xj jn�α �
1

zj jn�α

� �
ð

B 0,jx0jþr=2ð Þ

f yð Þdy∣dzdx:

Note that, for x∈U and z∈V we have 1
xj jn�α � 1

zj jn�α ≥C r
jx0jþrð Þn�αþ1. Then

∥Sαf∥BMOδ ωð Þ ≥
Crnþ1

ω Bð Þ Bj jδ jx0jþrð Þn�αþ1

ð

B 0,jx0jþr=2ð Þ

f yð Þdy: (10)

Thus, taking f yð Þ ¼ ωp0 yð ÞχB 0,jx0jþr=2ð Þ yð Þ in (10) and since the boundedness of Sα

and ωp0 ∈D0, we have

ωp0 B 0, jx0jþrð Þð

∣B 0, jx0jþrð Þ∣

� �1=p0

≤C
∣x0∣þ r

r

� �1�αþn=p
ω Bð Þ

∣B∣
:

Taking x0 ¼ 0 in the last expression, we have that ω∈RH0 p0ð Þ. Then, applying the
Hölder’s inequality, we obtain that ω satisfies the desired condition Dη.

Now, let us show the necessary condition. Let f ∈Lp ω�pð Þ such that Sαf xð Þ is finite

for some x 6¼ 0 and let ω∈RH0 p0ð Þ∩Dη. It is immediate that ωp0 ∈D0. Thus

Sαf ∈L1
loc 

nð Þ by ið Þ of Lemma 4.7. First, we consider B ¼ B 0, rð Þ, x∈B and x 6¼ 0. Let
ν be such that ∣ν∣ ¼ r, and let

Kν x, yð Þ ¼ min 1,
yj jn�α

xj jn�α

� 	

� min 1,
yj jn�α

νj jn�α

� 	

:

Then, since Kν x, yð Þ ¼ 0 for ∣y∣> ∣ν∣, we have

Sαf xð Þ � Sαf νð Þ ¼

ð

∣y∣ ≤ ∣ν∣

Kν x, yð Þ
f yð Þ

yj jn�α dy: (11)
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If ∣y∣ ≤ ∣ν∣ then Kν x, yð Þ≥0, so

1

ω Bð Þ

ð

B
∣Sαf xð Þ � Sαf νð Þ∣dx ≤

1

ω Bð Þ

ð

B

ð

B
Kν x, yð Þ

∣f yð Þ∣

yj jn�α dydx

¼
1

ω Bð Þ

ð

B

ð

∣y∣ ≤ ∣x∣
Kν x, yð Þ

∣f yð Þ∣

yj jn�α dydxþ
1

ω Bð Þ

ð

B

ð

∣x∣< ∣y∣ ≤ r
Kν x, yð Þ

∣f yð Þ∣

yj jn�α dydx:

(12)

Now we estimate each term in (12).

If ∣y∣ ≤ ∣x∣ then Kν x, yð Þ≤ yj jn�α xj j� n�αð Þ. So, by (8) we have

1

ω Bð Þ

ð

B

ð

∣y∣ ≤ ∣x∣
Kν x, yð Þ

∣f yð Þ∣

yj jn�α dydx ≤
1

ω Bð Þ

ð

B

1

xj jn�α

ð

B
∣f yð Þ∣dydx

≤C∥f∥Lp ω�pð Þ Bj jδ:

For the second term, since 0≤Kν x, yð Þ≤ 1 and (8), we have

1

ω Bð Þ

ð

B

ð

∣x∣< ∣y∣ ≤ r
Kν x, yð Þ

∣f yð Þ∣

yj jn�α dydx ≤
1

ω Bð Þ

ð

B

1

xj jn�α

ð

∣x∣< ∣y∣ ≤ r
∣f yð Þ∣dydx

≤
C

ω Bð Þ

ð

B

f yð Þkyj jαdy

≤C∥f∥Lp ω�pð Þ Bj jδ:

(13)

Then, by (12) and (13), we have proved

1

ω Bð Þ Bj jδ

ð

B
∣Sαf xð Þ � Sαf νð Þ∣dx≤C∥f∥Lp ω�pð Þ, (14)

for every ball B centered at the origin.
We now consider B ¼ B x0, rð Þ with r< ∣x0∣=8. By (14) it is enough to consider only

these balls B. Let x∈B and ν ¼ jx0jþrð Þx0=∣x0∣. In the same way as (11), we have

