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Abstract
We construct finite-dimensional Hopf algebras whose
coradical is the group algebra of a central extension of
an abelian group. They fall into families associated to a
semisimple Lie algebra together with a Dynkin diagram
automorphism. We show conversely that every finite-
dimensional pointed Hopf algebra over a nonabelian
group with nonsimple infinitesimal braiding of rank at
least 4 is of this form. We follow the steps of the Lifting
Method by Andruskiewitsch–Schneider. Our starting
point is the classification of finite-dimensional Nichols
algebras over nonabelian groups by Heckenberger–
Vendramin, which consist of low-rank exceptions and
large-rank families. We prove that the large-rank fami-
lies are cocycle twists of Nichols algebras constructed by
the second author as foldings of Nichols algebras of Car-
tan type over abelian groups by outer automorphisms.
This enables us to give uniform Lie-theoretic descrip-
tions of the large-rank families, prove generation in
degree 1, and construct liftings. We also show that every
lifting is a cocycle deformation of the corresponding
coradically gradedHopf algebra using an explicit presen-
tation by generators and relations of the Nichols algebra.
On the level of tensor categories, we construct families
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of graded extensions of the representation category of a
quantum group by a group of diagram automorphism.
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POINTED HOPF ALGEBRAS OVER NONABELIAN GROUPS 3

1 INTRODUCTION

1.1 Background

Groups and Lie algebras have in common that they both admit a tensor product of representations
and a dual for each finite-dimensional representation; in other words, their categories of repre-
sentations are tensor categories. More generally, the category of representations of a Hopf algebra
is also a tensor category. Prominent examples of Hopf algebras are the quantum groups 𝑈𝑞(𝔤) by
Drinfeld–Jimbo [22, 40], which are deformations of the enveloping algebra of a semisimple Lie
algebra 𝔤 by a formal parameter 𝑞, and the small quantum groups 𝑢𝑞(𝔤) by Lusztig [46], which
are finite-dimensional nonsemisimple quotients of 𝑈𝑞(𝔤) for 𝑞 a root of unity. One of the initial
motivations for quantum groups was their relation to themonodromy of certain differential equa-
tions in conformal field theory [27] and invariants of knots and 3-manifolds [53]. Small quantum
groups, their representation categories, and their semisimplification are related to Lie algebras
in positive characteristic [1, 45] and affine Lie algebras [28], and they have again applications to
topology [41] and conformal field theory [25, 44].
While the classification of finite-dimensional semisimpleHopf algebras is still a very hard prob-

lem, wemay ask for the classification of Hopf algebras𝐻 with a givenmaximal cosemisimple part
𝐻0, called the coradical. For example, if𝐻0 = 𝕜𝐺 is a group ring, then𝐻 is called a pointed Hopf
algebra. The so-called Lifting Method developed by Andruskiewitsch and Schneider is a program
for the classification of pointed Hopf algebras. The present article contributes to the classification
of finite-dimensional pointed Hopf algebras over an algebraically closed field 𝕜 of characteristic
zero by means of this method for 𝐺 a nonabelian group. Let us quickly recall the main steps and
involved notions.
The Nichols algebra B(𝑉) of an object 𝑉 in certain braided tensor category is the smallest

braided Hopf algebra generated by 𝑉 and such that the space of primitive elements is precisely
𝑉. It is a difficult problem to determine the structure of the Nichols algebra of a given braided
vector space, even to determine whether it is finite-dimensional. A main structural insight [31,
36, 38] is the existence of generalized root systems and Weyl groupoids. It is generalized in the
sense that the Weyl groupoid moves between different sets of simple roots for which the sets of
positive roots look different since reflectionsmay change the braiding and even the Cartanmatrix
— an effect that already appears for contragredient Lie superalgebras. Nevertheless, finite Weyl
groupoids can be classified [20] and show again a pattern of Lie theory, with some infinite series
plus low-rank exceptions.
The entry gate of Nichols algebras into the classification of Hopf algebras is the coradical fil-

tration. Namely, every Hopf algebra 𝐻 comes with a coalgebra filtration 𝐻0 ⊆ 𝐻1 ⊆ … where 𝐻0

is the coradical. If we assume that 𝐻0 is a subalgebra, then the associated graded coalgebra gr𝐻

is a Hopf algebra, which decomposes as bosonization gr𝐻 ≃ (
⨁

𝑛⩾0 𝑅𝑛)#𝐻0. Here, 𝑅 =
⨁

𝑛⩾0 𝑅𝑛

is a (coradically) graded Hopf agebra in a braided category; we pay special attention to the sub-
space 𝑅1 of primitive elements and the subalgebra of 𝑅 it generates, which is (isomorphic to) the
Nichols algebraB(𝑅1). As an example, for the (infinite-dimensional) quantum group𝐻 = 𝑈𝑞(𝔤),
the coradical 𝐻0 is the group algebra spanned by the root lattice, the space 𝑅1 is spanned by the
simple root vectors 𝐸𝑖, 𝐹𝑖 , the Nichols algebra is the tensor product of the positive and negative
parts 𝑈𝑞(𝔤)

±, and in the graded algebra gr𝐻, the relation [𝐸𝑖, 𝐹𝑖] = 0 holds in contrast to the

nontrivial relation [𝐸𝑖, 𝐹𝑖] =
𝐾𝑖−𝐾−1

𝑖

𝑞𝑖−𝑞−1
𝑖

in𝐻.
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4 ANGIONO et al.

To classify pointed Hopf algebras 𝐻 with a given coradical 𝐻0 = 𝕜𝐺, the Lifting Method
proposes the following three steps.

∙ First, one classifies 𝕜𝐺-Yetter–Drinfeld modules 𝑉 with finite-dimensional Nichols algebra
B(𝑉). When 𝐺 is finite and abelian, 𝑉 is a braided vector space of diagonal type and
Heckenberger has classified all these finite-dimensional Nichols algebras in [32]. Besides the
Nichols algebras 𝑢𝑞(𝔤)

+ coming from small quantum groups, his list contains Nichols algebras
associated to Lie superalgebras in any characteristic and some exceptions [3].

∙ Second, one wants to prove that the subspace 𝑅1#𝐻0 generates the entire algebra gr𝐻, which
is known as the generation in degree 1 problem. In the abelian group case, this has been proved
in [12] using a presentation by generators and relations of the Nichols algebras of diagonal type.

∙ Third, one determines all possible Hopf algebras 𝐻 associated to each Nichols algebra in the
first step, the so-called liftings. For the Nichols algebra 𝑢𝑞(𝔤)

+ with 𝑞 of sufficiently large order,
the possible liftings are described by deforming relations such as [𝐸𝑖, 𝐹𝑖] = 0 and 𝐸𝓁

𝑖
= 0 [10].

For an arbitary Nichols algebra over an abelian group, the liftings were determined in [16] and
involves the proof that every lifting is a cocycle deformation of the graded Hopf algebra in the
sense of [21, 47].

1.2 Nichols algebras over nonabelian groups

We now discuss Nichols algebras B(𝑀) of Yetter–Drinfeld modules 𝑀 over a finite nonabelian
group𝐺, see §2.2. The simple Yetter–Drinfeld modules𝑀(g𝐺, 𝜒) are parametrized by a conjugacy
class g𝐺 in𝐺 and a simple representation𝜒 of the centralizer𝐺g of g . An arbitrary Yetter–Drinfeld
module𝑀 is semisimple; we identify the simple summands of𝑀 with the simple roots of a gen-
eralized root system and call their number the rank. The study over nonabelian groups started in
[49], where 𝐺 is a Coxeter group and g is a reflection; two main examples were considered.

∙ The symmetric group 𝕊𝑛 has a single conjugacy class of reflections with
(𝑛
2

)
elements, which

yields an irreducible Yetter–Drinfeld module. The associated Nichols algebras for 𝑛 = 3, 4, 5

have dimension 12, 576, 8 294 400 and were considered by Fomin and Kirillov [26] in a very
different context; for 𝑛 ⩾ 6, they are conjecturally infinite-dimensional.

∙ The dihedral group 𝔻4 has two conjugacy classes of reflections, each with two elements. These
yield a Yetter–Drinfelf module 𝑀 = 𝑀1 ⊕ 𝑀2 of dimension 2 + 2 and rank 2. As it turns out,
the generalized root system is of type 𝐴2, indicating roughly that there is a space of braided
commutators 𝑀12, associated to the third conjugacy class with two elements, and all higher
commutators vanish. Since the Nichols algebras of the irreducible modules 𝑀1,𝑀2,𝑀12 have
each dimension 4, the Nichols algebra B(𝑀) has dimension 43.

The study now naturally branches into two directions: Nichols algebras of rank 1, meaning of
irreducible Yetter–Drinfeldmodules, andNichols algebras of rank> 1 composed of the former via
root system theory. In rank 1, more finite-dimensional examples of Nichols algebras were discov-
ered in [7, 29, 33]; later, the research concentrated on successfully ruling out finite-dimensional
Nichols algebras over simple groups, see [6] and the references there.
A systematic classification for finite-dimensional Nichols algebras of rank> 1was achieved by

Heckenberger, Schneider, and Vendramin, relying on root system theory. The program was initi-
ated with a study in rank 2 in [34], and after a series of works, it culminated in a full classification
for rank ⩾ 2 [37]. The surprising observation was that the existence of a finite root system severely
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POINTED HOPF ALGEBRAS OVER NONABELIAN GROUPS 5

restricts the possible groups 𝐺, so that only very few of the (not yet fully classified) Nichols alge-
bras of rank 1 can appear in rank ⩾ 2. Next, we summarize the classification over an algebraically
closed field of characteristic zero.

Theorem 1.1 [37]. Let 𝐺 be a nonabelian group and let 𝑀 = 𝑀1 ⊕⋯⊕ 𝑀𝑛 ∈ 𝕜𝐺
𝕜𝐺
, where

each 𝑀𝑖 is simple and 𝑛 ⩾ 2. Assume that the support of 𝑀 generates 𝐺 and that 𝑀 is braid-
indecomposable. If the Nichols algebra B(𝑀) is finite-dimensional, then 𝑀 belongs to one of the
following.

(i) Lie-theoretic families of type 𝛼𝑛 (𝑛 ⩾ 2), 𝛿𝑛 (𝑛 ⩾ 4), 𝛾𝑛 (𝑛 ⩾ 3), 𝜖𝑛 (𝑛 = 6, 7, 8), 𝜙4.
(ii) Five new exceptional Weyl classes in rank 2 or one of the exceptions 𝛽′

3
, 𝛽′′

3
in rank 3.

Thus [37] gives a partial answer for the first step of Lifting Method over nonabelian groups
under a mild restriction. This classification is the starting point of our work; in §2.2, we give a
precise description of the modules of types 𝛼𝑛, 𝛿𝑛, 𝛾𝑛, 𝜖𝑛, and 𝜙4.
Nichols algebras in the families (i) had been previously constructed by Lentner via the fold-

ing method [42, 43], which produce central extensions of Hopf algebras and Nichols algebras. In
fact, a main result of the present article (Theorem 3.18) is that ultimately, all Nichols algebras in
the families (i) can be reduced to this construction. Folding assigns to any Nichols algebraB(𝑀)

over a group Γ with a group Σ of diagram automorphisms, a new Nichols algebra B(𝑀̃) over
the central extension Σ → 𝐺 → Γ. For example, when applied to the positive part of the small
quantum group 𝑢𝑞(𝐴2 × 𝐴2)

+ and Σ = ℤ2 for a suitable automorphism switching the two copies
of 𝐴2, the folding construction gives a Nichols algebra over the dihedral group. Similarly, fold-
ing method can be applied to B(𝑀) = 𝑢𝑞(𝔤)

+ for 𝑞2 = −1 in cases where 𝔤 is simple and has a
diagram automorphism, namely, 2𝐴2𝑛+1 and 2𝐸6, and in cases where 𝔤 consists of two copies of
the same simply laced Lie algebra interchanged by Σ = ℤ2, which we denote 2𝐴2

𝑛 and
2𝐷2

𝑛 and
2𝐸2

𝑛, 𝑛 = 6, 7, 8. The root system attached to B(𝑀) is the folded root system considered in Lie
theory, with Σ-orbits of roots becoming the new roots. In all cases, the root system is of Lie type
and the Weyl groupoid is again a Weyl group (they are standard) and correspond to the families
from (i):

1.3 Summary of the main results

The main goal of our article is to determine all pointed Hopf algebra over a finite nonabelian
group whose infinitesimal braiding belong to the Lie-theoretical families (i) of [37], by solving the
remaining two steps of the Lifting Method. On the other hand, the exceptional Nichols algebras
in low rank (ii) have no uniform description and need to be treated by hand, see, for example, [19].
We now discuss the organization andmain results of this paper in more detail. In §2, we review

the preliminaries and the classification result by Heckenberger–Vendramin. Thereafter, the paper
consists of three main parts, summarized below.
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6 ANGIONO et al.

1.3.1 Reduction via folding

The goal of §3 is to relate the output of Heckenberger–Vendramin classification with the folding
construction. Here we follow the construction mainly in the setting of [42]. Namely, for a given
Hopf algebra𝐻 and a group of biGalois objects, one obtains aHopf algebra structure on their direct
sum.Nowwe specialize to the casewhere theHopf algebra is a smash product𝐻 = B(𝑀)#𝕜Γ and
the biGalois objects are based on a 2-cocycle 𝜎 for Γ and a twisted symmetry of𝑀. Then the folding
is again a smash product of the centrally extended groupwith the folded Nichols algebra. Our first
main result is that the Nichols algebras of all modules in the family (i) are twists of foldings over
central extensions. This opens the door for a uniform and abelian-theoretic treatment of these
Nichols algebras.

Theorem 3.18. Let 𝐺 be a finite nonabelian group,𝑀 ∈ 𝕜𝐺
𝕜𝐺
 of type 𝛼𝑛, 𝛾𝑛, 𝛿𝑛, 𝜖𝑛, or 𝜙4 whose

support generates 𝐺. Then there exists 𝜎 ∈ 𝐻2(𝐺, 𝕜) such that𝑀𝜎 is a folding.

Notice that, by construction, the folding technique producesNichols algebraswith trivial action
of the central subgroup Σ = ⟨𝜅⟩. Thus, to prove this result, we need to somehow trivialize the
action of that central element. We show in Lemma 2.7 that 𝜅 acts trivially on large-rank families
in [37]. For small-rank cases 𝛼2, 𝛼3, 𝛿4, 𝛾3, 𝛾4, and 𝜙4, we show in Proposition 3.15, that there exists
a group cocycle 𝜎 as above such that 𝜅 acts trivially on the twisted module 𝑀𝜎. This requires a
finer analysis on the structure of the group 𝐺 and significant group cohomology computations,
postponed to the Appendix.

1.3.2 Generation in degree 1

In the brief §4, we see the first application of Theorem 3.18. Namely, we give a positive answer to
the generation in degree 1 question by translating it to the respective assertion for certain Nichols
algebras of diagonal type.

Theorem 4.1. Let 𝐻 be a finite-dimensional pointed Hopf algebra with infinitesimal braiding of
type 𝛼𝑛, 𝛾𝑛, 𝛿𝑛, 𝜖𝑛, or 𝜙4. Then𝐻 is generated by skew-primitive and group-like elements.

1.3.3 Computation of relations and liftings

The rest of the paper is devoted to a classification all pointed Hopf algebras with infinitesimal
braiding of type 𝛼𝑛, 𝛾𝑛, 𝛿𝑛, 𝜖𝑛, or 𝜙4.
The first step toward that goal is to obtain defining relations for these Nichols algebras; this is

achieved in §5. Here we present a sketch of our third main result, and refer to the actual Theorem
for a precise statement.

Theorem 5.7. Given 𝑀 ∈ 𝕜𝐺
𝕜𝐺
 of type 𝛼𝑛, 𝛾𝑛, 𝛿𝑛, 𝜖𝑛, or 𝜙4, we have a presentation by 𝐺-

homogeneous generators and relations, and a Poincare–Birkhoff–Witt type basis (PBW basis), for
the Nichols algebraB(𝑀).

To obtain this presentation, we adapt certain constructions and techniques developed in [12,
14] for Nichols algebras of diagonal type. Namely, for each 𝑀 as above, we construct in §5.2 a
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POINTED HOPF ALGEBRAS OVER NONABELIAN GROUPS 7

pre-Nichols algebra B̂(𝑀). Then in §5.3, we show that the subalgebra of coinvariants under the
canonical map B̂(𝑀) → B(𝑀) is actually a Hopf subalgebra, and describe its algebra structure.
We close §5 with Theorem 5.12, where we show that these Nichols algebras are rigid in the sense
of [18].
Finally, in §6, we classify all liftings. Following previous experiences, for example, [4, 16, 19],

we first construct a big family of them via Hopf–Galois objects, and then show that this family
exhausts all liftings. So, in particular, all liftings are cocycle deformation of the associated graded
Hopf algebra. For simplicity, here we provide only a sketch of the actual statement.

Theorem 6.3. Let 𝑀 ∈ 𝕜𝐺
𝕜𝐺
 of type 𝛼𝑛, 𝛾𝑛, 𝛿𝑛, 𝜖𝑛, or 𝜙4. Let 𝑀 denote the set of deformation

parameters defined in (6.3), and for each 𝝀 ∈ 𝑀 , consider the Hopf algebra (𝝀) defined explictly
in §6.
Then, for each 𝝀 ∈ 𝑀 , the Hopf algebra(𝝀) is a lifting of𝑀 over 𝕜𝐺 and a cocycle deformation

ofB(𝑀)#𝕜𝐺.
Conversely, if 𝐿 is lifting of𝑀 over 𝕜𝐺, then there exists 𝝀 ∈ 𝑀 such that 𝐿 ≃ (𝝀).

In §6.3, we discuss how these liftings can be viewed as foldings of liftings of Nichols algebras
over the corresponding abelian group.
We close the paper with some open questions and future directions of research, see §7.

2 PRELIMINARIES

Conventions

We denoteℕ = {1, 2, 3, … } andℕ0 = {0} ∪ ℕ. Given 𝑘 < 𝜃 inℕ0, we put 𝕀𝑘,𝜃 = {𝑛 ∈ ℕ0 ∶ 𝑘 ⩽ 𝑛 ⩽ 𝜃}

and 𝕀𝜃 = 𝕀1,𝜃. When 𝜃 is clear from the context, we just write 𝕀 = 𝕀𝜃. The canonical basis of ℤ𝜃 is
denoted by (𝛼𝑖)𝑖∈𝕀𝜃

.
We work over an algebraically closed field 𝕜 of characteristic zero and use 𝕜× to denote the

group of nonzero elements. If𝑁 ∈ ℕ, we use 𝔾𝑁 to denote the subgroup of𝑁th roots of unity; the
subset of those with order 𝑁 is 𝔾′

𝑁
.

Given a group 𝐺 and an element g , we use g𝐺 and 𝐺g to denote the conjugacy class and the
centralizer of g , respectively. By 𝐺, we mean the group of characters, and 𝕜𝐺 stands for the group
algebra. If 𝐾 is another group, then a pairing (also called a bicharacter) is a map 𝑃 ∶ 𝐺 × 𝐾 → 𝕜×

such that for all g , g ′ ∈ 𝐺, 𝑘, 𝑘′ ∈ 𝐾:

𝑃(gg ′, 𝑘) = 𝑃(g , 𝑘)𝑃(g ′, 𝑘), 𝑃(g , 𝑘𝑘′) = 𝑃(g , 𝑘)𝑃(g , 𝑘′).