Sαf xð Þ � Sαf νð Þ ¼

ð

∣y∣ ≤ ∣ν∣

Kν x, yð Þ
f yð Þ

yj jn�α dy:

Now, we note that if ∣y∣ ≤ ∣ν∣ then Kν x, yð Þ≥0. Applying the mean value theorem
and using ∣ν∣ � ∣x∣, then

Kν x, yð Þ≤
yj jn�α

xj jn�α �
yj jn�α

νj jn�α ≤C
r yj jn�α

νj jn�αþ1 : (15)

Thus, by (8) and ω∈Dη, we have

1

ω Bð Þ

ð

B

∣Sαf xð Þ � Sαf νð Þ∣dx≤C
r

ω Bð Þ νj jn�αþ1

ð

B

ð

∣y∣ ≤ ∣ν∣

∣f yð Þ∣dydx

≤C∥f∥Lp ω�pð Þ

rnþ1

νj jn�αþ1þn=p

ω B 0, jνjð Þð Þ

ω Bð Þ

≤C∥f∥Lp ω�pð Þ Bj jδ:

(16)
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Therefore, (14) and (16) complete the proof of the theorem.
Proof of Theorem 1.5:We begin showing the sufficient condition. Let B ¼ B x0, rð Þ

and let u, v, U and V as in (9) of the proof of Theorem 1.4. Then, we again have

∥Sαf∥BMOδ ωð Þ ≥
Crnþ1

ω Bð Þ Bj jδ jx0jþrð Þn�αþ1

ð

B 0,jx0jþr=2ð Þ

f yð Þdy, (17)

for every nonnegative function f in BMγ
0 ωð Þ such that supp fð Þ⊂B 0, jx0jþr=2ð Þ.

Now, if γ ¼ 0 we take f yð Þ ¼ ω yð ÞχB 0,jx0jþr=2ð Þ yð Þ in (17) and since ∥f∥BMγ

0 ωð Þ ≤ 1, the

boundedness of Sα and ω∈D0, we have ω∈Dη.

If γ >0, let f yð Þ ¼ Pnγ ωχB 0,jx0jþr=2ð Þ

� �

yð Þ, then ∥f∥BMγ

0 ωð Þ ≤C and

ð

B 0,jx0jþr=2ð Þ

f yð Þdy ¼ C

ð

B 0,jx0jþr=2ð Þ

ω tð Þ jx0jþr=2ð Þnγ � tj jnγð Þdt

≥C jx0jþrð Þnγω B 0, jx0jþr=2ð Þ=2ð Þð Þ:

(18)

Therefore, using this function f in (17), the boundedness of Sα, (18) and ω∈D0,
we have ω∈Dη.

Now, let us show the necessary condition. Let f ∈BMγ
0 ωð Þ such that Sαf xð Þ is finite

for some x 6¼ 0 and let ω∈Dη. Thus Sαf ∈L1
loc 

nð Þ by iið Þ of Lemma 4.7. We begin
considering B ¼ B 0, rð Þ, x∈B and x 6¼ 0. Let ν be such that ∣ν∣ ¼ r. In the same way as
we did in (12), we have

1

ω Bð Þ

ð

B

∣Sαf xð Þ � Sαf νð Þ∣dx≤
1

ω Bð Þ

ð

B

ð

∣y∣ ≤ ∣x∣

Kν x, yð Þ
∣f yð Þ∣

yj jn�α dydx

þ
1

ω Bð Þ

ð

B

ð

∣x∣< ∣y∣ ≤ r

Kν x, yð Þ
∣f yð Þ∣

yj jn�α dydx,

(19)

where Kν x, yð Þ ¼ min 1, yj jn�α

xj jn�α

n o

� min 1, yj jn�α

νj jn�α

n o

:

We estimate the first term of (19). Let B j ¼ B 0, 2�jr
� �

, j ¼ 0, 1, … . Thus, since

Kν x, yð Þ≤ yj jn�α xj j� n�αð Þ for ∣y∣ ≤ ∣x∣ and (5), we have

1

ω Bð Þ

ð

B

ð

∣y∣ ≤ ∣x∣
Kν x, yð Þ

∣f yð Þ∣

yj jn�α dydx ≤
1

ω Bð Þ

ð

B

1

xj jn�α

ð

∣y∣ ≤ ∣x∣
∣f yð Þ∣dydx

≤C∥f∥BMγ

0 ωð Þ

1

ω Bð Þ

ð

B

ω B 0, jxjð Þð Þ

xj jn�α�nγ dx

≤C∥f∥BMγ

0 ωð Þ

rnγþα

ω Bð Þ

X

∞

j¼0

ω B jnB jþ1

� �

2 j nγþαð Þ

≤C∥f∥BMγ

0 ωð Þ

Bj jδ

ω Bð Þ

X

∞

j¼0

ω B jnB jþ1

� �

¼ C∥f∥BMγ

0 ωð Þ Bj jδ:

(20)
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For the second term of (19), since 0≤Kν x, yð Þ≤ 1, we have

1

ω Bð Þ

ð

B

ð

∣x∣ ≤ ∣y∣ ≤ r
Kν x, yð Þ

∣f yð Þ∣

yj jn�α dydx ≤
1

ω Bð Þ

ð

B

∣f yð Þ∣

yj jn�α

ð

∣x∣ ≤ ∣y∣
1dxdy

≤C∥f∥BMγ

0 ωð Þ Bj jδ:

(21)

Therefore, by (19)-(21) we have proved

1

ω Bð Þ Bj jδ

ð

B

∣Sαf xð Þ � Sαf νð Þ∣dx≤C∥f∥BMγ

0 ωð Þ, (22)

for every ball B centered at the origin.
We now consider B ¼ B x0, rð Þ with r< ∣x0∣=8. By (22) it is enough to consider only

these balls B. Let x∈B and ν ¼ jx0jþrð Þx0=∣x0∣. In the same way as we obtained (11)
and (15) in the previous proof, we have

Sαf xð Þ � Sαf νð Þ ¼

ð

∣y∣ ≤ ∣ν∣

Kν x, yð Þ
f yð Þ

yj jn�α dy

and Kν x, yð Þ≤Cr yj jn�α
νj j� n�αþ1ð Þ. By ω∈Dη, we have

1

ω Bð Þ

ð

B

∣Sαf xð Þ � Sαf νð Þ∣dx≤C
rnþ1

ω Bð Þ νj jn�αþ1

ð

∣y∣ ≤ ∣ν∣

∣f yð Þ∣dy

≤C∥f∥BMγ

0 ωð Þ

rnþ1

νj jn�αþ1�nγ

ω B 0, jνjð Þð Þ

ω Bð Þ

≤C∥f∥BMγ

0 ωð Þ Bj jδ:

(23)

Therefore, (22) and (23), complete the proof of the theorem.
Let x, ν∈

n, ν 6¼ 0, then

Hαf xð Þ �Hαf νð Þj j≤

ð

yj j≤ νj j

f yð Þj j
1

xj j þ yj jð Þn�α �
1

νj j þ yj jð Þn�α

























dy

þ

ð

yj j> νj j

f yð Þj j
1

xj j þ yj jð Þn�α �
1

νj j þ yj jð Þn�α

























dy:

(24)

Proof of Theorem 1.6:We begin showing the sufficient condition. Let B ¼
B x0, rð Þ and let u, v, U and V as in (9) of the proof of Theorem 1.4. Note that if x∈U,
z∈V then for all y∈

n,

1

jxj þ jyjð Þn�α �
1

jzj þ jyjð Þn�α ≥C
r

jx0jþrþjyjð Þn�αþ1 : (25)

Hence, if f is a nonnegative function in Lp ω�pð Þ such that supp fð Þ⊂A 0, r,mð Þ and
taking x0 ¼ 0 in (25), we have

∥Hαf∥BMOδ ωð Þ ≥
Crnþ1

ω Bð Þ Bj jδ

ð

A 0,r,mð Þ

f yð Þ

yj jn�αþ1 dy, (26)
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for every ball B centered at the origin.