A skew-polynomial algebra in variables 𝑧1, … , 𝑧𝑘 is a quotient of the free algebra in these
variables by an ideal generated by 𝑧𝑖𝑧𝑗 − 𝑡𝑖𝑗𝑧𝑗𝑧𝑖 , 1 ⩽ 𝑖, 𝑗 ⩽ 𝑘, for some 𝑡𝑖𝑗 ∈ 𝕜×.
We denote Hopf algebras by tuples (𝐻, 𝜇, Δ,)where 𝜇 is the multiplication, Δ the comultipli-

cation, and the antipode, whichwe always assume bijective. The subspace of primitive elements
is (𝐻). The group of group-like elements is 𝐺(𝐻). If 𝛿∶ 𝑉 → 𝐻 ⊗ 𝑉 is a left 𝐻-comodule, we
write 𝛿(𝑣) = 𝑣−1 ⊗ 𝑣0; for g ∈ 𝐺(𝐻), we put 𝑉g ∶= {𝑣 ∈ 𝑉 ∶ 𝛿(𝑣) = g ⊗ 𝑣}. We refer to [51] for
any unexplained terminology on Hopf algebras and to [5, §2] for preliminaries on Hopf–Galois
objects and cocycle deformations.
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8 ANGIONO et al.

2.1 The Nichols algebra of a braided vector space

A braided vector space is a pair (𝑉, 𝑐) where 𝑉 is a vector space and 𝑐 ∈ 𝐺𝐿(𝑉 ⊗ 𝑉) satisfies

(𝑐 ⊗ id)(id⊗𝑐)(𝑐 ⊗ id) = (id⊗𝑐)(𝑐 ⊗ id)(id⊗𝑐).

By declaring the elements of 𝑉 to be primitive, the tensor algebra 𝑇(𝑉) becomes an ℕ0-graded
braidedHopf algebra. There is a largest coideal  (𝑉) among those that trivially intersect 𝕜 ⊕ 𝑉; it
happens to be graded, so we denote  (𝑉) =

⨁
𝑛⩾2 

𝑛(𝑉). The Nichols algebra of (𝑉, 𝑐) is defined
as the quotient B(𝑉) = 𝑇(𝑉)∕ (𝑉). This is again an ℕ0-graded braided Hopf algebra, which is
strictly graded as a coalgebra and generated by 𝑉 as an algebra, see [36, §7]. Any intermediate
quotientB = 𝑇(𝑉)∕ by an ℕ0-homogeneous Hopf ideal  is called a pre-Nichols algebra of 𝑉.
The braided commutator of 𝑇(𝑉) is defined by

[−,−]𝑐 = mult(id−𝑐)∶ 𝑇(𝑉) ⊗ 𝑇(𝑉) → 𝑇(𝑉).

If 𝑢 ∈ 𝑉 and 𝑣 ∈ 𝑇(𝑉), we denote (ad𝑐 𝑢)𝑣 = [𝑢, 𝑣]𝑐. In §2.2.1, will define ad𝑐 𝑢 for arbitrary 𝑢 ∈

𝑇(𝑉). For a fixed basis (𝑥𝑖)𝑖∈𝐼 of 𝑉 and 𝑘 ⩾ 2, we set

𝑥𝑖1⋯𝑖𝑘
∶= (ad𝑐 𝑥𝑖1

)⋯ (ad𝑐 𝑥𝑖𝑘−1
)𝑥𝑖𝑘

, 𝑖𝑗 ∈ 𝕀. (2.1)

Example 2.1. Given 𝔮 = (𝑞𝑖𝑗)𝑖,𝑗∈𝕀 amatrix of elements of 𝕜×, there is a braided vector space (𝑉, 𝑐𝔮)

where 𝑉 has basis (𝚡𝑖)𝑖∈𝕀 and 𝑐𝔮 is given by

𝑐𝔮(𝚡𝑖 ⊗ 𝚡𝑗) = 𝑞𝑖𝑗 𝚡𝑗 ⊗ 𝚡𝑖, 𝑖, 𝑗 ∈ 𝕀. (2.2)

A braided vector space is called of diagonal type [9] if (2.2) holds in some basis of 𝑉 for some
𝔮 = (𝑞𝑖𝑗)𝑖,𝑗∈𝕀. In this case, we denote the Nichols algebra of (𝑉, 𝑐) byB𝔮, which is now ℤ𝕀-graded;
we refer to 𝔮 as the braidingmatrix. The Dynkin diagram of 𝔮 is a graphwith 𝕀 as the set of vertices,
each vertex 𝑖 labeled with 𝑞𝑖𝑖 . There is an edge between 𝑖 ≠ 𝑗 if and only if 𝑞𝑖𝑗 ∶= 𝑞𝑖𝑗𝑞𝑗𝑖 ≠ 1; such
an edge is labeled with this scalar.
We say that 𝔮 is of Cartan type [8] if there is a Cartan matrix 𝐚 = (𝑎𝑖𝑗) such that

𝑞𝑖𝑗𝑞𝑗𝑖 = 𝑞
𝑎𝑖𝑗

𝑖𝑖
, for all 𝑖, 𝑗 ∈ 𝕀.

If some 𝑞𝑖𝑖 is not a root of unity, then the integers 𝑎𝑖𝑗 are uniquely determined. Otherwise we
impose −ord 𝑞𝑖𝑖 < 𝑎𝑖𝑗 ⩽ 0 for all 𝑗 ≠ 𝑖. In this case, we say that 𝔮 is of Cartan type 𝐚.
Although braided vector spaces of Cartan type seem quite simple, the structure of the corre-

sponding Nichols algebra is related either with quantized enveloping algebras (when the entries
of 𝔮 are not roots of unity), or with Frobenius–Lusztig kernels.
The following example of Cartan type will be particularly relevant in later sections.

Example 2.2. Fix a finite Cartan matrix 𝐚 with simply laced Dynkin diagram. Assume that 𝔮 =

(𝑞𝑖𝑗) satisfies the following conditions:
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POINTED HOPF ALGEBRAS OVER NONABELIAN GROUPS 9

𝑞𝑖𝑖 = −1; 𝑞𝑖𝑗𝑞𝑗𝑖 =

{
−1, 𝑎𝑖𝑗 = −1,

1, 𝑎𝑖𝑗 = 0;
𝑖 ≠ 𝑗 ∈ 𝕀. (2.3)

Then 𝔮 is of Cartan type 𝐚.
Let 𝛽1 < 𝛽2 < ⋯ < 𝛽𝑀 be a convex order on the set of positive rootsΔ+ of 𝐚. In [12], we can find

a root vector 𝚡𝛽 ∈ B𝔮 for each 𝛽 ∈ Δ+, ofℤ𝕀-degree 𝛽, obtained recursively as braided commutator
of root vectors with smaller degree.
In this case, the Nichols algebraB𝔮 is presented by generators (𝚡𝑖)𝑖∈𝕀 and relations

𝚡2
𝛼 = 0, 𝛼 ∈ Δ+; (2.4)

[𝚡𝑖𝑗𝑘, 𝚡𝑗]𝑐 = 0, 𝑎𝑖𝑗 = 𝑎𝑗𝑘 = −1; (2.5)

𝚡𝑖𝑗 = 0, 𝑎𝑖𝑗 = 0. (2.6)

Moreover, by [3, 12], a basis for B𝔮 is given by the set

{𝚡
𝑛1

𝛽1
𝚡
𝑛2

𝛽2
… 𝚡

𝑛𝑀

𝛽𝑀
|𝑛𝑖 ∈ {0, 1}}. (2.7)

Remark 2.3. Let 𝔮 as above. In §5, we will need the following constructions, due to [14].

(I) The distinguished pre-Nichols algebra B̃𝔮 is the quotient of 𝑇(𝑉) by (2.5), (2.6), and

𝚡𝑖𝑖𝑗 = 0, 𝑎𝑖𝑗 = −1. (2.8)

The set {𝚡𝑛1

𝛽1
𝚡
𝑛2

𝛽2
… 𝚡

𝑛𝑀

𝛽𝑀
|𝑛𝑖 ∈ ℕ0} is a basis of B̃𝔮.

(II) Let 𝜋 ∶ B̃𝔮 ↠ B𝔮 be the canonical projection. By [14], the subalgebra of coinvariants𝔮 ∶=

B̃co𝜋
𝔮 is a 𝑞-polynomial algebra with generators 𝚡2

𝛽
, 𝛽 ∈ Δ+.

(III) Let B̂𝔮 be the quotient of 𝑇(𝑉) by (2.5), (2.6), and 𝚡2
𝑖
, 𝑖 ∈ 𝕀. Then B̂𝔮 is a pre-Nichols algebra,

which coincides with the quotient of B̃𝔮 by 𝚡2
𝑖
, 𝑖 ∈ 𝕀. The set

{𝚡
𝑛1

𝛽1
𝚡
𝑛2

𝛽2
… 𝚡

𝑛𝑀

𝛽𝑀
|𝑛𝑖 ∈ {0, 1} if 𝛽𝑖 is simple, 𝑛𝑖 ∈ ℕ0 otherwise}

is a basis of B̂𝔮, so its Hilbert series is

B̂𝔮
=
⎛⎜⎜⎝

∏
𝛽∈Δ

𝔮
+−{𝛼𝑖}

1

1 − 𝑡𝛽

⎞⎟⎟⎠
(∏

𝑖∈𝕀

1 + 𝑡𝑖

)
.

2.2 Nichols algebras over nonabelian groups

The goal of this subsection is to introduce the notion of Weyl grupoids. These play a funda-
mental role in the classification achieved in [37]. We refer to the book [36] for details and
unexplained terminology.
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10 ANGIONO et al.

2.2.1 Yetter–Drinfeld modules over groups

For a group 𝐺, the category of Yetter–Drinfeld modules 𝕜𝐺
𝕜𝐺
 consists of 𝐺-graded vector spaces

𝑉 =
⨁

g∈𝐺 𝑉g endowed with a 𝐺-action such that ℎ ⋅ 𝑉g ⊂ 𝑉ℎgℎ−1 for all ℎ, g ∈ 𝐺. This is a
braided tensor category where the braiding 𝑐𝑉,𝑊 ∶ 𝑉 ⊗ 𝑊 → 𝑊 ⊗ 𝑉 is given by 𝑐(𝑣 ⊗ 𝑤) =

g ⋅ 𝑤 ⊗ 𝑣 for 𝑣 ∈ 𝑉g and 𝑤 ∈ 𝑊. We recall that a 𝐺-grading on a vector space 𝑉 =
⨁

g∈𝐺 𝑉g

is equivalent to a 𝕜𝐺-comodule structure 𝛿∶ 𝑉 → 𝕜𝐺 ⊗ 𝑉, declaring 𝛿(𝑣) = g ⊗ 𝑣 if and only
if 𝑣 ∈ 𝑉g . The support of 𝑉 is

supp𝑉 = {g ∈ 𝐺| 𝑉g ≠ 0}.

Let (𝑅, 𝜇, Δ,) be a Hopf algebra in 𝕜𝐺
𝕜𝐺
. The braided commutator defined above satisfies the

following identity: If 𝑢 ∈ 𝑅g and 𝑣 ∈ 𝑅ℎ for some g , ℎ ∈ 𝐺, then for any 𝑤 ∈ 𝑅,

[[𝑢, 𝑣]𝑐, 𝑤] = [𝑢, [𝑣, 𝑤]𝑐] − (g ⋅ 𝑣)[𝑢, 𝑤]𝑐 + [𝑢, ℎ ⋅ 𝑤]𝑐𝑣. (2.9)

𝑅 admits a braided adjoint representation ad𝑐 ∶ 𝑅 → End(𝑅) given by

(ad𝑐 𝑢)𝑣 = 𝜇(𝜇 ⊗ )(id⊗𝑐)(Δ ⊗ id)(𝑢 ⊗ 𝑣), 𝑢,𝑣 ∈ 𝑅.

When 𝑢 is primitive, ad𝑐 𝑢 and [𝑢, −]𝑐 coincide. Notice also that

g ⋅ ((ad𝑐 𝑢)𝑣) = (ad𝑐 g ⋅ 𝑢)(g ⋅ 𝑣), g ∈ 𝐺, 𝑢 ∈ (𝑅), 𝑣 ∈ 𝑅. (2.10)

2.2.2 The Nichols algebra of a Yetter–Drinfeld module

Each 𝑉 ∈ 𝕜𝐺
𝕜𝐺
 is a braided vector space, so it has a Nichols algebra B(𝑉) as discussed in

§2.1. In this setting, 𝑇(𝑉) and B(𝑉) = 𝑇(𝑉)∕ (𝑉) turn out to be ℕ0-graded Hopf algebras
in 𝕜𝐺

𝕜𝐺
.

2.2.3 Skew derivations

There is a criterion, proven, for example, in [49, Proposition 2.4], to decide if any given element
of 𝑇(𝑉) belongs to  (𝑉). Fix a basis 𝑥1, … , 𝑥𝑟 of 𝑉 with 𝑥𝑖 of degree ℎ𝑖 . For each 𝑖, we define a
skew derivation 𝜕𝑥𝑖

∈ End(𝑇(𝑉)) recursively in𝑉⊗𝑛, 𝑛 ⩾ 0. For 𝑛 = 0, put 𝜕𝑥𝑖
(1) = 0; in𝑉⊗1, put

𝜕𝑥𝑖
(𝑥𝑗) = 𝛿𝑖,𝑗 and in general define

𝜕𝑥𝑖
(𝑥𝑦) = 𝑥𝜕𝑥𝑖

(𝑦) + 𝜕𝑥𝑖
(𝑥)ℎ𝑖 ⋅ 𝑦, 𝑥,𝑦 ∈ 𝑇(𝑉).

Then, for any 𝑛 ⩾ 2, we have 𝑥 ∈  𝑛(𝑉) if and only if 𝜕𝑥𝑖
(𝑥) ∈  𝑛−1(𝑉) for all 𝑖. The compositions

of these derivations with the braided adjoint action satisfy

𝜕𝑥𝑖
((ad𝑐 𝑢)𝑣) = 𝑢𝜕𝑥𝑖

(𝑣) − 𝜕𝑥𝑖
(g ⋅ 𝑣)ℎ𝑖 ⋅ 𝑢, 𝑢 ∈ 𝑉g , 𝑣 ∈ 𝑇(𝑉), 𝑖 ∈ 𝕀𝑟. (2.11)
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POINTED HOPF ALGEBRAS OVER NONABELIAN GROUPS 11

2.2.4 Simple Yetter–Drinfeld modules

Fix g ∈ 𝐺 and (𝑉, 𝜒) an irreducible representation of the centralizer𝐺g . We consider the induced
𝐺-module 𝕜𝐺 ⊗𝐺g 𝑉 endowed with the 𝐺-grading determined by declaring the degree of 𝑥 ⊗ 𝑣

to be g𝑥g−1 for all 𝑥 ∈ 𝐺 and 𝑣 ∈ 𝑉. This is a simple Yetter–Drinfeld module over 𝐺, which is
denoted by 𝑀(g𝐺, 𝜒) because it depends on the conjugacy class g𝐺 rather than the element g
itself. Moreover, all the simple objects of 𝕜𝐺

𝕜𝐺
 arise in this way, and if 𝐺 is finite, the category

𝕜𝐺
𝕜𝐺
 is semisimple. There is a concrete description of 𝑀(g𝐺, 𝜒) in [2, Example 24], which we

will use several times to perform computations in 𝕜𝐺
𝕜𝐺
.

Example 2.4. Let 𝐺 be a finite group. Assume that g ∈ 𝐺 is such that g𝐺 = {g , g𝜅} for some
𝜅 ≠ 𝑒 ∈ 𝐺. Then there exists g0 ∈ 𝐺 such that g0g = 𝜅gg0,𝐺g = 𝐺g𝜅 = 𝐺g−1 is a subgroup of index
two since 𝐺 = 𝐺g ∪ g0𝐺g , and 𝜅 ∈ 𝑍(𝐺), 𝜅2 = 𝑒.
Let𝜒 be a one-dimensional representation of𝐺g , that is,𝑉 = 𝕜 and𝜒 ∈ 𝐺g , and𝑀 = 𝑀(g𝐺, 𝜒).

Then dim𝑀 = 2: we may fix a basis {𝑥, 𝑦} such that 𝑦 = g0 ⋅ 𝑥 and the coaction is given by 𝛿(𝑥) =

g ⊗ 𝑥, 𝛿(𝑦) = g𝜅 ⊗ 𝑦. As ℎg0, g
−1
0

ℎ ∈ 𝐺g for all ℎ ∉ 𝐺g , the action satisfies

ℎ ⋅ 𝑥 =

{
𝜒(ℎ)𝑥, ℎ ∈ 𝐺g ,

𝜒(g−1
0

ℎ)𝑦, g ∉ 𝐺g ;
ℎ ⋅ 𝑦 =

{
𝜒(g−1

0
ℎg0)𝑦, ℎ ∈ 𝐺g ,

𝜒(ℎg0)𝑥, ℎ ∉ 𝐺g ;
𝑘 ∈ 𝐺.

Thus, 𝑀 is of diagonal type with braiding matrix [ 𝜒(g) 𝜒(g𝜅)
𝜒(g𝜅) 𝜒(g)

]; from this, we deduce that
dimB(𝑀) < ∞ if and only if 𝜒(g) ∈ {−1} ∪ 𝔾′

3
.

2.2.5 Weyl groupoid

Next, we recall the definition of the Weyl groupoid of a nonsimple element𝑀 ∈ 𝕜𝐺
𝕜𝐺
 such that

dimB(𝑀) < ∞. Let 𝑀 = ⊕𝑖∈𝕀𝑀𝑖 , where each summand 𝑀𝑖 is simple: 𝑀𝑖 = 𝑀(g𝐺
𝑖
, 𝜒𝑖) ∈ 𝕜𝐺

𝕜𝐺


for some g𝑖 ∈ 𝐺, 𝜒𝑖 an irreducible representation of 𝐺g𝑖 .
For each 𝑖 ≠ 𝑗 ∈ 𝕀, set (ad𝑀𝑖)

0𝑀𝑗 ∶= 𝑀𝑗 , and for 𝑛 ∈ ℕ,

(ad𝑀𝑖)
𝑛𝑀𝑗 ∶= {(ad𝑐 𝑚1)⋯ (ad𝑐 𝑚𝑛)𝑚|𝑚𝓁 ∈ 𝑀𝑖,𝑚 ∈ 𝑀𝑗} ⊂ B(𝑀).

The generalized Cartan matrix of𝑀 is 𝐶𝑀 = (𝑐𝑀
𝑖𝑗
) ∈ ℤ𝕀×𝕀, where

𝑐𝑀𝑖𝑖 = 2, 𝑐𝑀𝑖𝑗 = −min{𝑛 ∈ ℕ0|(ad𝑀𝑖)
𝑛+1𝑀𝑗 = 0}, 𝑗 ≠ 𝑖. (2.12)

The 𝑖-reflection of𝑀 is 𝜌𝑖𝑀 =
∑

𝑗∈𝕀 𝑀𝑗 , where

𝑀𝑗 =

{
(ad𝑀𝑖)

−𝑐𝑀
𝑖𝑗 𝑀𝑗, 𝑗 ≠ 𝑖;

𝑀∗
𝑖
, 𝑗 = 𝑖.

Each𝑀𝑗 ∈ 𝕜𝐺
𝕜𝐺
 is simple and dimB(𝑀) = dimB(𝜌𝑖𝑀).

These reflections generate theWeyl groupoid of𝑀, see [36].
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12 ANGIONO et al.

2.3 Heckenberger–Vendramin classification

Let 𝑀 = ⊕𝑖∈𝕀𝜃
𝑀𝑖 be a finite-dimensional Yetter–Drinfeld module over a nonabelian group 𝐺,

where each𝑀𝑖 is simple. Here 𝜃 is called the rank of𝑀.
In [37, Theorem 2.5], the authors classify Yetter–Drinfeld modules as above of rank at least 2,

such that the associated Nichols algebra is finite-dimensional. To be precise, one needs to assume
that the support of 𝑀 generates 𝐺, and impose a mild nondegeneracy condition on the braiding
between different summands of 𝑀. Up to a few exceptions in ranks 2 and 3, the classification
consists on families 𝛼𝜃, 𝛾𝜃, and 𝛿𝜃 of arbitrary rank, and types 𝜖𝜃, 𝜃 = 6, 7, 8, 𝜙4, which resemble
the classification of finite-dimensional Lie algebras. These Yetter–Drinfeld modules are invariant
under theWeyl groupoid action; we say that they are standard, adopting the terminology used for
diagonal type, see [3]. In this paper, we study this class; next, we give an explicit description of
each module.