Thus, taking fm,j yð Þ ¼ yj j� n�αþ1ð Þ= p�1ð Þ
ωp0 yð ÞχAm,j

yð Þ in (26) where Am,j ¼

A 0, r,mð Þ∩ y : 1=j≤ω yð Þ< jf g, m, j ¼ 1, 2, … , using the boundedness of Hα and letting
m ! ∞, j ! ∞ we obtain that ω∈H0 α, pð Þ.

On the other hand, if f is a nonnegative function in Lp ω�pð Þ such that
supp fð Þ⊂B 0, 2 jx0jþrð Þð Þ, then by (25)

∥Hαf∥BMOδ ωð Þ ≥
Crnþ1

ω Bð Þ Bj jδ jx0jþrð Þn�αþ1

ð

B 0,2 jx0jþrð Þð Þ

f yð Þdy: (27)

Thus, taking f j yð Þ ¼ ωp0 yð ÞχA j
yð Þ in (27) where A j ¼

B 0, 2 jx0jþrð Þð Þ∩ y : 1=j≤ω yð Þ< jf g, j ¼ 1, 2, … , and using the boundedness of Hα, we
have

ð

A j

ωp0 yð Þdy

 !1=p0

≤C
∣x0∣þ r

r

� �n�αþ1
ω Bð Þ

Bj j1=p
:

Letting j ! ∞ and taking x0 ¼ 0 in the last expression, we can obtain that
ω∈RH0 p0ð Þ. Then, applying Hölder’s inequality, we obtain ω∈Dη.

Now, let us show the necessary condition. Let f ∈Lp ω�pð Þ such that Hαf xð Þ is finite

for some x 6¼ 0 and let ω such that ω∈H0 α, pð Þ∩RH0 p0ð Þ∩Dη. Hence Hαf ∈L1
loc 

nð Þ
since ið Þ of Lemma 4.7. We begin considering B ¼ B 0, rð Þ, x∈B and x 6¼ 0. Let ν be
such that ∣ν∣ ¼ r. We estimate the two terms of (24). By (8), we have

1

ω Bð Þ

ð

B

ð

yj j≤ νj j

f yð Þ

xj j þ yj jð Þn�α �
f yð Þ

νj j þ yj jð Þn�α

























dydx

≤
C

ω Bð Þ

ð

B

ð

B

f yð Þj j

xj jn�α dydx

≤C fk kLp ω�pð Þ

ð

B

1

xj jn�αþn=p
dx ¼ C fk kLp ω�pð Þ Bj jδ:

(28)

To analyze the second term of (24), we use the mean value theorem, then

1

jxj þ jyjð Þn�α �
1

jνj þ jyjð Þn�α

























≤C
r

yj jn�αþ1 :

Thus, by ið Þ of Lemma 4.6

1

ω Bð Þ

ð

B

ð

∣y∣> ∣ν∣

f yð Þ

jxj þ jyjð Þn�α �
f yð Þ

jνj þ jyjð Þn�α

























dydx ≤
Cr

ω Bð Þ

ð

B

ð

Bc

∣f yð Þ∣

yj jn�αþ1 dydx

≤C∥f∥Lp ω�pð Þ Bj jδ:

(29)

Therefore, by (24)–(29), we have proved

1

ω Bð Þ Bj jδ

ð

B

∣Hαf xð Þ �Hαf νð Þ∣dx≤C∥f∥Lp ω�pð Þ, (30)
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for every ball B centered at the origin.
We now consider B ¼ B x0, rð Þ with r< ∣x0∣=8. By (28) it is enough to consider only

these balls B. Let x∈B and ν ¼ jx0jþrð Þx0=∣x0∣, then ∣ν∣ � ∣x∣ and ∣x∣ � ∣x0∣. Using
∣y∣ ≤ ∣ν∣ and the mean value theorem

1

jxj þ jyjð Þn�α �
1

jνj þ jyjð Þn�α

























≤C
r

x0j jn�αþ1 :

Then, by (8) and ω∈Dη

1

ω Bð Þ

ð

B

ð

∣y∣ ≤ ∣ν∣

∣f yð Þ∣
1

jxj þ jyjð Þn�α �
1

jνj þ jyjð Þn�α

























dydx

≤
Crnþ1

ω Bð Þ x0j jn�αþ1

ð

∣y∣ ≤ ∣ν∣

∣f yð Þ∣dy

≤C∥f∥Lp ω�pð Þ

rnþ1

x0j jn�αþ1þn=p
ω B 0, jνjð Þð Þ

¼ C∥f∥Lp ω�pð Þ Bj jδ:

(31)

Now, using the mean value theorem

1

jxj þ jyjð Þn�α �
1

jνj þ jyjð Þn�α

























≤C
r

yj jn�αþ1 :

Then, by ið Þ of Lemma 4.6

1

ω Bð Þ

ð

B

ð

∣y∣> ∣ν∣

f yð Þ

jxj þ jyjð Þn�α �
f yð Þ

jνj þ jyjð Þn�α

























dydx ≤
Cr

ω Bð Þ

ð

B

ð

Bc

∣f yð Þ∣

yj jn�αþ1 dydx

¼ C∥f∥Lp ω�pð Þ Bj jδ:

(32)

Therefore, by (24) with ν ¼ jx0jþrð Þx0=∣x0∣, (31) and (32), we have

1

ω Bð Þ Bj jδ

ð

B
∣Hαf xð Þ �Hαf νð Þ∣dx≤C∥f∥Lp ω�pð Þ,

for every ball B ¼ B x0, rð Þ considered. This completes the proof of the theorem.
Proof of Theorem 1.7:We begin showing the sufficient condition. Let B ¼ B x0, rð Þ

and let u, v, U and V as in (9) of the proof of Theorem 1.4. Then, as in (26) of the
proof of Theorem 4 (with x0 ¼ 0), we again have

∥Hαf∥BMOδ ωð Þ ≥
Crnþ1

ω Bð Þ Bj jδ

ð

A 0,r,mð Þ

f yð Þ

yj jn�αþ1 dy (33)

for every nonnegative function f in BMγ
0 ωð Þ such that supp fð Þ⊂A 0, r,mð Þ and for

every ball B centered at the origin.
Thus, taking f yð Þ ¼ yj jnγω yð ÞχA 0,r,mð Þ yð Þ in (33), using that ∥f∥BMγ

0 ωð Þ ≤ 1, the

boundedness of Hα and letting m ! ∞, we have that ω∈H0 αþ nγ,∞ð Þ.
On the other hand, as in (27) of the proof of Theorem 1.6 we again have
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∥Hαf∥BMOδ ωð Þ ≥
Crnþ1

ω Bð Þ Bj jδ jx0jþrð Þn�αþ1

ð

B 0,2 jx0jþrð Þð Þ

f yð Þdy, (34)

for every nonnegative function f in BMγ
0 ωð Þ such that supp fð Þ⊂B 0, 2 jx0jþrð Þð Þ

and for every ball B ¼ B x0, rð Þ.
If γ ¼ 0, we take f yð Þ ¼ ω yð ÞχB 0,2 jx0jþrð Þð Þ yð Þ in (4.34) and since ∥f∥BMγ

0 ωð Þ ≤ 1 and

the boundedness of Hα, we have ω∈Dη.

If γ >0, let f yð Þ ¼ Pnγ ωχB 0,2 jx0jþrð Þð Þ

� �

yð Þ then ∥f∥BMγ

0 ωð Þ ≤C and as in (4.18) of the

proof of Theorem 1.5, we have

ð

B 0,2 jx0jþrð Þð Þ

f yð Þdy≥C jx0jþrð Þnγω B 0, jx0jþrð Þð Þ:

Therefore, using this function f in (34) and the boundedness ofHα, we have ω∈Dη.
Now, let us show the necessary condition. Let f ∈BMγ

0 ωð Þ such that Hαf xð Þ is finite

for some x 6¼ 0 and let ω∈H0 αþ nγ,∞ð Þ∩Dη. Hence Hαf ∈L1
loc 

nð Þ by iið Þ of Lemma
4.7. We begin considering B ¼ B 0, rð Þ, x∈B and x 6¼ 0. Let ν be such that ∣ν∣ ¼ r. We
estimate the two terms of (24). Then,