2.3.1 Types 𝛼𝜃, 𝛿𝜃, and 𝜖𝜃

Fix a simply laced indecomposable Cartan matrix 𝐚 = (𝑎𝑖𝑗) ∈ ℤ𝜃×𝜃 of finite type; that is, of type
𝐴𝜃, 𝜃 ⩾ 2, 𝐷𝜃, 𝜃 ⩾ 4, or 𝐸𝜃 for 𝜃 ∈ 𝕀6,8. Let Δ+ be the set of positive roots. Following [37, Lemma
6.2], we describe a Yetter–Drinfeld module 𝑀 = ⊕𝑖∈𝕀𝑀𝑖 over a nonabelian group 𝐺 with simply
laced skeleton and Cartan graph of standard type 𝐚. Assume that there exist

∙ 𝜅 ∈ 𝑍(𝐺) such that 𝜅 ≠ 1, 𝜅2 = 1,
∙ g𝑖 ∈ 𝐺 with g𝐺

𝑖
= {g𝑖 , 𝜅g𝑖} for all 𝑖 ∈ 𝕀𝜃,

∙ 𝜒𝑖 ∈ 𝐺g𝑖 such that 𝜒𝑖(g𝑖) = −1 for all 𝑖 ∈ 𝕀𝜃,

satisfying the following:

g𝑖g𝑗 = 𝜅g𝑗g𝑖 , 𝜒𝑖(𝜅g
2
𝑗 )𝜒𝑗(𝜅g

2
𝑖 ) = 1, 𝑎𝑖𝑗 = −1; (2.13)

g𝑖g𝑗 = g𝑗g𝑖 , 𝜒𝑖(g𝑗)𝜒𝑗(g𝑖) = 1, 𝑎𝑖𝑗 = 0; (2.14)

𝜒𝑖(𝜅)𝜒𝑗(𝜅) = 1, 𝑎𝑖𝑗 = 0. (2.15)

For 𝑖 ∈ 𝕀𝜃, let𝑀𝑖 = 𝑀(g𝐺
𝑖
, 𝜒𝑖) ∈ 𝕜𝐺

𝕜𝐺
, which has a basis {𝑥𝑖, 𝑥𝑖

}with coaction 𝑥𝑖 ↦ g𝑖 ⊗ 𝑥𝑖 , 𝑥𝑖
↦

𝜅g𝑖 ⊗ 𝑥
𝑖
. As in [2, Example 37], the braidings 𝑐𝑀𝑖,𝑀𝑗

for 𝑖, 𝑗 ∈ 𝕀𝜃 are determined by[
𝑐(𝑥𝑖 ⊗ 𝑥𝑖) 𝑐(𝑥𝑖 ⊗ 𝑥

𝑖
)

𝑐(𝑥
𝑖
⊗ 𝑥𝑖) 𝑐(𝑥

𝑖
⊗ 𝑥

𝑖
)

]
=

[
−𝑥𝑖 ⊗ 𝑥𝑖 −𝜒𝑖(𝜅)𝑥𝑖

⊗ 𝑥𝑖

−𝜒𝑖(𝜅)𝑥𝑖 ⊗ 𝑥
𝑖

−𝑥
𝑖
⊗ 𝑥

𝑖

]
; (2.16)

[
𝑐(𝑥𝑖 ⊗ 𝑥𝑗) 𝑐(𝑥𝑖 ⊗ 𝑥

𝑗
)

𝑐(𝑥
𝑖
⊗ 𝑥𝑗) 𝑐(𝑥

𝑖
⊗ 𝑥

𝑗
)

]
=

[
𝑥
𝑗
⊗ 𝑥𝑖 𝜒𝑗(g

2
𝑖
)𝑥𝑗 ⊗ 𝑥𝑖

𝜒𝑗(𝜅)𝑥𝑗
⊗ 𝑥

𝑖
𝜒𝑗(𝜅g

2
𝑖
)𝑥𝑗 ⊗ 𝑥

𝑖

]
, 𝑎𝑖𝑗 = −1; (2.17)

[
𝑐(𝑥𝑖 ⊗ 𝑥𝑗) 𝑐(𝑥𝑖 ⊗ 𝑥

𝑗
)

𝑐(𝑥
𝑖
⊗ 𝑥𝑗) 𝑐(𝑥

𝑖
⊗ 𝑥

𝑗
)

]
=

[
𝜒𝑗(g𝑖)𝑥𝑗 ⊗ 𝑥𝑖 𝜒𝑗(𝜅g𝑖)𝑥𝑗

⊗ 𝑥𝑖

𝜒𝑗(𝜅g𝑖)𝑥𝑗 ⊗ 𝑥
𝑖

𝜒𝑗(g𝑖)𝑥𝑗
⊗ 𝑥

𝑖

]
, 𝑎𝑖𝑗 = 0. (2.18)

The generalized Cartan matrix of𝑀 = ⊕𝑖∈𝕀𝑀𝑖 is 𝐚, and we have dimB(𝑀) = 22|Δ+|.
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POINTED HOPF ALGEBRAS OVER NONABELIAN GROUPS 13

Remark 2.5.

∙ The braiding on𝑀𝑖 is of diagonal type and 𝑐2
𝑀𝑖,𝑀𝑖

= id.
∙ If 𝑎𝑖𝑗 = 0, then𝑀𝑖 ⊕ 𝑀𝑗 is of diagonal type and 𝑐𝑀𝑖,𝑀𝑗

𝑐𝑀𝑗,𝑀𝑖
= id𝑀𝑗⊗𝑀𝑖

.
∙ If 𝑎𝑖𝑗 = −1, then 𝑀𝑖 ⊕ 𝑀𝑗 is of diagonal type if and only if 𝜒𝑖(𝜅) = 𝜒𝑗(𝜅) = 1, but here

𝑐𝑀𝑖,𝑀𝑗
𝑐𝑀𝑗,𝑀𝑖

≠ id𝑀𝑗⊗𝑀𝑖
.

2.3.2 Type 𝛾𝜃, 𝜃 ⩾ 3

Following [37, Lemma 7.6], we describe, for each rank 𝜃 ⩾ 3, a Yetter–Drinfeld module𝑀 of type
𝛾𝜃 over a nonabelian group 𝐺. Assume that there exist

∙ 𝜅 ∈ 𝑍(𝐺) such that 𝜅 ≠ 1, 𝜅2 = 1,
∙ g1, … , g𝜃 ∈ 𝐺 with g𝐺

𝑖
= {g𝑖 , 𝜅g𝑖} for 𝑖 ∈ 𝕀𝜃−1 and g𝐺

𝜃
= {g𝜃},

∙ 𝜒𝑖 ∈ 𝐺g𝑖 such that 𝜒𝑖(g𝑖) = −1,

satisfying (2.13), (2.14), and (2.15) for 𝑖, 𝑗 ∈ 𝕀𝜃−1, and

g𝑖g𝜃 = g𝜃g𝑖 , 𝜒𝑖(g𝜃)𝜒𝜃(g𝑖) = 1, 𝑖 < 𝜃 − 1; (2.19)

𝜒𝜃−1(g𝜃)𝜒𝜃(g𝜃−1) = −1. (2.20)

Let𝑀𝑖 = 𝑀(g𝐺
𝑖
, 𝜒𝑖) ∈ 𝕜𝐺

𝕜𝐺
. Then𝑀 = ⊕𝑖∈𝕀𝑀𝑖 is of type 𝛾𝜃 and dimB(𝑀) = 22𝜃2−𝜃. Notice that

𝑀1 ⊕⋯⊕ 𝑀𝜃−1 is of type 𝛼𝜃−1, so, by §2.3.1, we have a basis {𝑥𝑖, 𝑥𝑖
} of𝑀𝑖 such that for 𝑖, 𝑗 ∈ 𝕀𝜃−1,

the braiding 𝑐𝑀𝑖,𝑀𝑗
is determined by (2.16), (2.17), and (2.18). On the other hand,𝑀𝜃 = 𝕜{𝑥𝜃} is one-

dimensional concentrated in degree g𝜃 ∈ 𝑍(𝐺). The braidings 𝑐𝑀𝜃,𝑀𝜃
, 𝑐𝑀𝑖,𝑀𝜃

, 𝑐𝑀𝜃,𝑀𝑖
, 𝑖 ∈ 𝕀𝜃−1, are

determined by

𝑐(𝑥𝜃 ⊗ 𝑥𝜃) = −𝑥𝜃 ⊗ 𝑥𝜃; (2.21)

𝑐(𝑥𝑖 ⊗ 𝑥𝜃) = 𝜒𝜃(g𝑖)𝑥𝜃 ⊗ 𝑥𝑖, 𝑐(𝑥
𝑖
⊗ 𝑥𝜃) = 𝜒𝜃(𝜅g𝑖)𝑥𝜃 ⊗ 𝑥

𝑖
; (2.22)

𝑐(𝑥𝜃 ⊗ 𝑥𝑖) = 𝜒𝑖(g𝜃)𝑥𝑖 ⊗ 𝑥𝜃, 𝑐(𝑥𝜃 ⊗ 𝑥
𝑖
) = 𝜒𝑖(g𝜃)𝑥𝑖

⊗ 𝑥𝜃. (2.23)

2.3.3 Type 𝜙4

Following [37, Lemma 9.2], we describe a Yetter–Drinfeld module 𝑀 over a nonabelian group 𝐺

with Cartan matrix of type 𝐹4. Assume that there exist

∙ 𝜅 ∈ 𝑍(𝐺) such that 𝜅 ≠ 1, 𝜅2 = 1,
∙ g1, … , g4 ∈ 𝐺 with g𝐺

𝑖
= {g𝑖 , 𝜅g𝑖} for 𝑖 = 1, 2 and g𝐺

𝑖
= {g𝑖} for 𝑖 = 3, 4,

∙ 𝜒𝑖 ∈ 𝐺g𝑖 such that 𝜒𝑖(g𝑖) = −1

satisfying the following:

𝜒1(g3)𝜒3(g1) = 𝜒1(g4)𝜒4(g1) = 𝜒2(g4)𝜒4(g2) = 1; (2.24)

𝜒3(g4)𝜒4(g3) = 𝜒2(g3)𝜒3(g2) = −1; (2.25)

g1g2 = 𝜅g2g1, 𝜒1(𝜅g
2
2 )𝜒2(𝜅g

2
1 ) = 1. (2.26)
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14 ANGIONO et al.

Let 𝑀𝑖 = 𝑀(g𝐺
𝑖
, 𝜒𝑖). The Cartan matrix of 𝑀 = ⊕𝑖∈𝕀𝑀𝑖 is of type 𝐹4 and dimB(𝑀) = 236. The

braidings 𝑐𝑀𝑖,𝑀𝑗
are given as in types 𝛼𝜃, 𝛾𝜃, depending on 𝑖, 𝑗.

2.4 On the structure of the group 𝑮

Fix an abelian group 𝚉 and 𝑥, 𝑦 ∈ ℤ2 × ℤ2 such thatℤ2 × ℤ2 = ⟨𝑥, 𝑦⟩. For every 𝑢, 𝑣 ∈ 𝚉 and every
𝜅 ∈ 𝚉 such that 𝜅2 = 𝑒, there exists a 2-cocycle 𝛽 ∈ 𝑍2(ℤ2 × ℤ2, 𝚉) such that

𝛽(𝑥, 𝑥) = 𝑢, 𝛽(𝑥, 𝑦) = 𝜅, 𝛽(𝑦, 𝑥) = 𝑒, 𝛽(𝑦, 𝑦) = 𝑣.

We denote by 𝚉𝑢,𝑣,𝜅 the associated central extension of 𝚉 by ℤ2 × ℤ2:

𝚉 ↪𝚉𝑢,𝑣,𝜅 ↠ ℤ2 × ℤ2 = ⟨𝑥, 𝑦⟩, (2.27)

where [𝑥, 𝑦] = 𝜅, 𝑥2 = 𝑢, 𝑦2 = 𝑣.
Next, we describe some general features of a group𝐺 realizing the braidings described in §2.3.1,

§2.3.2, and §2.3.3. Let𝑀 = ⊕𝑖∈𝕀𝑀𝑖 be of type 𝛼𝜃, 𝛾𝜃, 𝛿𝜃, 𝜖𝜃, or 𝜙4. Here𝑀𝑖 = 𝑀(g𝐺
𝑖
, 𝜒𝑖) ∈ 𝕜𝐺

𝕜𝐺
,

hence supp𝑀 =
⋃

𝑖∈𝕀 g
𝐺
𝑖
. Note that

∙ there exists 𝜅 ∈ 𝑍(𝐺) such that 𝜅2 = 𝑒 and g𝐺
𝑖

= {g𝑖 , 𝜅g𝑖} for all 𝑖 such that g𝑖 ∉ 𝑍(𝐺),
∙ for 𝑖 with g𝐺

𝑖
= {g𝑖 , 𝜅g𝑖}, there exists 𝑗 ≠ 𝑖 such that g𝑖g𝑗 = 𝜅g𝑗g𝑖; hence g𝐺

𝑗
= {g𝑗, 𝜅g𝑗}.

The relevance of the central extensions constructed above is explained next.

Lemma 2.6. Let 𝑖 ≠ 𝑗 ∈ 𝕀 be such that g𝑖g𝑗 = 𝜅g𝑗g𝑖 , and let𝑁 = 𝐺g𝑖 ∩ 𝐺g𝑗 . Then

(a) The subgroup𝑁 is normal, and 𝐺∕𝑁 ≃ ℤ2 × ℤ2.
(b) If 𝐺 = ⟨supp𝑀⟩, then𝑁 is an abelian subgroup, generated by the elements

g𝑘, for all 𝑘 ∈ 𝕀 such that g𝑘g𝑖 = g𝑖g𝑘, g𝑘g𝑗 = g𝑗g𝑘,

g𝑘g𝑖 , for all 𝑘 ∈ 𝕀 such that g𝑘g𝑖 = g𝑖g𝑘, g𝑘g𝑗 = 𝜅g𝑗g𝑘, and

g𝑘g𝑗, for all 𝑘 ∈ 𝕀 such that g𝑘g𝑗 = g𝑗g𝑘, g𝑘g𝑖 = 𝜅g𝑖g𝑘.

(c) If𝑁 is abelian, then 𝐺 ≃ 𝑁g2
𝑖
,g2

𝑗
,𝜅 .

Proof. For (a), we note first that [𝐺 ∶ 𝐺g𝑖 ] = [𝐺 ∶ 𝐺g𝑗 ] = 2, so both 𝐺g𝑖 and 𝐺g𝑗 are normal
subgroups, and [𝐺 ∶ 𝑁] = 4 since 𝐺 = 𝐺𝑖𝐺𝑗 . Let g ∈ 𝐺:

∙ If gg𝑖g−1 = g𝑖 , gg𝑗g−1 = g𝑗 , then g𝑁 = 𝑁.
∙ If gg𝑖g−1 = g𝑖 , gg𝑗g−1 = 𝜅g𝑗, then g𝑁 = g𝑖𝑁.
∙ If gg𝑖g−1 = 𝜅g𝑖 , gg𝑗g−1 = g𝑗 , then g𝑁 = g𝑗𝑁.
∙ If gg𝑖g−1 = 𝜅g𝑖 , gg𝑗g−1 = 𝜅g𝑗 , then g𝑁 = g𝑖g𝑗𝑁.

Hence, 𝐺∕𝑁 = {𝑁, g𝑖𝑁, g𝑗𝑁, g𝑖g𝑗𝑁}. Since g2
𝑖
, g2

𝑗
∈ 𝑁, we get 𝐺∕𝑁 ≃ ℤ2 × ℤ2.

(b) and (c) are straightforward. □
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POINTED HOPF ALGEBRAS OVER NONABELIAN GROUPS 15

Amore detailed description of these groups is postponed to the Appendix.

2.4.1 The parity vector

An important invariant of𝑀 = ⊕𝑖∈𝕀𝑀𝑖 ∈
𝕜𝐺
𝕜𝐺
 is

𝙿 ∶= (𝜒𝑖(𝜅))1⩽𝑖⩽𝜃 ∈ {±1}𝜃. (2.28)

If 𝙿 = (1, … , 1), then the 𝐺-action on𝑀 factors to one of 𝐺∕⟨𝜅⟩. We show next that this happens
in most of the cases, in which case𝑀 is a braided vector space of diagonal type.

Lemma 2.7. Let 𝑀 be either of type 𝛼𝜃 , 𝜃 ⩾ 4, 𝛾𝜃 , 𝜃 ⩾ 5, 𝛿𝜃 , 𝜃 ⩾ 5, or 𝜖𝜃 , 𝜃 = 6, 7, 8. Then 𝙿 =

(1, … , 1). In other words, 𝜅 acts trivially on𝑀.

Proof. We consider first the case 𝛼4. By (2.14), g1, g2 ∈ 𝐺g4 , and by (2.13), 𝜅 = g1g2g
−1
1

g−1
2
; hence,

𝜒4(𝜅) = 1. By (2.15), 𝜒𝑖(𝜅) = 1 for all 𝑖 ∈ 𝕀4.
Now the proof for 𝛼𝜃, 𝜃 ⩾ 5, 𝛿𝜃, 𝜃 ⩾ 5, or 𝜖𝜃, 𝜃 = 6, 7, 8 follows because each 𝑀𝑖 is contained

in a submodule of type 𝛼4; thus, 𝜅 acts trivially on 𝑀𝑖 by the paragraph above. The same fact
says that, for type 𝛾𝜃, 𝜒𝑖(𝜅) = 1 for all 𝑖 ∈ 𝕀𝜃−1. Finally, we use that g𝜃−2, g𝜃−1 ∈ 𝐺g𝜃 and 𝜅 =

g𝜃−1g𝜃−2g
−1
𝜃−1

g−1
𝜃−2

to deduce that 𝜒𝜃(𝜅) = 1. □

3 FOLDINGS OF NICHOLS ALGEBRAS AND TRIVIALIZING THE
ACTION OF THE CENTER

Motivated by Lemma 2.7, we pay special attention to Yetter–Drinfeld modules where 𝜅 acts triv-
ially. We will show that these examples are related to diagonal braidings (of Cartan type) via the
folding construction for Nichols algebras, developed by the second author in [42, 43]. Then we
show that for the other cases, the action of the central element can be trivialized via a twist. First,
we introduce basic notions needed for the folding construction.

3.1 Categorical action on Yetter–Drinfeld modules

Given a group Γ and a 2-cocycle 𝜎 ∈ 𝑍2(Γ, 𝕜×), we get a pairing 𝑏𝜎 ∶ Γ × Γ → 𝕜× given by
𝑏𝜎(g , ℎ) = 𝜎(ℎgℎ−1, ℎ)𝜎−1(ℎ, g). Each 2-cocycle 𝜎 yields a tensor functor 𝐹𝜎 ∶ 𝕜Γ

𝕜Γ
 → 𝕜Γ

𝕜Γ
 as

follows:

∙ for an object𝑀, let 𝐹𝜎(𝑀) denote the same 𝕜Γ-comodule;
∙ the 𝕜Γ-module structure on 𝐹𝜎(𝑀) is given by

g ⋅𝜎 𝑚 = 𝑏𝜎(g , 𝑚−1)g ⋅𝑚0, g ∈ Γ, 𝑚 ∈ 𝑀;

∙ on Hom spaces 𝐹𝜎 is the identity; thus, 𝐹𝜎 is 𝕜-linear, faithful, and exact;
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16 ANGIONO et al.

∙ the monoidal structure 𝐽𝜎 ∶ 𝐹𝜎(𝑀) ⊗ 𝐹𝜎(𝑁) → 𝐹𝜎(𝑀 ⊗ 𝑁) is defined by

𝐽𝜎(𝑚 ⊗ 𝑛) = 𝜎(𝑚−1, 𝑛−1)𝑚0 ⊗ 𝑛0, 𝑚 ∈ 𝑀, 𝑛 ∈ 𝑁.

We note that 𝐽𝜎 satisfy the hexagon axiom thanks to the cocycle condition on 𝜎.
Given 𝑉,𝑊 ∈ 𝕜Γ

𝕜Γ
, one can see that 𝐹𝜎 ⊗ 𝐹𝜎 commutes with 𝑐𝑉,𝑊 if and only if

𝜎(gℎg−1, g)𝜎(ℎgℎ−1, ℎ) = 𝜎(g , ℎ)𝜎(ℎ, g) for all g ∈ supp𝑉, ℎ ∈ supp𝑊. Hence, 𝐹𝜎 is braided if
and only if that equality holds for all g , ℎ ∈ Γ, which certainly happens if Γ is abelian; indeed, we
will only use this construction when Γ is abelian. Anyhow, these functors patch together to an
action by tensor autoequivalences of the group 𝑍2(Γ, 𝕜×) on 𝕜Γ

𝕜Γ
:

∙ the trivial cocycle acts as the identity, and
∙ 𝐹𝜂𝐹𝜎 = 𝐹𝜂𝜎 for all 𝜂, 𝜎 ∈ 𝑍2(Γ, 𝕜×).

Given a Hopf algebraB in 𝕜Γ
𝕜Γ
, we set, by abuse of notation,

𝜎 ∶ B#𝕜Γ ⊗ B#𝕜Γ → 𝕜, 𝜎(𝑥#g ⊗ 𝑦#ℎ) = 𝜖(𝑥)𝜖(𝑦)𝜎(g , ℎ). (3.1)

Lemma 3.1.

(i) The map 𝜎 is a Hopf 2-cocycle forB#𝕜Γ.
(ii) For all𝑀 ∈ 𝕜Γ

𝕜Γ
, we have (B(𝑀)#𝕜Γ)𝜎 ≃ B(𝐹𝜎(𝑀))#𝕜Γ.

Proof. (i) is clear. For (ii), apply [5, 4.14 (a) & (b)]. □

Here is the first notion toward the folding construction.

Definition 3.2. A folding datum is a triple (𝜎,𝑀, 𝐮) where 𝜎 ∈ 𝑍2(Γ, 𝕜×), 𝑀 ∈ 𝕜Γ
𝕜Γ
 and

𝐮∶ 𝐹𝜎(𝑀) → 𝑀 is an isomorphism in 𝕜Γ
𝕜Γ
. †

We will mainly deal with folding data coming from the following source.

Example 3.3. Fix g𝑖 ∈ Γ, 𝜒𝑖 ∈ Γ̂, 𝜎 ∈ 𝑍2(Γ, 𝕜×). Let 𝑓∶ 𝕀 → 𝕀 be a permutation such that

g𝑓(𝑖) = g𝑖 for all 𝑖 ∈ 𝕀.

Consider𝑀 = ⊕𝑖∈𝕀𝑀(g𝑖 , 𝜒𝑖) ∈ 𝕜Γ
𝕜Γ
, and let 0 ≠ 𝑥𝑖 ∈ 𝑀(g𝑖 , 𝜒𝑖). Note that𝑀 is of diagonal type

with braiding matrix 𝔮 = (𝑞𝑖𝑗)𝑖,𝑗∈𝕀, 𝑞𝑖𝑗 = 𝜒𝑗(g𝑖). Then the linear isomorphism 𝐮 ∶ 𝐹𝜎(𝑀) → 𝑀,
𝑥𝑖 ↦ 𝑥𝑓(𝑖) is in 𝕜Γ

𝕜Γ
 if and only if

𝜒𝑓(𝑗) = 𝑏𝜎(−, g𝑗)𝜒𝑗 for all 𝑗 ∈ 𝕀.

In this case, we have that

𝑞𝑖,𝑓(𝑗) = 𝑏𝜎(g𝑖 , g𝑗)𝑞𝑖𝑗 for all 𝑖, 𝑗 ∈ 𝕀,

and 𝑓 induces an automorphism of the Dynkin diagram of 𝔮 because 𝑏𝜎(g𝑖 , g𝑖) = 1 and
𝑏𝜎(g𝑗, g𝑖)𝑏𝜎(g𝑖 , g𝑗) = 1 for all 𝑖 ≠ 𝑗 ∈ 𝕀.

† In other words, the pair (𝑀, 𝐮) is an object in the category (𝕜Γ
𝕜Γ
)𝜎 of 𝜎-equivariant objects.
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POINTED HOPF ALGEBRAS OVER NONABELIAN GROUPS 17

Fixed𝑀, the folding data form a group with unit (1,𝑀, id) and product

(𝜎,𝑀, 𝐮) ∗ (𝜎′,𝑀, 𝐮′) = (𝜎𝜎′,𝑀, 𝐮◦𝐹𝜎(𝐮
′)).

The next results are extracted from [42, Part I].

Remark 3.4.

(a) Let (𝜎,𝑀, 𝐮) be a folding datum, 𝐻 = B(𝑀)#𝕜Γ. By Lemma 3.1, 𝐮 induces a Hopf algebra
isomorphism 𝐮 ∶ 𝐻𝜎 → 𝐻.

(b) The map (1 ⊗ 𝐮)Δ𝐻𝜎
∶ 𝐻𝜎 → 𝐻𝜎 × 𝐻 makes𝐻𝜎 a right𝐻-Galois object. Moreover, 𝜎𝐻 is an

(𝐻,𝐻)-bi-Galois object.
(c) Given two folding data (𝜎,𝑀, 𝐮), (𝜎′,𝑀, 𝐮′), the map

(id⊗𝐮′)Δ𝐻𝜎𝜎′
∶ 𝐻𝜎𝜎′ → 𝐻𝜎 □𝐻𝜎′

is an isomorphism of bi-Galois objects.
(d) The map in (c) determines a group homomorphism from the group of folding data over𝑀 ∈

𝕜Γ
𝕜Γ
 to the group of bi-Galois objects of𝐻 = B(𝑀)#𝕜Γ.

3.2 Folding construction

Let 1 → Σ → 𝐺 → Γ → 1 be a central extension of a finite abelian group Γ by a finite abelian group
Σ. Fix a set-theoretic section 𝑠 ∶ Γ → 𝐺, and let

𝜏 ∈ 𝑍2(Γ, Σ), 𝜏(g , ℎ) = 𝑠(g)𝑠(ℎ)𝑠(gℎ)−1, g , ℎ ∈ Γ.

For each 𝑡 ∈ Σ̂, we denote by 𝜎𝑡 ∈ 𝑍2(Γ, 𝕜×) the 2-cocycle 𝜎𝑡 = 𝑡◦𝜏. The assignment 𝑡 ↦ 𝜎𝑡 is a
group homomorphism Σ̂ → 𝑍2(Γ, 𝕜×). Now we fix

∙ a Yetter–Drinfeld module𝑀 over 𝕜Γ,
∙ isomorphisms 𝐮𝑡 ∶ 𝐹𝜎𝑡

(𝑀) → 𝑀, 𝑡 ∈ Σ̂, in 𝕜Γ
𝕜Γ
 such that the map 𝑡 ↦ (𝜎𝑡,𝑀, 𝐮𝑡) is a group

homomorphism from Σ̂ to the group of folding data for 𝑀. In particular, we have 𝐮0 =

id∶ 𝜎0
𝐻 = 𝐻 → 𝐻.

Note that the above data specify a folding datum in the sense of Definition 3.2.

Remark 3.5. 𝑀 becomes a Σ̂-module, where 𝑡 ∈ Σ̂ acts by the automorphism 𝐮𝑡. As Σ is finite
abelian, the Σ̂-action diagonalizes and𝑀 decomposes as a direct sum of Σ-eigenspaces:

𝑀 =
⨁
𝑝∈Σ

𝑀𝑝, 𝑀𝑝 = {𝑚 ∈ 𝑀∶ 𝐮𝑡(𝑚) = 𝑡(𝑝)𝑚 for all 𝑡 ∈ Σ̂}.

Theorem 3.6 ([43, Theorem 3.6]). Let Γ, 𝐺, and𝑀 as above. The following structure defines a 𝕜𝐺-
Yetter–Drinfeld module 𝑀̃:

∙ as a vector space, 𝑀̃ = 𝑀,
∙ the 𝐺-action is obtained by pulling back the Γ-action (hence Σ acts trivially),
∙ the 𝐺-grading is given by 𝑀̃g = 𝑀g𝑠(g)−1

g
∶= 𝑀g ∩ 𝑀g𝑠(g)−1 , for each g ∈ 𝐺.

Also, as a braided vector space, 𝑀̃ = 𝑀.
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18 ANGIONO et al.

Next, we introduce the folding construction, which produces a Nichols algebra over 𝐺 starting
from folding data on a Nichols algebra over Γ. The procedure gives a central extension of Hopf
algebras and is related with the Fourier transform developed in [7].

Theorem 3.7. Let𝐻 ∶= B(𝑀)#𝕜Γ. There exists a Hopf algebra structure on 𝐻̃ ∶=
⨁

𝑡∈Σ̂ 𝐻𝜎𝑡
given

by

Δ|𝜎𝑡𝐻
=
⨁
𝑡′𝑡′′=𝑡

(id⊗𝐮𝑡′′ )Δ𝐻 ∶ 𝐻𝜎𝑡
→
⨁
𝑡′𝑡′′=𝑡

𝐻𝜎𝑡′
⊗ 𝐻𝜎𝑡′′

; 𝜖|𝐻 = 𝜖𝐻, 𝜖|𝐻𝜎𝑡
= 0, 𝑡 ≠ 0.

Moreover, 𝐻̃ ≅ B(𝑀̃)#𝕜𝐺 as Hopf algebras.

Remark 3.8. By the results above, the group of folding data induces a homomorphism of 2-
groups Σ̂ → 𝐵𝑖𝐺𝑎𝑙(𝐻). This, in turn, defines a homomorphism of 2-groups Σ̂ → 𝐵𝑟𝑃𝑖𝑐(Rep(𝐻))

by [50] and thus defines by [23] a Σ-extension of the tensor category Rep(𝐻). This tensor category
coincides with Rep(𝐻̃).
A way to see this fact comes from the equivariantization process applied to Hopf algebras

because the folding data give a functor from (the category defined from) Σ to the Drinfeld dou-
ble of Rep(𝐻). Reciprocally, Rep(𝐻) is the deequivariantization of Rep(𝐻̃) associated to a central
extension of Hopf algebras [17], see also [42, Theorem 3.6].

3.3 Folding data for trivial action of 𝜿

Next, we realize most of the examples of types 𝛼𝜃, 𝛾𝜃, 𝛿𝜃, 𝜖𝜃, and 𝜙4 as foldings of braided vector
spaces of diagonal type. In all cases, we can proceed as in Example 3.3 with Σ = ℤ2 = {𝑒, 𝜅}.

Example 3.9. Fix a finite Cartanmatrix 𝐚 = (𝑎𝑖𝑗)𝑖,𝑗∈𝕀 with simply lacedDynkin diagram. Assume
that Γ is a finite abelian group generated by g𝑖 , 𝑖 ∈ 𝕀, which admits a 2-cocycle

𝜏 ∈ 𝑍2(Γ, Σ) such that 𝜏(g𝑖 , g𝑗) =

{
𝜅𝑎𝑖𝑗 , 𝑖 < 𝑗 ∈ 𝕀;

𝑒 𝑖 ⩾ 𝑗 ∈ 𝕀.
(3.2)

Let 𝐺 be the extension of Γ by Σ associated to 𝜏. Thus, 𝐺 is generated by g𝑖 and 𝜅; in 𝐺, we have
g𝑖g𝑗 = 𝜅𝑎𝑖𝑗g𝑗g𝑖 for 𝑖 ≠ 𝑗 ∈ 𝕀. Assume further that we have 𝜒𝑖 ∈ Γ̂, 𝑖 ∈ 𝕀, satisfying

𝜒𝑖(g𝑖) = −1, 𝜒𝑖(g𝑗)𝜒𝑗(g𝑖) = (−1)𝑎𝑖𝑗 , 𝑖 ≠ 𝑗 ∈ 𝕀.

Then 𝑉 = ⊕𝑖∈𝐼𝕜
𝜒𝑖
g𝑖
is of Cartan type 𝐚 with 𝑞 = −1, as in Example 2.2.

Here, Σ̂ = {𝑒, 𝚝}, with 𝚝(𝜅) = −1. Set 𝜎 ∶= 𝚝◦𝜏, and

g𝑖+𝜃 = g𝑖 𝜒𝑖+𝜃 ∶= 𝑏𝜎(−, g𝑖)𝜒𝑖 ∈ Γ̂, 𝑖 ∈ 𝕀, 𝑀 ∶= ⊕𝑖∈𝐼2𝜃
𝕜
𝜒𝑖
g𝑖
.

Then𝑀 = 𝑉 ⊕ 𝐹𝜎(𝑉), and is of Cartan type with Cartan matrix 𝑎 ∶= ( 𝐚 0
0 𝐚 ).

Set also 𝑓 ∶ 𝕀2𝜃 → 𝕀2𝜃, 𝑖 ↦ 𝑖 + 𝜃 modulo 2𝜃. Then 𝐮 ∶ 𝐹𝜎(𝑀) → 𝑀 as in Example 3.3 is a fold-
ing datum, and the map from Σ̂ to the group of folding data such that 𝚝 ↦ (𝜎,𝑀, 𝐮) is a group
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POINTED HOPF ALGEBRAS OVER NONABELIAN GROUPS 19

homomorphim. Following [43], if 𝐚 is of type 𝑋𝜃 ∈ {𝐴𝜃|𝜃 ⩾ 2} ∪ {𝐷𝜃|𝜃 ⩾ 4} ∪ {𝐸𝜃|𝜃 = 6, 7, 8}, we
use 2𝑋2

𝜃
to denote the corresponding folding of 𝑋𝜃 × 𝑋𝜃 by 𝑓, 𝐮 as above.

Example 3.10. Fix a finite abelian group Γ generated by g𝑖 , 𝑖 ∈ 𝕀4, which admits

𝜏 ∈ 𝑍2(Γ, Σ) such that 𝜏(g𝑖 , g𝑗) = 𝜅𝛿𝑖3𝛿𝑗4 , 𝑖, 𝑗 ∈ 𝕀4. (3.3)

Let 𝐺 be the extension of Γ by Σ associated to 𝜏. Now 𝐺 is generated by g𝑖 and 𝜅; the relations
g3g4 = 𝜅g4g3 and g𝑖g𝑗 = g𝑗g𝑖 for {𝑖, 𝑗} ≠ {3, 4} hold in 𝐺.
Assume further that 𝜒𝑖 ∈ Γ̂, 𝑖 ∈ 𝕀, satisfy

𝜒𝑖(g𝑖) = −1, 𝑖 ∈ 𝕀4; 𝜒𝑖(g𝑗)𝜒𝑗(g𝑖) = (−1)𝛿𝑖+1,𝑗 , 𝑖 < 𝑗 ∈ 𝕀4.

Again, fix 𝚝 ∈ Σ̂ such that 𝚝(𝜅) = −1. Set 𝜎 ∶= 𝚝◦𝜏, and

g𝑖+2 = g𝑖 𝜒𝑖+2 ∶= 𝑏𝜎(−, g𝑖)𝜒𝑖 ∈ Γ̂, 𝑖 ∈ {3, 4}, 𝑀 ∶= ⊕𝑖∈𝐼6
𝕜
𝜒𝑖
g𝑖
.

Then 𝑀 is of Cartan type 𝐸6. Let 𝑓 ∶ 𝕀6 → 𝕀6 be the bijection that exchanges 3 ↔ 5 and 4 ↔ 6.
Then 𝐮 ∶ 𝐹𝜎(𝑀) → 𝑀 as in Example 3.3 is a folding datum, and the map 𝚝 ↦ (𝜎,𝑀, 𝐮) is a group
homomorphim from Σ̂ to the group of folding data. Following [43], 2𝐸6 denotes a folding as above.

Example 3.11. Fix a finite abelian group Γ generated by g𝑖 , 𝑖 ∈ 𝕀, which admits a 2-cocycle

𝜏 ∈ 𝑍2(Γ, Σ) such that 𝜏(g𝑖 , g𝑗) =

{
𝜅, 𝑗 = 𝑖 + 1 < 𝜃,

𝑒, otherwise.
(3.4)

Let 𝐺 be the extension of Γ by Σ associated to 𝜏. Thus, 𝐺 is generated by g𝑖 and 𝜅; in 𝐺, we have
the relations g𝑖g𝑖+1 = 𝜅g𝑖+1g𝑖 if 𝑖 < 𝜃 − 1, and g𝑖g𝑗 = g𝑗g𝑖 otherwise.
Assume further that 𝜒𝑖 ∈ Γ̂, 𝑖 ∈ 𝕀, satisfy

𝜒𝑖(g𝑖) = −1, 𝑖 ∈ 𝕀; 𝜒𝑖(g𝑗)𝜒𝑗(g𝑖) = (−1)𝛿𝑖+1,𝑗 , 𝑖 < 𝑗 ∈ 𝕀.

Again, fix 𝚝 ∈ Σ̂ such that 𝚝(𝜅) = −1. Set 𝜎 ∶= 𝚝◦𝜏, and

g2𝜃−𝑖 = g𝑖 𝜒2𝜃−𝑖 ∶= 𝑏𝜎(−, g𝑖)𝜒𝑖 ∈ Γ̂, 𝑖 ∈ 𝕀𝜃−1, 𝑀 ∶= ⊕𝑖∈𝐼2𝜃−1
𝕜
𝜒𝑖
g𝑖
.

Then𝑀 is of Cartan type 𝐴2𝜃−1. Let 𝑓 ∶ 𝕀2𝜃−1 → 𝕀2𝜃−1, 𝑓(𝑖) = 2𝜃 − 𝑖. Then 𝐮 ∶ 𝐹𝜎(𝑀) → 𝑀 as in
Example 3.3 is a folding datum, and the map 𝚝 ↦ (𝜎,𝑀, 𝐮) is a group homomorphim from Σ̂ to
the group of folding data. Following [43], 2𝐴2𝑛−1 denotes the folding above.

Remark 3.12. In the three examples above, we can take Γ = ℤ𝕀
2
, see [43, §5].

Theorem 3.13. Let𝑀 as in §2.3.1, §2.3.2, or §2.3.3. Assume that 𝜅 acts trivially on𝑀.

(a) If𝑀 is of type 𝛼𝜃 , 𝛿𝜃 , or 𝜖𝜃 , thenB(𝑀) is a folded Nichols algebra as in Example 3.9.
(b) If𝑀 is of type 𝜙4, thenB(𝑀) is a folded Nichols algebra as in Example 3.10.
(c) If𝑀 is of type 𝛾𝜃 , thenB(𝑀) is a folded Nichols algebra as in Example 3.11.
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20 ANGIONO et al.

Proof. Since 𝜅 acts trivially, this follows by [43, Theorems 5.6, 5.7, 5.8]. □

Remark 3.14. Fix a braided vector space𝑀 of type either 𝛼𝜃, 𝜃 ⩾ 4, 𝛿𝜃, 𝜃 ⩾ 5, or 𝜖𝜃, 𝜃 = 6, 7, 8 (type
𝛾𝜃 was already considered in general), with Cartanmatrix 𝐚 = (𝑎𝑖𝑗)𝑖,𝑗∈𝕀𝜃

. By Lemma 2.7,𝜒𝑖(𝜅) = 1

for all 𝑖 ∈ 𝕀, so𝑀 is of diagonal type. We exhibit a basis in which the braiding is of diagonal type,
and we give the braiding matrix.