1

ω Bð Þ

ð

B

ð

∣y∣ ≤ ∣ν∣

∣f yð Þ∣
1

jxj þ jyjð Þn�α �
1

jνj þ jyjð Þn�α

























dydx

≤
C

ω Bð Þ

ð

B

1

xj jn�α

ð

∣y∣ ≤ ∣ν∣

f yð Þdydx

≤C∥f∥BMγ

0 ωð Þ

1

ω Bð Þ

ð

B

ω B 0, jνjð Þð Þ νj jnγ

xj jn�α dx

≤C∥f∥BMγ

0 ωð Þ Bj jδ:

(35)

For the second term of (24), using the mean value theorem

1

jxj þ jyjð Þn�α �
1

jνj þ jyjð Þn�α

























≤C
r

yj jn�αþ1 : (36)

Then, by iið Þ of Lemma 4.6

1

ω Bð Þ

ð

B

ð

∣y∣> ∣ν∣

∣f yð Þ∣
1

jxj þ jyjð Þn�α �
1

jνj þ jyjð Þn�α

























dydx

≤
Cr

ω Bð Þ

ð

B

ð

Bc

∣f yð Þ∣

yj jn�αþ1 dydx

≤C∥f∥BMγ

0 ωð Þ Bj jδ:

(37)

Therefore, by (24) and (35)–(37), we have proved

1

ω Bð Þ Bj jδ

ð

B
∣Hαf xð Þ �Hαf νð Þ∣dx≤C∥f∥BMγ

0 ωð Þ, (38)

for every ball B centered at the origin.
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We now consider B ¼ B x0, rð Þ with r< ∣x0∣=8. By (33) it is enough to consider only
these balls B. Let x∈B and ν ¼ jx0jþrð Þx0=∣x0∣, then ∣ν∣ � ∣x∣ and ∣x∣ � ∣x0∣. If ∣y∣ ≤ ∣ν∣,
by the mean value theorem

1

jxj þ jyjð Þn�α �
1

jνj þ jyjð Þn�α

























≤C
r

x0j jn�αþ1 :

Then, since ω∈Dη, we have

1

ω Bð Þ

ð

B

ð

∣y∣ ≤ ∣ν∣

∣f yð Þ∣
1

jxj þ jyjð Þn�α �
1

jνj þ jyjð Þn�α

























dydx

≤
Crnþ1

ω Bð Þ x0j jn�αþ1

ð

∣y∣ ≤ ∣ν∣

∣f yð Þ∣dy

≤∥f∥BMγ

0 ωð Þ Bj jδ:

(39)

On the other hand, using again the mean value theorem as in (36) and iið Þ of
Lemma 4.6, we get

1

ω Bð Þ

ð

B

ð

∣y∣> ∣ν∣

∣f yð Þ∣
1

jxj þ jyjð Þn�α �
1

jνj þ jyjð Þn�α

























dydx

≤
Crnþ1

ω Bð Þ

ð

∣y∣> ∣ν∣

∣f yð Þ∣

yj jn�αþ1 dy

≤C∥f∥BMγ

0 ωð Þ

rnþ1

ω Bð Þ

ω B 0, jνjð Þð Þ

νj jnη

≤C∥f∥BMγ

0 ωð Þ Bj jδ:

(40)

Thus, by (24) and (39)–(40), we have proved

1

ω Bð Þ Bj jδ

ð

B
∣Hαf xð Þ �Hαf νð Þ∣dx≤C∥f∥BMγ

0 ωð Þ,

for every ball B ¼ B x0, rð Þ considered. This completes the proof of the theorem.

5. Conclusions

As a conclusion to this chapter, we have given necessary and sufficient conditions
for the generalized Calderón and Hilbert operators to be bounded from weighted
Lesbesgue spaces into suitable weighted BMO and Lipschitz spaces. Then, we have
obtained results on the boundedness of these operators from L∞ into BMO, even in the
unweighted case for the Hilbert operator. The class of weights involved are close to
the doubling and reverse Hölder conditions related to the Muckenhoupt’s classes.

The study of the weighted boundedness for integral operators on function spaces,
like the one we develop in this chapter, is one of the main research fields in harmonic
analysis. In particular, it has had a profound influence in partial differential equations,
several complex variables, and number theory. Evidence of such success and
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importance is the pioneering work of leading mathematicians Bourgain, Zygmund,
Calderón, Muckenhoupt, Wheeden, C. Fefferman, Stein, Ricci, Tao and so on.
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