(I) Set 𝑞𝑖𝑖 = −1 for all 𝑖 ∈ 𝕀𝜃, and 𝑞𝑖𝑗 = 𝜒𝑗(g𝑖) if 𝑎𝑖𝑗 = 0.
(II) Let 1 ⩽ 𝑖 < 𝑗 ⩽ 𝜃 be such that 𝑎𝑖𝑗 = −1. Let 𝑞𝑖𝑗 ∈ 𝕜× be such that 𝑞2

𝑖𝑗
= 𝜒𝑗(g

2
𝑖
), and set 𝑞𝑗𝑖 ∶=

−𝑞−1
𝑖𝑗
. By Step 4 of Proposition 5.2, if 𝑘 > 𝑖 also satisfies that 𝑎𝑖𝑘 = −1, we may choose 𝑞𝑖𝑘 =

𝑞𝑖𝑗 .
(III) We also set 𝔮 = (𝑞𝑖𝑗)𝑖,𝑗∈𝕀2𝜃

, where

𝑞𝑖𝑗 =

⎧⎪⎪⎨⎪⎪⎩

−1, 𝑖 ⩽ 𝜃 < 𝑗 or 𝑗 ⩽ 𝜃 < 𝑖;

−𝑞𝑖−𝜃,𝑗−𝜃, 𝑖, 𝑗 > 𝜃, 𝑎𝑖−𝜃,𝑗−𝜃 = −1;

𝑞𝑖−𝜃,𝑗−𝜃, 𝑖, 𝑗 > 𝜃, 𝑎𝑖−𝜃,𝑗−𝜃 = 0;

−1, 𝑖 = 𝑗 > 𝜃.

Given 𝑖 ∈ 𝕀𝜃, there is 𝑗 ≠ 𝑖 in 𝕀𝜃 such that 𝑎𝑖𝑗 ≠ 0. If possible, take 𝑗 > 𝑖 such that 𝑎𝑖𝑗 ≠ 0;
otherwise, take 𝑗 < 𝑖 with 𝑎𝑖𝑗 ≠ 0. By (II) above, we can define

𝚡𝑖 ∶= 𝑥𝑖 + 𝑞𝑖𝑗𝑥𝑖
, 𝚡

𝑖
∶= 𝑥𝑖 − 𝑞𝑖𝑗𝑥𝑖

, 𝑖 ∈ 𝕀.

Using (2.16), (2.17), and (2.18), we verify that

𝑐(𝚡𝑖 ⊗ 𝚡𝑗) =

{
−1, 𝑖 = 𝑗;

𝑞𝑖𝑗, 𝑖 ≠ 𝑗.
𝑐(𝚡

𝑖
⊗ 𝚡

𝑗
) =

⎧⎪⎨⎪⎩
−1, 𝑖 = 𝑗

−𝑞𝑖𝑗, 𝑎𝑖𝑗 = −1;

𝑞𝑖𝑗, 𝑎𝑖𝑗 = 0.

𝑐(𝚡𝑖 ⊗ 𝚡
𝑗
) =

⎧⎪⎨⎪⎩
−1, 𝑖 = 𝑗

−𝑞𝑖𝑗, 𝑎𝑖𝑗 = −1;

𝑞𝑖𝑗, 𝑎𝑖𝑗 = 0.

𝑐(𝚡
𝑖
⊗ 𝚡𝑗) =

⎧⎪⎨⎪⎩
−1, 𝑖 = 𝑗

𝑞𝑖𝑗, 𝑎𝑖𝑗 = −1;

𝑞𝑖𝑗, 𝑎𝑖𝑗 = 0.

so the braiding matrix of𝑀 is 𝔮, and𝑀 is, respectively, of type 𝐴𝜃 × 𝐴𝜃, 𝐷𝜃 × 𝐷𝜃 or 𝐸𝜃 × 𝐸𝜃, both
copies with parameter 𝑞 = −1.

3.4 Trivializing the action of 𝜿 via a twist

Retain the notation introduced in §3.3. Thus, 𝐺 is a nonabelian group and𝑀 = ⊕𝑖∈𝕀𝑀𝑖 ∈
𝕜𝐺
𝕜𝐺
,

where𝑀𝑖 = 𝑀(g𝐺
𝑖
, 𝜒𝑖).

For the cases not covered by Lemma 2.7, we will show the existence of a 2-cocycle 𝜎 such that
𝜅 acts trivially on 𝐹𝜎(𝑀). Recall the parity vector 𝙿 = (𝜒1(𝜅), … , 𝜒𝜃(𝜅)) from (2.28).
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POINTED HOPF ALGEBRAS OVER NONABELIAN GROUPS 21

Let𝜎 ∈ 𝐻2(𝐺, 𝕜×). Following §3.1, the twisted Yetter–Drinfeldmodule associated to𝜎 is𝐹𝜎(𝑀) =

𝑀𝜎 = ⊕𝑖∈𝕀𝑀(g𝑖 , 𝜒
𝜎
𝑖
), where 𝜒𝜎

𝑖
∈ 𝐺g𝑖 is given by the following formula:

𝜒𝜎
𝑖 (ℎ) = 𝜎(ℎg𝑖ℎ

−1, ℎ)𝜎−1(ℎ, g𝑖)𝜒𝑖(ℎ), ℎ ∈ 𝐺.

Since 𝜅 is central in 𝐺, we have 𝜒𝜎
𝑖
(𝜅) = 𝜎(g𝑖 , 𝜅)𝜎−1(𝜅, g𝑖)𝜒𝑖(𝜅).

Proposition 3.15. Let 𝐺 be a nonabelian group, 𝑀 ∈ 𝕜𝐺
𝕜𝐺
 of type 𝛼2, 𝛼3, 𝛿4, 𝛾3, 𝛾4, or 𝜙4 such

that supp𝑀 generates 𝐺. There exists 𝜎 ∈ 𝐻2(𝐺, 𝕜×) with 𝜒𝜎
𝑖
(𝜅) = 1 for all 𝑖.

Let us outline the strategy that will be used in the Appendix to prove this statement.

(i) We go through the cases and list the possible 𝙿 = (𝜒𝑖(𝜅))𝑖 ∈ {±1}𝑛.
(ii) It is sufficient to consider one 𝙿 representing eachWeyl groupoid orbit. The 𝑖th reflection of

𝑀 is

𝜌𝑖𝑀 = ⊕𝑗∈𝕀𝑀(g𝑗g
−𝑐𝑖𝑗
𝑖

, 𝜒𝑗𝜒
−𝑐𝑖𝑗
𝑖

),

and the parity vector of 𝜌𝑖𝑀 is 𝙿′ = (𝜒𝑗(𝜅)𝜒𝑖(𝜅)
−𝑐𝑖𝑗 )𝑗∈𝕀.

(iii) Next, we introduce an auxiliary minimal group 𝐺min. Namely, 𝐺min ⊆ End𝑀 is generated
by (the action of) g𝑖 . The definition of 𝐺min depends only on the scalars 𝜒𝑖(g𝑗), 𝜒𝑖(𝜅). It is
enough to prove Proposition 3.15 for this group, since the asserted 2-cocycle 𝜎 on 𝐺min can
be pulled back to 𝐺.

(iv) In the next steps, we show case-wise that there exists 𝜎 ∈ 𝐻2(𝐺min, 𝕜×) such that

𝜎(g𝑖 , 𝜅)𝜎(𝜅, g𝑖)
−1 = 𝜒𝑖(𝜅), for all 𝑖 ∈ 𝕀.

(v) For type 𝛼2, there are two Weyl groupoid orbits for 𝙿 = (𝜒1(𝜅), 𝜒2(𝜅)), namely, {(1, 1)} and
{(1, −1), (−1, −1), (−1, 1)}, the first one corresponding to 𝙿 trivial. For (−1, 1), we get three
different types of groups according to the order of 𝜒2(g

2
1
): we find the desired cocycle using

semidirect product decompositions.
(vi) The cases 𝛼3 and 𝛾3 are treated using spectral sequences arguments for a central extension.

Necessary information about the structure of the group (minimal orders of central elements,
e.g.) enters conveniently via the existence of a one-dimensional representation, constructed
from the structure of𝑀.

(vii) The remaining cases are treated using two simultaneous extensions.

We postpone the proof until §A.3 since we need technical results on group cohomology.
By assumption, 𝐺 is a central extension of an abelian group Γ by ⟨𝜅⟩ ≃ ℤ2, say:

1 ⟶ ℤ2 ⟶ 𝐺 ⟶ Γ ⟶ 1.

To illustrate the proof of Proposition 3.15, we give an example where such central extensions are
related to symplectic forms on ℤ𝜃

2
.

Example 3.16. Let Γ = ℤ𝜃
2
with generators g𝑖 , 𝑖 ∈ 𝕀. The commutator in 𝐺 defines a symplectic

form on Γ such that the radical ℤ𝑟
2
is the image of the center 𝑍(𝐺); in particular, g𝑖 , g𝑗 commute if
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22 ANGIONO et al.

and only if the symplectic form on them is zero; hence, the size of the conjugacy class of g𝑖 is 1 or 2
depending if g𝑖 is in the radical or not. This symplectic form of type (𝜃, 𝑟) is uniquely determined.
Central extensions ℤ2 → 𝐺 → Γ are classified by quadratic forms with fixed symplectic form.

For type 𝛼2, we have (𝜃, 𝑟) = (2, 0) and there are two types of central extensions of order 8 with this
commutator structure, namely, the extraspecial groups 22+1

− (the quaternion group) and 22+1
+ (the

dihedral group). The group 22+1
− has defining relations g2

1
= g2

2
= 𝜅 and trivial second cohomology

𝐻2(22+1
− , 𝕜×), while the group 22+1

+ has defining relations g2
1
= 𝑒, g2

2
= 𝜅 (depending on a choice

of generators) and nontrivial second cohomology 𝐻2(22+1
+ , 𝕜×) = {1, 𝜎}. Our proof works for the

group 22+1
− because the relations (2.13) defining𝑀 imply

𝜒1(𝜅) = 𝜒1(g
2
1 ) = 1, 𝜒2(𝜅) = 𝜒2(g

2
2 ) = 1.

For 22+1
+ , both 𝙿 = (1, 1) and 𝙿 = (−1, 1) are possible and we have a 2-cocycle 𝜎 with

𝜎(g1, 𝜅)𝜎
−1(𝜅, g1) = −1, 𝜎(g2, 𝜅)𝜎

−1(𝜅, g2) = 1.

The other choices of generators for 22+1
+ work similarly and also follow from the first choice by

using Weyl groupoid reflections.
The cases 𝛼3, 𝛿4, 𝛾3, 𝛾4, 𝜙4 present similar behavior because

1

2
(𝜃 − 𝑟) = 1 in all of them. For

each case, there is an underlying extraspecial group 22+1
± .

Remark 3.17. The proof becomes more involved for an arbitrary abelian group Γ because there are
many central extensions by ℤ2, parametrized by the powers of the generators, and the existence
of a nontrivial group cohomology is very sensitive to these choices.

We are ready to state the main result of this section, which states that the Nichols algebra of a
Yetter–Drinfeld module of type 𝛼𝜃, 𝛾𝜃, 𝛿𝜃, 𝜖𝜃, or 𝜙4 is a twist of the corresponding Nichols algebra
of diagonal type as in §3.3.

Theorem 3.18. Let 𝐺 be a finite nonabelian group, 𝑀 ∈ 𝕜𝐺
𝕜𝐺
 of type either 𝛼𝜃 , 𝛾𝜃 , 𝛿𝜃 , 𝜖𝜃 , or 𝜙4

whose support generates 𝐺. Then there exists 𝜎 ∈ 𝐻2(𝐺, 𝕜) such that 𝐹𝜎(𝑀) is of diagonal type.

Proof. If 𝑀 is of type 𝛼𝜃, 𝜃 ⩾ 4, 𝛾𝜃, 𝜃 ⩾ 5, 𝛿𝜃, 𝜃 ⩾ 5, or 𝜖𝜃, 𝜃 = 6, 7, 8, then 𝜅 acts trivially by
Lemma 2.7, so 𝑀 is naturally a Yetter–Drinfeld module over Γ = 𝐺∕⟨𝜅⟩, a finite abelian group;
thus,𝑀 is itself of diagonal type. For the other cases, we apply Proposition 3.15. □

Let 𝐺 and𝑀 = ⊕𝑖∈𝕀𝑀𝑖 ∈
𝕜𝐺
𝕜𝐺
 be as above. Consider

𝓁 ∶=

⎧⎪⎨⎪⎩
2 for type 𝜙4,

𝜃 − 1 for type 𝛾𝜃,

𝜃 otherwise.
(3.5)

Keeping the notation used for §2.3.1, §2.3.2, and §2.3.3, we have the following.

◦ If 𝑖 ⩽ 𝓁, then dim𝑀𝑖 = 2, g𝐺
𝑖

= {g𝑖 , 𝜅g𝑖}, where 𝜅 ∈ 𝑍(𝐺) satisfies 𝜅2 = 1. We fix a basis 𝑥𝑖 , 𝑥𝑖
of

𝑀𝑖 as above.
◦ If 𝑖 > 𝓁, then dim𝑀𝑖 = 1, g𝐺

𝑖
= {g𝑖}. For a basis, we fix any nonzero element 𝑥𝑖 in𝑀𝑖 .
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POINTED HOPF ALGEBRAS OVER NONABELIAN GROUPS 23

Remark 3.19. Let 𝙶 be the group generated by g𝑖 , 𝑖 ∈ 𝕀 and 𝜅 with relations

g𝑖𝜅 = 𝜅g𝑖 , 𝜅2 = 𝑒, g𝑖g𝑗 =

{
𝜅g𝑗g𝑖 , 𝑖 ≠ 𝑗 ⩽ 𝓁, 𝑎𝑖𝑗 = −1,

g𝑗g𝑖 otherwise,

where 𝐚 = (𝑎𝑖𝑗) denotes the Cartan matrix of 𝑀. Then 𝙶 is a central extension of ℤ𝕀 by ℤ2, and
the braided vector space 𝑀 has a realization over 𝙶. Moreover, the subgroup of 𝐺 generated by
supp𝑀 is a quotient of 𝙶.
The ℤ𝕀-grading on 𝑇(𝑀) and its homogeneous quotients (in particular, B(𝑀)) is given by the

induced coaction of 𝕜ℤ𝕀 ≃ 𝕜𝙶∕⟨𝜅⟩.
4 GENERATION IN DEGREE 1

Using Theorem 3.18 and generation-in-degree-one for the diagonal setting [12], we get the
following.

Theorem 4.1. Let𝐻 be a finite-dimensional pointed Hopf algebra with infinitesimal braiding𝑀 of
type 𝛼𝜃 , 𝛾𝜃 , 𝛿𝜃 , 𝜖𝜃 , or 𝜙4. Then

gr𝐻 ≃ B(𝑀)#𝕜𝐺(𝐻).

In other words,𝐻 is generated by skew-primitive and group-like elements.

Proof. Let 𝑅 be the diagram of𝐻, so gr𝐻 ≃ 𝑅#𝕜𝐺(𝐻). We need to show that 𝑅 is generated by its
degree 1 elements𝑀 = 𝑅(1). Or, equivalently, we need to show that the canonicalmapB(𝑀) ↪ 𝑅

is an isomorphism. Put also B ∶= 𝑅∗. Notice that 𝑊 ∶= 𝑀∗ is of the same type as 𝑀; we fix g𝑖 ,
𝑖 ∈ 𝕀, 𝜅 as in §2.2. Let𝐺 be the subgroup of𝐺(𝐻) generated by g𝑖 , 𝑖 ∈ 𝕀. ThenB ∈ 𝕜𝐺

𝕜𝐺
 is a finite-

dimensional pre-Nichols algebra of𝑊; that is,B = ⊕𝑛⩾0B
𝑛, whereB𝑛 = 𝑅(𝑛)∗, is a gradedHopf

algebra such that B0 = 𝕜1 and is generated as an algebra by𝑊 = B1.
For 𝜎 ∈ 𝐻2(𝐺, 𝕜×) as in Theorem 3.18, set 𝜎 ∶ B#𝕜𝐺 ⊗ B#𝕜𝐺 → 𝕜 as in (3.1), and let 𝙷 ∶=

(B#𝕜𝐺)𝜎, 𝙷𝑛 ∶= B𝑛#𝕜𝐺. Then 𝙷 = ⊕𝑛⩾0𝙷
𝑛 is a graded coalgebra, because twisting by 𝜎 leaves

the coalgebra structure unchanged. Thus, 𝙷 is pointed with coradical 𝙷0 ≃ 𝕜𝐺 by [51, 5.3.4]. As 𝜎
is trivial in degree> 0, 𝙷 is a graded Hopf algebra: By [5, 4.14 (a)], 𝙷 ≃ B′#𝕜𝐺, whereB′ ∈ 𝕜𝐺

𝕜𝐺


is a pre-Nichols algebra of 𝐹𝜎(𝑊).
As 𝜅 ∈ 𝑍(𝐺) and it acts trivially on 𝑊𝜎, we have that 𝜅 ∈ 𝑍(𝐻). Set 𝑄 ∶= 𝙷∕𝙷(𝜅 − 1), Γ =

𝐺∕⟨𝜅⟩. The𝐺-actions on 𝐹𝜎(𝑊) and onB′ induce respective Γ-actions on them. Also, 𝐹𝜎(𝑊) and
B′ become 𝕜Γ-comodules via𝜋 ∶ 𝐺 ↠ Γ. Moreover, with these structures bothB′ and𝐹𝜎(𝑊) are
in 𝕜Γ

𝕜Γ
, andB′ ∈ 𝕜Γ

𝕜Γ
 is a pre-Nichols algebra of𝐹𝜎(𝑊).We identify 𝙷 ≃ B′#𝕜𝐺 and consider

the map Φ ∶ 𝙷 → B′#𝕜Γ, Φ(𝑥#g) = 𝑥#𝜋(g). Then Φ is a surjective Hopf algebra map such that
Φ(𝜅 − 1) = 0; hence, Φ induces a surjective Hopf algebra map 𝜙 ∶ 𝑄 → B′#𝕜Γ. As 𝙷 is a central
extension of 𝑄 by 𝕜ℤ2 (since 𝜅2 = 1, 𝜅 ≠ 1),

dim𝑄 =
1

2
dim𝙷 =

1

2
dimB′|𝐺| = dimB′|Γ|,

so 𝜙 is an isomorphism.
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24 ANGIONO et al.

Now Γ is an abelian group since for each 𝑖 ≠ 𝑗 either g𝑖g𝑗 = g𝑗g𝑖 or g𝑖g𝑗 = 𝜅g𝑗g𝑖 in 𝐺, and Γ is
generated by the images of the g𝑖 ’s (see §2.2). Hence, [12] implies that B′ = B(𝐹𝜎(𝑊)), so B =

B(𝑊) by [5, 4.14 (b)]. Dualizing, 𝑅 = B(𝑀), as desired. □

5 GENERATORS AND RELATIONS FOR NICHOLS ALGEBRAS

In this section,we exhibit a presentation by generators and relations for theNichols algebras of the
Yetter–Drinfeld modules𝑀 = ⊕𝑖∈𝕀𝑀𝑖 ∈

𝕜𝐺
𝕜𝐺
 as in §2.3.1, §2.3.2, and §2.3.3, which are standard,

that is, all reflection 𝜌𝑖𝑀 are of the same type as𝑀. In particular, the root system 𝛥𝑀 is a classical
one. We may assume that 𝐺 is the group in Remark 3.19.

5.1 Types 𝜶𝟐 and 𝜶𝟑

We give a presentation of Nichols algebras of types 𝛼2 and 𝛼3. They will be a key step toward
the presentation for the general case, since all relations that are not powers of root vectors are
supported on smaller submodules of these types.

5.1.1 Type 𝛼2

Let 𝐺 be a group, 𝑒 ≠ 𝜅, g1, g2 ∈ 𝐺 such that

g1g2 = 𝜅g2g1, 𝜅2 = 𝑒, g𝐺
𝑖 = {g𝑖 , 𝜅g𝑖}, 𝑖 = 1, 2.

Following [34], the subgroup of 𝐺 generated by g1 and g2 is a quotient of

𝐺2 = ⟨g1, g2, 𝜅|𝜅2 = 1, 𝜅g1 = g1𝜅, 𝜅g2 = g2𝜅, g2g1 = 𝜅g1g2⟩. (5.1)

Assume that there are𝜒𝑖 ∈ 𝐺g𝑖 such that𝜒𝑖(g𝑖) = −1 and𝜒1(𝜅g
2
2
)𝜒2(𝜅g

2
1
) = 1. For 𝑖 ∈ 𝕀2, set𝑀𝑖 =

𝑀(g𝐺
𝑖
, 𝜒𝑖) ∈ 𝕜𝐺

𝕜𝐺
; thus,𝑀 = 𝑀1 ⊕ 𝑀2 is of type 𝛼2 by [34, Theorem 4.6].

Proposition 5.1. Let 𝑀 = 𝑀1 ⊕ 𝑀2 ∈ 𝕜𝐺
𝕜𝐺
 of type 𝛼2 as above. Then B(𝑀) is presented by

generators 𝑥1, 𝑥1, 𝑥2, 𝑥2 and relations

𝑥2
𝑖 = 𝑥2

𝑖
= 0, (ad𝑐 𝑥𝑖)𝑥𝑖

= 0, 𝑖 ∈ 𝕀. (5.2)

𝑥
12

= −𝜒2(g
2
1 )𝑥12

, 𝑥
12

= −𝜒1(𝜅)𝑥12; (5.3)

𝑥2
12 = 0, [𝑥12, 𝑥12]𝑐 = 0. (5.4)

The following set is a PBW basis ofB(𝑀):{
𝑥𝑎
2𝑥

𝑏

2
𝑥𝑐
12𝑥

𝑑

12
𝑥𝑒
1𝑥

𝑓

1
∶ 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 ∈ {0, 1}

}
. (5.5)

Proof. We proceed in several steps.
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POINTED HOPF ALGEBRAS OVER NONABELIAN GROUPS 25

Step 1. By (2.16), the Nichols algebra of𝑀𝑖 for 𝑖 = 1, 2 is a quantum linear space, and (5.6) implies
that relations (5.2) hold in B(𝑀).

Step 2. The inclusion 𝑀12 ∶= (ad𝑐 𝑀1)𝑀2 ↪ B(𝑀) extends to a ℤ2-graded algebra inclusion
B(𝑀12) ↪ B(𝑀) and the multiplication

B(𝑀2) ⊗ B(𝑀12) ⊗ B(𝑀1) ⟶ B(𝑀) (5.6)

is an isomorphism of ℤ2-graded objects in 𝕜𝐺
𝕜𝐺
, where 𝑀1 sits in degree 𝛼1, 𝑀2 in degree 𝛼2,

and𝑀12 in degree 𝛼1 + 𝛼2.

This follows by [34, Theorem 4.6]. In order to find defining relations for B(𝑀12) ⊂ B(𝑀), we
need a more explicit description of the structure of𝑀12.

Step 3.

(a) The set {𝑥12, 𝑥12} is a basis of𝑀12, and the braiding in this basis is of diagonal typewithmatrix(
−1 −𝜒1(𝜅)𝜒2(𝜅)

−𝜒1(𝜅)𝜒2(𝜅) −1

)
. (5.7)

(b) Relations (5.3) and (5.4) hold in B(𝑀).

Proof of Step 3. Note that 𝜕𝑥2
(𝑥12) = 𝑥1 and 𝜕𝑥2

(𝑥12) = 𝑥1; thus, 𝑥12 and 𝑥12 are linearly indepen-
dent inB(𝑀). Relations (5.3) are verified using the skew derivations of𝑇(𝑀1 ⊕ 𝑀2). The braiding
of𝑀12 is obtained from a straightforward computation in 𝕜𝐺

𝕜𝐺
. Now (5.4) follows from (5.6) and

(5.7). □

Note thatB(𝑀12) is presented by the relations (5.4) and (𝑥12)
2 = 0, whichhas not been included

above because it can be deduced from the previous ones, as we show in Step 4.
With (5.6) in mind, the next step toward exhibiting a presentation of B(𝑀) should be to find

braided commutations betweenB(𝑀𝑖) andB(𝑀12) for 𝑖 = 1, 2. Such relations are known to exist,
since (ad𝑀𝑖)

2𝑀𝑗 = 0 for 𝑖 ≠ 𝑗 by [34, Lemma 4.2]. However, we show next that these can be
deduced from some of the already established relations.

Step 4. Let 𝐴 denote the quotient of 𝑇(𝑀1 ⊕ 𝑀2) by the ideal generated by (5.2) and (5.3). In 𝐴,
the following relations hold

(ad𝑐 𝑥1)𝑥12 = 0, (ad𝑐 𝑥1
)𝑥12 = 0, (ad𝑐 𝑥1)𝑥12

= 0, (ad𝑐 𝑥1
)𝑥

12
= 0; (5.8)

[𝑥12, 𝑥2]𝑐 = 0, [𝑥12, 𝑥2]𝑐 = 0, [𝑥12, 𝑥2]𝑐 = 0, [𝑥12, 𝑥2]𝑐 = 0; (5.9)

𝑥2

12
= 0. (5.10)

Proof of Step 4. First, (ad𝑐 𝑥1)𝑥12 = (ad𝑐 𝑥
2
1
)𝑥2 = 0 since 𝑥2

1
= 0. Analogously (ad𝑐 𝑥1)𝑥12 = 0 fol-

lows from 𝑥2

1
= 0. Next, using that 𝑥12 is a scalar multiple of 𝑥

12
, we get that (ad𝑐 𝑥1

)𝑥12 = 0

follows from 𝑥2

1
= 0. Since 𝑥12 is a scalar multiple of 𝑥12, we get (ad𝑐 𝑥1)𝑥12 = 0 from 𝑥2

1
= 0.

Thus, (5.8) hold.
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26 ANGIONO et al.

For (5.9), unpacking the definitions, we see that [𝑥12, 𝑥2]𝑐 = [𝑥12, 𝑥2]𝑐 = 0 follow from 𝑥2
2
=

𝑥2

2
= 0. Now [𝑥12, 𝑥2]𝑐 = 0 follows using the previous argument, since 𝑥12 is a scalar multiple of

𝑥
12
. The remaining relation holds similarly.
Finally, we show that (5.10) follows from (5.8), (5.9), and (5.3). In fact,

(𝑥12)
2 = (𝑥1𝑥2 − 𝑥2𝑥1)(ad𝑐 𝑥1)(𝑥2)

= −(𝜒2(𝜅g
2
1 ))

−1𝑥1(ad𝑐 𝑥1)(𝑥2)𝑥2 − 𝜒2(g
2
1 )𝑥2(ad𝑐 𝑥1)(𝑥2)𝑥1

= −𝜒2(𝜅)(ad𝑐 𝑥1
)(𝑥2)𝑥1𝑥2

+ 𝜒2(𝜅g
2
1 )(ad𝑐 𝑥1

)(𝑥2)𝑥2𝑥1

= −𝜒2(𝜅)(ad𝑐 𝑥1)(𝑥2)(ad𝑐 𝑥1)(𝑥2) = 𝜒2(𝜅g
2
1 )(𝑥12)

2,

(5.11)

as claimed. □

We are ready to give a presentation of B(𝑀1 ⊕ 𝑀2). Let 𝑅 denote the quotient of 𝑇(𝑀1 ⊕ 𝑀2)

by the ideal generated by (5.2), (5.3), and (5.4). We already know from (5.6) and Step 3 that the
canonical projection 𝑇(𝑀1 ⊕ 𝑀2) → B(𝑀) factors to a surjective algebra map 𝑅 → B(𝑀). We
show that this map is injective. Since dimB(𝑀) = 26, it is enough to verify that the set (5.5) lin-
early generates 𝑅. Let 𝐽 denote the subspace spanned by (5.5) in 𝑅. Since 𝐽 contains 1, it is enough
to show that 𝐽 is a left ideal, which reduces to verify that 𝑥𝑖𝐼 ⊂ 𝐼 and 𝑥

𝑖
𝐼 ⊂ 𝐼 for 𝑖 = 1, 2. Clearly,

𝑥2𝐽 ⊂ 𝐽; as 𝑥
2
𝑥2 is a scalar multiple of 𝑥2𝑥2

, it is equally clear that 𝑥
2
𝐽 ⊂ 𝐽. So, we need to verify

that 𝑥1𝐽 ⊂ 𝐽 and 𝑥
1
𝐽 ⊂ 𝐽, which follow since the (5.8) and (5.9) hold in 𝑅 by Step 4. □

5.1.2 Type 𝛼3

Let𝐺 denote a nonabelian group and let𝑀 = 𝑀1 ⊕ 𝑀2 ⊕ 𝑀3 in 𝕜𝐺
𝕜𝐺
 of type 𝛼3. By [37, Lemma

5.2] for 𝑖 ∈ 𝕀2, the subgroup ⟨𝜅, g𝑖 , g𝑖+1⟩ ⊂ 𝐺 is a quotient of 𝐺2, see (5.1). Next, we describeB(𝑀).

Proposition 5.2. For𝑀 of type 𝛼3, the Nichols algebraB(𝑀) is presented by generators 𝑥𝑖, 𝑥𝑖
, 𝑖 ∈ 𝕀3

and relations

𝑥2
𝑖 = 𝑥2

𝑖
= 0, (ad𝑐 𝑥𝑖)𝑥𝑖

= 0, 𝑖 ∈ 𝕀; (5.12)

𝑥
𝑖𝑗

= −𝜒𝑗(g
2
𝑖 )𝑥𝑖𝑗

, 𝑥
𝑖𝑗

= −𝜒𝑖(𝜅)𝑥𝑖𝑗, 𝑖 < 𝑗, 𝑎𝑖𝑗 = −1; (5.13)

𝑥2
𝑖𝑗 = 0, [𝑥𝑖𝑗, 𝑥𝑖𝑗

]𝑐 = 0, 𝑖 < 𝑗, 𝑎𝑖𝑗 = −1; (5.14)

𝑥13 = 𝑥13 = 0, 𝑥13 = 𝑥13 = 0; (5.15)

𝑥2
123 = 0, [𝑥123, 𝑥123

]𝑐 = 0; (5.16)

(ad𝑐 𝑥2)𝑥123 = 0, (ad𝑐 𝑥2)𝑥123 = 0. (5.17)

A PBW basis ofB(𝑀) is given by{
𝑥
𝑎3

3
𝑥
𝑏3

3
𝑥
𝑎23

23
𝑥
𝑏23

23
𝑥
𝑎2
2

𝑥
𝑏2

2
𝑥
𝑎123

123
𝑥
𝑏123

123
𝑥
𝑎12
12

𝑥
𝑏12

12
𝑥
𝑎1
1

𝑥
𝑏1

1
∶ 𝑎𝛽, 𝑏𝛽 ∈ {0, 1}

}
. (5.18)
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POINTED HOPF ALGEBRAS OVER NONABELIAN GROUPS 27

Proof. Again, we proceed in several steps.

Step 1. The multiplication map is an isomorphism of ℤ3-graded objects in 𝕜𝐺
𝕜𝐺
:

B(𝑀3) ⊗ B(𝑀23) ⊗ B(𝑀2) ⊗ B(𝑀123) ⊗ B(𝑀12) ⊗ B(𝑀1) ≃ B(𝑀)

This follows by [34, Theorem 2.6]. Next, we give some relations that hold in B(𝑀).

Step 2. The relations (5.12), (5.13), and (5.15) hold in B(𝑀).

Weknow that𝑀13 = 0, so (5.15) hold,while (5.12) and (5.13) follow since𝑀1 ⊕ 𝑀2 and𝑀2 ⊕ 𝑀3

are of type 𝛼2. □

Following the treatment in §5.1.1, we describeB(𝑀123) ⊂ B(𝑀). As a first step in this direction,
we produce a basis for𝑀123.

Step 3. Let𝐴 denote the quotient of 𝑇(𝑀1 ⊕ 𝑀2 ⊕ 𝑀3) by the ideal generated by (5.15) and (5.13).
In 𝐴, the following relations hold:

𝑥123 = −𝜒2(g
2
1 )𝑥123, 𝑥123 = −𝜒1(𝜅)𝑥123. (5.19)

Proof of Step 3. We only verify the first one. We compute

𝑥
123 = [𝑥1, [𝑥2, 𝑥3]𝑐]𝑐 = [[𝑥1, 𝑥2]𝑐, 𝑥3]𝑐 + (g1 ⋅ 𝑥2)[𝑥1, 𝑥3]𝑐 − 𝜒3(𝜅)[𝑥1, 𝑥3]𝑥2

= [[𝑥1, 𝑥2]𝑐, 𝑥3]𝑐 = −𝜒2(g
2
1 )[[𝑥1, 𝑥2]𝑐, 𝑥3]𝑐 = −𝜒2(g

2
1 )[𝑥1, [𝑥2, 𝑥3]𝑐]𝑐,

where the second equality follows by (2.9), the third from (5.15), the fourth from (5.13), and the
fifth one by (2.9) and (5.15). □

Surprisingly, there are further restrictions on the character 𝜒2:

Step 4. If𝑀1 ⊕ 𝑀2 ⊕ 𝑀3 is of type 𝛼3, then 𝜒2(g
2
1
) = 𝜒2(g

2
3
).

Proof of Step 4. We compute the action of g2 on 𝑥123 ∈ B(𝑀) following two different approaches.
Applying (2.10) first, followed by (5.13), we get

g2 ⋅ 𝑥123 = −(ad𝑐 𝑥1
)(ad𝑐 𝑥2)𝑥3

= 𝜒3(g
2
2 )𝑥123

= 𝜒3(g
2
2 )(𝑥1((ad𝑐 𝑥2)𝑥3) − 𝜒2(𝜅g

2
1 )𝜒3(𝜅g1)((ad𝑐 𝑥2)𝑥3)𝑥1).

On the other hand, if we first unpack the definition of ad𝑐 𝑥1 and then let g2 act, we get

g2 ⋅ 𝑥123 = g2 ⋅ (𝑥1((ad𝑐 𝑥2)𝑥3) − 𝜒3(g1)((ad𝑐 𝑥2)𝑥3)𝑥1)

= −𝑥
1((ad𝑐 𝑥2)𝑥3) + 𝜒2(𝜅)𝜒3(g1)((ad𝑐 𝑥2)𝑥3)𝑥1

= 𝜒3(g
2
2 )𝑥1

((ad𝑐 𝑥2
)𝑥3) − 𝜒3(g1)((ad𝑐 𝑥2)𝑥3)𝑥1

= 𝜒3(g
2
2 )(𝑥1((ad𝑐 𝑥2)𝑥3) − 𝜒2(𝜅g

2
3 )𝜒3(𝜅g1)((ad𝑐 𝑥2)𝑥3)𝑥1),
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28 ANGIONO et al.

where the second equality follows by (2.10), the third one from (5.13), and the last one from
𝜒2(𝜅g

2
3
)𝜒3(𝜅g

2
2
) = 1.

These two equations give (𝜒2(g
2
1
) − 𝜒2(g

2
3
))((ad𝑐 𝑥2)𝑥3)𝑥1 = 0, and the claim follows because

𝜕𝑥
1
(((ad𝑐 𝑥2)𝑥3)𝑥1) = (ad𝑐 𝑥2)𝑥3 ≠ 0. □

The next result is analog to Step 3 in Proposition 5.1, and its proof follows from similar
arguments, so we only give a sketch.

Step 5.

(a) A basis of𝑀123 is {𝑥123, 𝑥123
}, where the braid is diagonal with matrix(

−1 −𝜒1(𝜅)𝜒2(𝜅)𝜒3(𝜅)

−𝜒1(𝜅)𝜒2(𝜅)𝜒3(𝜅) −1

)
. (5.20)

(b) Relations (5.16) hold in B(𝑀).

Proof of Step 5. (a) The set {𝑥123, 𝑥123
} linearly spans𝑀123 by Step 3, and it is linearly independent

since so are 𝜕𝑥3
(𝑥123) = 𝑥12 and 𝜕𝑥3

(𝑥
123

) = 𝑥
12
. The braiding is computed using (2.10) and Step

4. Now (b) follows from (a) and Step 1. □

The Nichols algebra of𝑀123 is presented by the relations (5.16) and 𝑥2

123
= 0; we will show that

this last relation can be deduced from others.
Braided commutations between𝑀𝑖 and𝑀123 for 𝑖 = 1, 3 can now be deduced.

Step 6. Let𝐴 denote the quotient of 𝑇(𝑀1 ⊕ 𝑀2 ⊕ 𝑀3) by the ideal generated by (5.2), (5.15), and
(5.13). In 𝐴, the following relations hold :

(ad𝑐 𝑥1)𝑥123 = 0, (ad𝑐 𝑥1)𝑥123 = 0, (ad𝑐 𝑥1)𝑥123 = 0, (ad𝑐 𝑥1)𝑥123 = 0; (5.21)

[𝑥123, 𝑥3]𝑐 = 0, [𝑥123, 𝑥3
]𝑐 = 0, [𝑥

123
, 𝑥3]𝑐 = 0, [𝑥

123
, 𝑥

3
]𝑐 = 0; (5.22)

(ad𝑐 𝑥2)𝑥123 = −𝜒1(g
−2
2 )(ad𝑐 𝑥2)𝑥123, (ad𝑐 𝑥2)𝑥123 = −𝜒1(g

−2
2 )(ad𝑐 𝑥2)𝑥123. (5.23)

Proof of Step 6. The relations (5.21) can be verified using the argument in the proof of Step 4 of
Proposition 5.1. For the first relation in (5.22), use (2.9) to get

[𝑥123, 𝑥3]𝑐 = [[𝑥1, 𝑥23]𝑐, 𝑥3]𝑐 = [𝑥1, [𝑥23, 𝑥3]𝑐]𝑐 − 𝑥
2
[𝑥1, 𝑥3]𝑐 + [𝑥1, 𝑥3

]
𝑐
𝑥2 = 0.

The three remaining relations follow similarly. For (5.23), use (2.9), (5.13), and (5.8) to get

(ad𝑐 𝑥2
)𝑥123 =

[
𝑥
21
, 𝑥23

]
+ (g2𝜅 ⋅ 𝑥1)[𝑥2

, 𝑥23]𝑐 − 𝜒3(g1)[𝑥2
, 𝑥

23
]𝑐𝑥1

= −𝜒1(g
−2
2 )
[
𝑥21, 𝑥23

]
= −𝜒1(g

−2
2 )(ad𝑐 𝑥2)𝑥123.

and the other relation follows analogously. □

We employ skew derivations to verify braided commutations between𝑀2 and𝑀123.
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POINTED HOPF ALGEBRAS OVER NONABELIAN GROUPS 29

Step 7. Relations (5.17) hold in B(𝑀).

Proof of Step 7. We focus on the first relation. One can see directly from (2.10) that

𝜕𝑥𝑖
(𝑀123) = 𝜕𝑥

𝑖
(𝑀123) = 0, 𝜕𝑥3

(𝑥123) = 𝑥12, 𝜕𝑥
3
(𝑥123) = 𝑥12.

Now, using (2.10) and also Step 4, we get

𝜕𝑥
3
(𝑥123) = −𝜒2(𝜅)𝑥12, 𝜕𝑥3

(𝑥123) = −𝜒3(g
2
2 )𝑥12.

For 𝑖 ∈ 𝕀2, both 𝜕𝑥𝑖
and 𝜕𝑥

𝑖
annihilate the first relation, and we compute

𝜕𝑥3
((ad𝑐 𝑥2)𝑥123) = 𝑥2𝑥12 − 𝜒3(g

2
2 )𝑥12

𝑥
2
= 𝑥2𝑥12 + 𝜒3(𝜅g

2
2 )𝑥12𝑥2

= 𝜒3(𝜅g
2
2 )[𝑥12, 𝑥2

]𝑐 = 0,

where the third equality follows by (5.13). Similarly, 𝜕𝑥
3
((ad𝑐 𝑥2)𝑥123) = 𝜒2(𝜅)[𝑥12

, 𝑥
2
]𝑐 = 0. The

other relations follow analogously. □

Next, we deduce that braided brackets betweenB(𝑀23) andB(𝑀12) can be rewritten in terms
of intermediate factors of the decomposition given in Step 1.

Step 8. We have [B(𝑀12),B(𝑀23)]𝑐 ⊂ B(𝑀2) ⊗ B(𝑀123) in B(𝑀).

Proof of Step 8. This follows from 𝑥2
2
= 0, 𝑥2

2
= 0, (5.13), and (5.17). As an illustration:

[𝑥12, 𝑥23]𝑐 = (ad𝑐 𝑥1)(ad𝑐 𝑥
2
2)𝑥3 − 𝑥

2
𝑥123 − 𝑥

123
𝑥2,

which belongs to 𝕜𝑥
2
𝑥123 + 𝕜𝑥2𝑥123

. □

Step 9. Let 𝐴 denote the quotient of 𝑇(𝑀1 ⊕ 𝑀2 ⊕ 𝑀3) by the ideal generated by (5.13), (5.19),
(5.21), (5.22), and (5.17). Then in 𝐴, we have

𝑥2
123 = 𝜒2(g

4
1 )𝜒3(g

2
2 )𝑥

2

123
. (5.24)

Proof of Step 9. Use (5.21), (5.22), and (5.17) several times to get explicit braided commutations
between 𝑥123 and each of its monomials:

𝑥2
123 = (𝑥1𝑥2𝑥3 − 𝑥1𝑥3

𝑥2 − 𝜒3(g1)𝑥2
𝑥3𝑥1 + 𝜒3(𝜅g1)𝑥3

𝑥
2
𝑥1)𝑥123

= 𝜒2(g
2
1 )𝑥123(𝑥1(𝑥2𝑥3 − 𝜒3(g

2
2 )𝑥3𝑥2) − 𝜒3(𝜅g1)(𝑥2𝑥3 − 𝜒3(𝜅g

2
2 )𝑥3𝑥2)𝑥1)

= 𝜒2(g
4
1 )𝜒3(g

2
2 )𝑥

2

123
,

where the last equality follows from (5.13) and (5.19). □

As in the proof of Proposition 5.1, by Steps 2, 5, and 7, there exists an algebra surjection from
B, the algebra presented by relations in Proposition 5.2, onto B(𝑀). Now we use Steps 1, 3, 6, 8,
and 9 together with the fact that dimB(𝑀) = 212 to conclude thatB = B(𝑀). □
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30 ANGIONO et al.

5.2 A kind of distinguished pre-Nichols algebra

For Nichols algebras of diagonal type, a presentation by generators and relations was achieved by
the first author in [12]. A fundamental role is played by an intermediate quotient known as the
distinguished pre-Nichols algebra. Inspired by that construction, we define a pre-Nichols algebra
B̂(𝑀) for each one of the braidings 𝑀 described in §2.3.1, §2.3.2, and §2.3.3. More precisely, our
construction resembles the algebra B̂𝔮 introduced in Remark 2.3.
This pre-Nichols algebra will also play a key role in §6, where we describe the liftings.
Given𝑀 = ⊕𝑖∈𝕀𝑀𝑖 as in §2.3.1, §2.3.2, and §2.3.3, let 𝜎 as in Theorem 3.18, and denote by 𝔮 the

braiding matrix of𝑊 ∶= 𝐹𝜎(𝑀) (see §3.1). Recall the index 𝓁 defined in (3.5). Consider

⋅ ∶𝕀𝓁 → 𝕀𝜃+𝓁 , 𝑖 ∶=

{
𝑖 + 𝜃, for types 𝛼𝜃, 𝛿𝜃, 𝜖𝜃,

𝜃 + 𝓁 − 𝑖 + 1, otherwise,

so 𝕀𝜃+𝓁 = 𝕀𝜃 ∪ {𝑖 ∶ 𝑖 ∈ 𝕀𝓁}. We fix a basis 𝚡𝑖 , 𝑖 ∈ 𝕀𝜃+𝓁 , such that

∙ 𝚡𝑖 , 𝚡𝑖
is a basis of 𝐹𝜎(𝑀𝑖) for each 𝑖 ∈ 𝕀𝓁 ;

∙ 𝚡𝑖 = 𝑥𝑖 if 𝓁 < 𝑖 ⩽ 𝜃;
∙ the braiding in this basis is given by 𝔮; that is, 𝑐(𝚡𝑖 ⊗ 𝚡𝑗) = 𝑞𝑖𝑗𝚡𝑗 ⊗ 𝚡𝑖 .

Let 𝙰 = (𝚊𝑖𝑗)𝑖,𝑗∈𝕀𝜃+𝓁
be the Cartan matrix of 𝔮.

Remark 5.3. Let Ξ ∶ ℤ𝜃+𝓁 → ℤ𝜃 be the group morphism such that

Ξ(𝛼𝑖) = 𝛼𝑖, 𝑖 ⩽ 𝜃; Ξ(𝛼𝑖) = 𝛼𝑗, 𝑖 > 𝜃, 𝑖 = 𝑗.

This map identifies the two elements of the basis above corresponding to each 𝐹𝜎(𝑀𝑖) when
dim𝑀𝑖 = 2. Thus, if B is an ℕ𝜃

0
-graded pre-Nichols algebra such that 𝐹𝜎(B) is ℕ𝜃+𝓁

0
-graded (for

the usual grading as pre-Nichols algebra of diagonal type), then

dimB𝛽 =
∑

𝛾∈Ξ−1(𝛽)

dim𝐹𝜎(B)𝛾, 𝛽 ∈ ℕ𝜃
0.

Thus, the Hilbert seriesB is the image of𝐹𝜎(B) under Ξ.

Let B̂(𝑀) be the algebra generated 𝑥𝑖 , 𝑖 ∈ 𝕀, 𝑥
𝑗
, 𝑗 ∈ 𝕀𝓁 , subject to the relations

(ad𝑐 𝑥𝑖)𝑥𝑖
, 𝑥2

𝑖 , 𝑥2

𝑖
, 𝑖 ∈ 𝕀𝓁 ; (5.25)

𝑥2
𝑖 , 𝑖 > 𝓁; (5.26)

𝑥
𝑖𝑗

+ 𝜒𝑗(g
2
𝑖 )𝑥𝑖𝑗

, 𝑥
𝑖𝑗

+ 𝜒𝑖(𝜅)𝑥𝑖𝑗, 𝑖 < 𝑗 ⩽ 𝓁, 𝑎𝑖𝑗 = −1; (5.27)

𝑥𝑖𝑗, 𝑥
𝑖𝑗
, 𝑥

𝑖𝑗
, 𝑥

𝑖𝑗
, 𝑖 < 𝑗 ⩽ 𝓁, 𝑎𝑖𝑗 = 0; (5.28)

𝑥𝑖𝑗, 𝑥
𝑖𝑗
, 𝑖 ⩽ 𝓁 < 𝑗, 𝑎𝑖𝑗 = 0; (5.29)

(ad𝑐 𝑥𝑗)𝑥𝑖𝑗𝑖
= 0, 𝑎𝑖𝑗 = −2. (5.30)

(ad𝑐 𝑥𝑗)𝑥𝑖𝑗𝑘, (ad𝑐 𝑥𝑗)𝑥𝑖𝑗𝑘
, 𝑖 < 𝑗 < 𝑘, 𝑎𝑗𝑖 = 𝑎𝑗𝑘 = −1. (5.31)
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POINTED HOPF ALGEBRAS OVER NONABELIAN GROUPS 31

Proposition 5.4. B̂(𝑀) is a graded pre-Nichols algebra with Hilbert series

B̂(𝑀) =
∏

𝛽∈Δ𝑀
+ −{𝛼𝑖}

dim𝑀𝛽=2

(
1

1 − 𝑡𝛽

)2 ∏
𝑗∈𝕀𝓁

(1 + 𝑡𝑖)
2

∏
𝛽∈Δ𝑀

+ −{𝛼𝑖}

dim𝑀𝛽=1

(
1

1 − 𝑡𝛽

) ∏
𝑗>𝓁

(1 + 𝑡𝑗). (5.32)

Proof. First, B̂(𝑀) is a quotient of 𝑇(𝑀) by an homogeneous ideal, so it is a graded algebra.
Also, (5.25)–(5.29) are primitive elements of 𝑇(𝑀), while those in (5.31) are primitive mod-
ulo the previous relations, see the proofs of Propositions 5.1 and 5.2. Thus, B̂(𝑀) is a graded
pre-Nichols algebra.
We fix 𝐺 = 𝙶 defined in Remark 3.19, and 𝑀 has a canonical 𝐺-Yetter–Drinfeld module

structure. Now B̂ ∶= 𝐹𝜎(B̂(𝑀)) ∈ 𝕜𝐺
𝕜𝐺
 is a pre-Nichols algebra of𝑊 such that(

B̂(𝑀)#𝕜𝐺
)
𝜎
≃ B̂#𝕜𝐺.

We claim that B̂ = B̂𝔮. If so, the statement on the Hilbert series follows from Remarks 2.3 and
5.3. First, note that (2.8) holds in B̂ for all 𝑖 ∈ 𝕀𝜃+𝓁 by (5.25) and (5.26).
To verify (2.6), let 𝑖 < 𝑗 be such that 𝚊𝑖𝑗 = 0. We consider five cases.

⋄ 𝑖 ⩽ 𝓁, 𝑗 = 𝑖. The space of primitive elements of 𝑇(𝑀) of degree 2𝛼𝑖 ∈ ℕ𝜃
0
is three-dimensional,

spanned by 𝑥2
𝑖
, 𝑥2

𝑖
, and 𝑥

𝑖𝑖
. Thus, B̂(𝑀) has no primitive elements of degree 2𝛼𝑖 . On the other

hand, the spaces of primitive elements of 𝑇(𝑊) of degree 𝛼𝑖 + 𝛼𝑗 ∈ ℕ𝜃+𝓁
0

are one-dimensional
spanned by 𝑥𝑖𝑗 , and those of degrees 2𝛼𝑖 , 2𝛼𝑗 are also one-dimensional, spanned by 𝚡2

𝑖
and

𝚡2
𝑗
, respectively. As the space of homogeneous primitive elements of B̂ coincides with that of

B̂(𝑀), we have that 𝚡𝑖𝑗 = 0 in B̂.
⋄ 𝑖 ⩽ 𝓁, 𝜃 < 𝑗, 𝚊𝑖𝑘 = 0, where 𝑗 = 𝑘. The space of primitive elements of 𝑇(𝑀) of degree 𝛼𝑖 + 𝛼𝑘 ∈

ℕ𝜃
0
has dimension 4, spanned by 𝑥𝑖𝑘, 𝑥𝑖𝑘

, 𝑥
𝑖𝑘
, 𝑥

𝑖𝑘
, so the space of primitive elements of B̂(𝑀)

of the same degree is 0. On the other hand, the space of primitive elements of 𝑇(𝑊) of degree
𝛼𝑖 + 𝛼𝑘 is spanned by 𝚡𝑖𝑘, 𝚡𝑖𝑗 , 𝚡𝑘𝑖

, 𝚡
𝑗𝑖
. As the space of homogeneous primitive elements of B̂

coincides with that of B̂(𝑀), we have that 𝚡𝑖𝑗 = 0 = 𝚡
𝑗𝑖
in B̂. This also shows that 𝚡𝑖𝑘 = 𝚡

𝑘𝑖
=

0.
⋄ 𝑖 ⩽ 𝓁, 𝜃 < 𝑗, 𝚊𝑖𝑘 = −1, where 𝑗 = 𝑘. The space of primitive elements of 𝑇(𝑀) of degree 𝛼𝑖 +

𝛼𝑘 ∈ ℕ𝜃
0
is two-dimensional, spanned by (5.27), so B̂(𝑀) has no primitive elements of this

degree. On the other hand, the spaces of primitive elements of 𝑇(𝑊) of degrees 𝛼𝑖 + 𝛼𝑗 and
𝛼
𝑖
+ 𝛼𝑘 are one-dimensional, spanned by 𝚡𝑖𝑗 and 𝚡

𝑘𝑖
, respectively, and those of degrees 𝛼𝑖 + 𝛼𝑘

and 𝛼𝑗 + 𝛼
𝑖
are 0 since 𝑎𝑖𝑘 = 𝑎

𝑖𝑗
= −1. Hence, 𝚡𝑖𝑗 = 𝚡

𝑘𝑖
= 0 in B̂.

⋄ 𝑖 ⩽ 𝓁 < 𝑗 ⩽ 𝜃. Here, 𝑎𝑖𝑗 = 0, and the space of primitive elements of𝑇(𝑀) of degree𝛼𝑖 + 𝛼𝑗 ∈ ℕ𝜃
0

is two-dimensional, spanned by 𝑥𝑖𝑗 and 𝑥
𝑖𝑗
, so the space of primitive elements of B̂(𝑀) of this

degree is 0. On the other hand, the spaces of primitive elements of 𝑇(𝑊) of degrees 𝛼𝑖 + 𝛼𝑗 and
𝛼
𝑖
+ 𝛼𝑗 are one-dimensional, spanned by 𝚡𝑖𝑗 and 𝚡

𝑗𝑖
, respectively. Hence, 𝚡𝑖𝑗 = 𝚡

𝑗𝑖
= 0 in B̂.

⋄ 𝑖, 𝑗 ⩽ 𝓁. Here 𝑎𝑖𝑗 = 0, respectively, 𝑎
𝑖𝑗

= 0, and this case is the second one.

Now we check (2.5) in 𝑇(𝑊), modulo (2.4) and (2.6). We have three cases:
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32 ANGIONO et al.

♡ 𝑗 ⩽ 𝓁. The space of primitive elements of𝑇(𝑀),modulo (5.25), (5.26), (5.27), (5.28), and (5.29), of
degree 𝛼𝑖 + 2𝛼𝑗 + 𝛼𝑘 has dimension ⩽ 2 and is spanned by (5.31): we can use skew derivations
as in type 𝛼3, see the proof of Proposition 5.2. Thus, the space of primitive elements of B̂(𝑀) of
this degree is 0. On the other hand, the space of primitive elements of 𝑇(𝑊), modulo (2.4) and
(2.6), of each degree in Ξ−1(𝛼𝑖 + 2𝛼𝑗 + 𝛼𝑘) is either one-dimensional or 0. Indeed, the nonzero
cases are spanned by
– [𝚡𝑖𝑗𝑘, 𝚡𝑗]𝑐, [𝚡𝑖𝑗𝑘

, 𝚡
𝑗
]𝑐 if 𝑗 < 𝓁;

– [𝚡𝜃−2 𝜃−1 𝜃, 𝚡𝜃−1]𝑐, [𝚡𝜃+2 𝜃+1 𝜃, 𝚡𝜃+1]𝑐 if 𝑗 = 𝜃 − 1 in type 𝛾𝜃;
– [𝚡123, 𝚡2]𝑐, [𝚡653, 𝚡5]𝑐 if 𝑗 = 2 in type 𝜙4.
As the space of homogeneous primitive elements of B̂ coincides with that of B̂(𝑀), we deduce
that (2.5) hold in B̂.

♡ 𝑗 > 𝓁. There are three possibilities: 𝑖 = 𝜃 − 1, 𝑗 = 𝜃, 𝑘 = 𝑖 in types 𝛾𝜃 or𝜙4, and 𝑖 ∈ {2, 5}, 𝑗 = 3,
𝑘 = 4 in type 𝜙4. The proof is analogous, using (5.30) for the first case, and (5.31) for the last
one.

From the analysis above, there exists a surjective Hopf algebra map B̂ ↠ B̂𝔮. In a similar way,
checking spaces of homogeneous primitive elements of appropriate degree, each defining rela-
tion of B̂(𝑀) annihilates in 𝐹−1

𝜎 (B̂𝔮) = 𝐹𝜎−1(B̂𝔮), so there exists a surjective Hopf algebra map
𝐹−1

𝜎 (B̂𝔮) ↠ B̂(𝑀). As 𝐹𝜎 preserves theℕ0-graduation of the pre-Nichols algebras, both surjective
maps are indeed isomorphisms. Hence, B̂ = B̂𝔮 as we claimed. □

5.3 The subalgebra of coinvariants

Let 𝜋 ∶ B̂(𝑀) ↠ B(𝑀) be the canonical projection, (𝑀) ∶= B̂(𝑀)co𝜋 the subalgebra of
coinvariants. The next step toward the presentation ofB(𝑀) is to describe (𝑀). To uncover the
structure of this subalgebra, we will use a cocycle 𝜎 as in Theorem 3.18 to translate the problem
to the diagonal setting, where the situation is better understood. In particular, we compute the
Hilbert series of (𝑀). Since we know that of B̂(𝑀), we will thus obtain the Hilbert series
ofB(𝑀).
To do so, and also to compute a PBW basis of B(𝑀) later on, we fix a reduced expression of

the element 𝑤0 of maximal length (or equivalently, a convex order on Δ+) for each type. Using
this reduced expression, [36] defines a submodule 𝑀𝛽 ∈ 𝕜𝐺

𝕜𝐺
, 𝛽 ∈ Δ+. We exhibit a basis {𝑥𝛽}

or {𝑥𝛽, 𝑥𝛽
} of the submodule𝑀𝛽 , depending on its dimension.

𝛼𝜃 The set of positive roots is 𝛥+ = {𝛼𝑖𝑗 ∶ 𝑖 ⩽ 𝑗 ∈ 𝕀}, and

𝛼1 < 𝛼12 < 𝛼2 < ⋯ < 𝛼𝜃−1 < 𝛼1𝜃 < 𝛼2𝜃 < ⋯ < 𝛼𝜃

is a convex order on 𝛥+. By [36], the modules𝑀𝛽 can be defined as

𝑀𝛼𝑖𝑗
= (ad𝑐 𝑀𝑖)⋯ (ad𝑐 𝑀𝑗−1)𝑀𝑗. (5.33)

A basis of𝑀𝛼𝑖𝑗
is given by

𝑥𝛼𝑖𝑗
= 𝑥𝑖 𝑖+1⋯𝑗, 𝑥𝛼𝑖𝑗

= 𝑥
𝑖 𝑖+1⋯𝑗

. (5.34)
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POINTED HOPF ALGEBRAS OVER NONABELIAN GROUPS 33

𝛿𝜃 The positive roots are 𝛥+ = {𝛼𝑖𝑗 ∶ 𝑖 ⩽ 𝑗 ∈ 𝕀} − {𝛼𝜃−1𝜃} ∪ {𝛼𝑖𝜃−2 + 𝛼𝜃 ∶ 𝑖 ∈ 𝕀𝜃−2} ∪ {𝛼𝑖𝜃−2 +

𝛼𝑗𝜃 ∶ 𝑖 < 𝑗 ∈ 𝕀𝜃−2}, and a convex order on 𝛥+ is given by

𝛼1 < 𝛼12 < 𝛼2 < ⋯ < 𝛼𝜃−2 < 𝛼1𝜃−1 < ⋯ < 𝛼𝜃−1 < ⋯ < 𝛼𝜃−1

< 𝛼1𝜃 + 𝛼2𝜃−2 < ⋯ < 𝛼1𝜃 + 𝛼𝜃−2 < 𝛼2𝜃 + 𝛼3𝜃−2 < ⋯ < 𝛼2𝜃 + 𝛼𝜃−2

< ⋯ < 𝛼𝜃−3𝜃 + 𝛼𝜃−2 < 𝛼1𝜃 < ⋯ < 𝛼𝜃−2𝜃 < 𝛼𝜃.

The Yetter–Drinfeld modules𝑀𝛼𝑖𝑗
, 𝑗 ≠ 𝜃, are defined as for type 𝛼𝜃. For 𝑗 = 𝜃, let

𝑀𝛼𝑖𝜃
= (ad𝑐 𝑀𝑖)⋯ (ad𝑐 𝑀𝜃−3)(ad𝑐 𝑀𝜃−1)(ad𝑐 𝑀𝜃−2)𝑀𝜃.

For the other roots, we have

𝑀𝛼𝑖𝜃−2+𝛼𝜃
= (ad𝑐 𝑀𝑖)⋯ (ad𝑐 𝑀𝜃−2)𝑀𝜃,

𝑀𝛼𝑖𝜃+𝛼𝑗𝜃−2
= [𝑀𝛼𝑖𝜃−2+𝛼𝜃

,𝑀𝛼𝑗𝜃−1
]𝑐.

A basis of𝑀𝛽 for either 𝛽 = 𝛼𝑖𝑗 or 𝛽 = 𝛼𝑖𝜃−2 + 𝛼𝜃 is given as in (5.34). For 𝛽 = 𝛼𝑖𝜃 + 𝛼𝑗𝜃−2, a
basis of𝑀𝛽 is

𝑥𝛽 = [𝑥𝑖⋯𝜃−2𝜃, 𝑥𝑗⋯𝜃−1]𝑐, 𝑥
𝛽
= [𝑥

𝑖𝑖+1⋯𝜃−2𝜃
, 𝑥𝑗⋯𝜃−1]𝑐. (5.35)

𝜖𝜃 Here, one can fix a convex order as in [11, §5]. For braidings of diagonal type, a PBW basis
is obtained recursively on the height of the roots, starting with 𝚡𝛼𝑖

= 𝚡𝑖 for simple roots, and
later 𝚡𝛽 = [𝚡𝛽1

, 𝚡𝛽2
]𝑐 for some pair (𝛽1, 𝛽2) such that 𝛽1 + 𝛽2 = 𝛽, see [13, Corollary 3.17]. For

each nonsimple root 𝛽 ∈ 𝛥+, we have, accordingly,

𝑀𝛽 = [𝑀𝛽1
,𝑀𝛽2

]𝑐, 𝑥𝛽 = [𝑥𝛽1
, 𝑥𝛽2

]𝑐, 𝑥
𝛽
= [𝑥

𝛽1
, 𝑥𝛽2

]𝑐.

𝛾𝜃 Now 𝛥+ = {𝛼𝑖𝑗 ∶ 𝑖 ⩽ 𝑗 ∈ 𝕀} ∪ {𝛼𝑖𝜃 + 𝛼𝑘 𝜃−1 ∶ 𝑖 ⩽ 𝑗 ∈ 𝕀𝜃−1}, and

𝛼1 < 𝛼12 < 𝛼2 < ⋯ < 𝛼𝜃−1 < 𝛼1𝜃 < 𝛼2𝜃 < ⋯ <

𝛼1𝜃 + 𝛼1𝜃−1 < 𝛼1𝜃 + 𝛼2𝜃−1 < ⋯ < 𝛼1𝜃 + 𝛼𝜃−1 < ⋯ <

𝛼2𝜃 + 𝛼2𝜃−1 < ⋯ < 𝛼2𝜃 + 𝛼𝜃−1 < ⋯ < 2𝛼𝜃−1 + 𝛼𝜃 < 𝛼𝜃−1 + 𝛼𝜃 < 𝛼𝜃,

is a convex order associated to the following reduced expression of 𝑤0:

𝑠1(𝑠2𝑠1)(𝑠3𝑠2𝑠1)⋯ (𝑠𝜃−1 ⋯ 𝑠1)(𝑠𝜃𝑠𝜃−1 ⋯ 𝑠1)(𝑠𝜃 ⋯ 𝑠2)⋯ 𝑠𝜃.

The Yetter–Drinfeld modules𝑀𝛼𝑖𝑗
, 𝛼𝑖𝑗 ≠ 𝛼𝜃, are as in (5.33), and (5.34) is a basis as well. Now,

𝑀𝛼𝜃
is one-dimensional, spanned by 𝑥𝜃, and for the other roots, we check that

𝑀𝛼𝑖𝜃+𝛼𝑘𝜃−1
= [𝑀𝛼𝑖𝜃

,𝑀𝛼𝑘𝜃−1
]𝑐. (5.36)
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34 ANGIONO et al.

A basis of𝑀𝛼𝑖𝜃+𝛼𝑘𝜃−1
is given by

𝑥𝛽 = [𝑥𝑖⋯𝜃, 𝑥𝑘⋯𝜃−1]𝑐, 𝑥
𝛽
= [𝑥

𝑖𝑖+1⋯𝜃
, 𝑥𝑘⋯𝜃−1]𝑐. (5.37)

𝜙4 The element 𝑤0 of maximal length has a reduced expression

𝑠1𝑠2𝑠3𝑠4𝑠2𝑠3𝑠1𝑠2𝑠3𝑠4𝑠1𝑠2𝑠3𝑠2𝑠1𝑠2𝑠3𝑠4𝑠2𝑠3𝑠2𝑠3𝑠4𝑠3, (5.38)

which induces the following convex order on the set of positive roots:

1, 12, 12223, 122234, 123, 1222324, 1223, 1223324,

1224324, 1224334, 1234, 12234, 12243342, 122324, 123324, 2,

223, 2234, 23, 22324, 234, 3, 34, 4.

We denote by 𝛽𝑖 the 𝑖th root according with this order.
Next, we give, for each nonsimple root 𝛽 = 1𝑎2𝑏3𝑐4𝑑 such that 𝑑 ≠ 0, a basis for eachYetter–

Drinfeld submodule𝑀𝛽 (if 𝑑 = 0, then we choose a basis as for 𝛾𝜃):

𝑀122234 ∶
{
[𝑥12, 𝑥1234]𝑐

}
, 𝑀1222324 ∶

{
[𝑥123, 𝑥1234]𝑐

}
,

𝑀1223324 ∶
{
[𝑥1223, 𝑥1234]𝑐, [𝑥1223

, 𝑥1234]𝑐
}
, 𝑀1224324 ∶

{
[𝑥1223, 𝑥12234]𝑐

}
,

𝑀1224334 ∶
{
[𝑥1223, 𝑥122324]𝑐

}
, 𝑀1234 ∶

{
𝑥1234, 𝑥1234

}
,

𝑀12234 ∶
{
[𝑥1234, 𝑥2]𝑐, [𝑥1234, 𝑥2]𝑐

}
, 𝑀12243342 ∶

{
[𝑥12234, 𝑥122324]𝑐

}
,

𝑀122324 ∶
{
[𝑥1234, 𝑥23]𝑐, [𝑥1234

, 𝑥23]𝑐
}
, 𝑀2234 ∶

{
𝑥
2234

}
,

𝑀123324 ∶
{
[𝑥122324, 𝑥2]𝑐, [𝑥122324

, 𝑥2]𝑐
}
, 𝑀22324 ∶

{
[𝑥23, 𝑥234]𝑐

}
,

𝑀234 ∶
{
𝑥234, 𝑥234

}
, 𝑀34 ∶

{
𝑥34

}
.

where 𝑥𝛽 is the first vector fixed for 𝑀𝛽 , while for dim𝑀𝛽 = 2, we denote by 𝑥
𝛽
the second

vectors in the order fixed above.

Remark 5.5. Let 𝛽 = 1𝑎12𝑎2 ⋯ 𝜃𝑎𝜃 ∈ Δ𝑀
+ , g𝛽 ∶= g𝑎1

1
g𝑎2
2

⋯ g𝑎𝜃

𝜃
∈ 𝐺.

(1) If dim𝑀𝛽 = 1, then 𝑥𝛽 has 𝐺-degree g𝛽 .
(2) If dim𝑀𝛽 = 2, then 𝑥𝛽 has 𝐺-degree g𝛽 and 𝑥

𝛽
has 𝐺-degree g𝛽𝜅.

We omit the details of the proof that either {𝑥𝛽} or {𝑥𝛽, 𝑥𝛽
} is a basis of 𝑀𝛽 . The first step is

to check that𝑀𝛽 is spanned by {𝑥𝛽}, respectively, {𝑥𝛽, 𝑥𝛽
}, using the defining relations of B̂(𝑀);

this can be done recursively on the convex (total) order. If dim𝑀𝛽 = 2, we see that 𝑥𝛽, 𝑥𝛽
have

different 𝐺-degree by Remark 5.5, so they are linearly independent.

Proposition 5.6. The subalgebra(𝑀) = B̂(𝑀)co𝜋 of coinvariants under the canonical projection
𝜋∶ B̂(𝑀) ↠ B(𝑀) is a Hopf subalgebra of B̂(𝑀). It is a skew-polynomial algebra in variables
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POINTED HOPF ALGEBRAS OVER NONABELIAN GROUPS 35

𝑥2
𝛽
, 𝛽 ∈ Δ𝑀

+ − {𝛼𝑖}, (5.39)

[𝑥𝛽, 𝑥𝛽
]𝑐, 𝛽 ∈ Δ𝑀

+ − {𝛼𝑖} such that dim𝑀𝛽 = 2. (5.40)

Proof. We proceed in several steps. In what follows, 𝛽 ∈ Δ+ is not simple.

Step 1. For each 𝛽 ∈ Δ+ such that dim𝑀𝛽 = 1, we have 𝑥2
𝛽
∈ 𝑀2

𝛽
∩(𝑀).

For each 𝛽 ∈ Δ+ such that dim𝑀𝛽 = 2, we have 𝑥2
𝛽
, 𝑥2

𝛽
, [𝑥𝛽, 𝑥𝛽

]𝑐 ∈ (𝑀).

Proof of Step 1. The subalgebra spanned by 𝑀𝛽 is isomorphic to the Nichols algebra B(𝑀𝛽) by
[35]. Assume first that dim𝑀𝛽 = 1. The braiding of 𝑀𝛽 satisfies that 𝑐(𝑥𝛽 ⊗ 𝑥𝛽) = −𝑥𝛽 ⊗ 𝑥𝛽 , so
𝑥2
𝛽
= 0 in B(𝑀). Thus, 𝑥2

𝛽
∈ ker 𝜋 ∩ 𝑀2

𝛽
, and applying 𝐹𝜎, we get

𝐹𝜎(𝑥
2
𝛽
) ∈ 𝐹𝜎

(
ker 𝜋 ∩ 𝑀2

𝛽

)
= ker 𝜋 ∩ 𝐹𝜎

(
𝑀𝛽

)2
= (𝑊).

Hence, 𝑥2
𝛽
∈ (𝑀), since 𝐹𝜎 leaves the coalgebra structure unchanged.

Now, if dim𝑀𝛽 = 2, then the braiding of𝑀𝛽 satisfies

𝑐(𝑥𝛽 ⊗ 𝑥𝛽) = −𝑥𝛽 ⊗ 𝑥𝛽, 𝑐(𝑥
𝛽
⊗ 𝑥

𝛽
) = −𝑥

𝛽
⊗ 𝑥

𝛽
, 𝑐2(𝑥𝛽 ⊗ 𝑥

𝛽
) = 𝑥𝛽 ⊗ 𝑥

𝛽
.

By a similar argument, 𝑥2
𝛽
, 𝑥2

𝛽
, [𝑥𝛽, 𝑥𝛽

]𝑐 ∈ (𝑀). □

Step 2. For each 𝛽 ∈ Δ+ such that dim𝑀𝛽 = 1, {𝚡𝛽} is a basis of 𝐹𝜎(𝑀𝛽).
For each 𝛽 ∈ Δ+ such that dim𝑀𝛽 = 2, {𝚡𝛽, 𝚡𝛽

} is a basis of 𝐹𝜎(𝑀𝛽).

Proof of Step 2. The statement certainly holds for simple roots, so we fix a nonsimple root 𝛽. For
types 𝛼𝜃, 𝛿𝜃, 𝜖𝜃, we always have dim𝑀𝛽 = 2 and𝑀𝛽 = [𝑀𝛽1

,𝑀𝛽2
]𝑐 for some 𝛽1, 𝛽2 ∈ Δ+. Notice

that (ad𝑐 𝑥𝑖)𝑥𝑗
= 0 for all 𝑖, 𝑗 ∈ 𝕀 since 𝑖, 𝑗 belong to different connected components of theDynkin

diagram of type 𝑋𝜃 × 𝑋𝜃. Hence, [𝚡𝛾, 𝚡𝛿
]𝑐 for all 𝛾, 𝛿 ∈ Δ+, and arguing recursively,

𝐹𝜎(𝑀𝛽) = 𝐹𝜎

(
[𝑀𝛽1

,𝑀𝛽2
]𝑐

)
=
[
𝐹𝜎(𝑀𝛽1

), 𝐹𝜎(𝑀𝛽2
)
]
𝑐

=
[
𝕜𝚡𝛽1

+ 𝕜𝚡
𝛽1
, 𝕜𝚡𝛽2

+ 𝕜𝚡
𝛽2

]
𝑐
= 𝕜

[
𝚡𝛽1

, 𝚡𝛽2

]
𝑐
+ 𝕜
[
𝚡
𝛽1
, 𝚡

𝛽2

]
𝑐
= 𝕜𝚡𝛽 + 𝕜𝚡

𝛽
.

For multiply laced types, the proof follows similarly, case-by-case. □

Step 3. There exist ℕ𝜃
0
-homogeneous elements

∙ 𝑦𝛽 ∈ 𝑀2
𝛽
of 𝐺-degree g2

𝛽
when dim𝑀𝛽 = 1,

∙ 𝑦𝛽 , 𝑦𝛽
∈ 𝑀2

𝛽
of 𝐺-degree g2

𝛽
, respectively, g2

𝛽
𝜅, when dim𝑀𝛽 = 2,

whicht 𝑞-commute with every 𝐺-homogeneous element of B̂. Moreover, (𝑀) is a skew-
polynomial algebra in these variables.
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36 ANGIONO et al.

Proof of Step 3. Assume that dim𝑀𝛽 = 2. Note that, for all 𝑖 ∈ 𝕀, the elements 𝚡2
𝑖
, 𝚡2

𝑖
are linear

combinations of elements of 𝐺-degree g2
𝑖
and g2

𝑖
𝜅 with nontrivial components on each degree.

Hence, the elements 𝚡2
𝛽
, 𝚡2

𝛽
are written as linear combinations of elements of𝐺-degree g2

𝛽
and g2

𝛽
𝜅

with nontrivial components on each degree, since they are obtained applying Lusztig’s isomor-
phisms to appropriate 𝚡2

𝑖
, 𝚡2

𝑖
. Thus, there exist 𝚢𝛽 and 𝚢

𝛽
of 𝐺-degrees g2

𝛽
and g2

𝛽
𝜅, respectively,

that span the same as 𝚡2
𝛽
and 𝚡2

𝛽
. When dim𝑀𝛽 = 1, we may choose 𝚢𝛽 = 𝚡2

𝛽
.

As (𝑊) is a skew-polynomial algebra in variables 𝑥2
𝛽
, 𝑥2

𝛽
and each element 𝑥2

𝛽
, 𝑥2

𝛽
is skew-

central, the same holds with respect to 𝚢𝛽 , 𝚢𝛽
.

Let 𝛽 ∈ Δ+ be such that dim𝑀𝛽 = 2. We set

𝑦𝛽 ∶= 𝐹−1
𝜎 (𝚢𝛽) ∈ 𝑀2

𝛽
, 𝑦

𝛽
∶= 𝐹−1

𝜎 (𝚢
𝛽
) ∈ 𝑀2

𝛽
.

Then 𝑦𝛽 , 𝑦𝛽
∈ (𝑀) since 𝐹𝜎 preserves the coalgebra structure. Note that

𝐹𝜎(𝑥𝑖𝑦𝛽) = 𝜎(g𝑖 , g
2
𝛽
)𝐹𝜎(𝑥𝑖)𝚢𝛽, 𝐹𝜎(𝑦𝛽𝑥𝑖) = 𝜎(g2

𝛽
, g𝑖)𝚢𝛽𝐹𝜎(𝑥𝑖),

and these two elements differ up to a nonzero scalar for all 𝑖 ∈ 𝕀, thus 𝑦𝛽 is skew-central. The same
happens for 𝑦

𝛽
, and for 𝑦𝛽 when dim𝑀𝛽 = 1. In particular, the image under𝐹𝜎 of amultiplication

of various 𝑦𝛽 ’s, 𝑦𝛽
’s is themultiplication to the corresponding 𝚢𝛽 ’s, 𝚢𝛽

’s up to a nonzero scalar, and
the Step follows. □

Step 4. For each 𝛽 ∈ Δ+ such that dim𝑀𝛽 = 1, we have 𝕜𝑦𝛽 = 𝕜𝑥2
𝛽
.

For each 𝛽 ∈ Δ+ such that dim𝑀𝛽 = 2, we have 𝕜𝑦𝛽 = 𝕜𝑥2
𝛽
, 𝕜𝑦

𝛽
= 𝕜[𝑥𝛽, 𝑥𝛽

]𝑐.

Proof of Step 4. Assume first that dim𝑀𝛽 = 1. Then dim𝑀2
𝛽
= 1 in B̂(𝑀), and the claim follows

since both 𝑦𝛽 and 𝑥2
𝛽
are generators of𝑀2

𝛽
.

Now assume that dim𝑀𝛽 = 2. In this case dim𝑀2
𝛽
= 3 in B̂(𝑀) since dim𝐹𝜎(𝑀

2
𝛽
) = 3 in

B̂(𝑊). On the other hand, dim𝑀2
𝛽
= 1 in B(𝑉): it is generated by 𝑥

𝛽
𝑥𝛽 since 𝑥2

𝛽
= 𝑥2

𝛽
=

[𝑥𝛽, 𝑥𝛽
]𝑐 = 0. Notice thatdim𝐹𝜎(𝑀𝛽)

2 ∩(𝑊) = 2, and𝐹𝜎(𝑀𝛽)
2 ∩(𝑊) contains elementswith

nontrivial components in degrees g2
𝛽
and g2

𝛽
𝜅. Hence dim𝑀2

𝛽
∩(𝑀) = 2, with one-dimensional

homogeneous components of degrees g2
𝛽
and g2

𝛽
𝜅. Thus 𝕜𝑦𝛽 = 𝕜𝑥2

𝛽
= 𝕜𝑥2

𝛽
and 𝕜𝑦

𝛽
= 𝕜[𝑥𝛽, 𝑥𝛽

]𝑐,

as claimed. □

Hence, Step 3 shows that (𝑀) is a skew-polynomial algebra, and Step 4 assures that we can
choose generating variables as stated. □

5.4 A presentation of the Nichols algebra

Here we put together the results obtained in §5.2 and §5.3 to get a presentation, a PBW basis, and
the Hilbert series for the Nichols algebra.
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POINTED HOPF ALGEBRAS OVER NONABELIAN GROUPS 37

Theorem 5.7.

(i) A set of PBW generators forB(𝑀) is given by

𝑥𝛽, 𝛽 ∈ Δ+; 𝑥
𝛽
when dim𝑀𝛽 = 2. (5.41)

The height of 𝑥𝛽 , 𝑥𝛽
is 2 for all 𝛽 ∈ Δ+.

(ii) The Nichols algebra B(𝑀) is presented by generators 𝑥𝑖 , 𝑖 ∈ 𝕀, 𝑥
𝑗
, 𝑗 ∈ 𝕀𝓁 , and relations (5.25),

(5.26), (5.27), (5.28), (5.29), (5.30), (5.31), (5.39), and (5.40).

Proof.

(i) By [34, Theorem 2.6], the multiplication map⨂
𝛽∈Δ𝑀

+

B(𝑀𝛽) → B(𝑀)

is an isomorphism of ℤ𝜃-graded objects in 𝕜𝐺
𝕜𝐺
. If dim𝑀𝛽 = 1, then 𝑀𝛽 has braiding − id

and 1, 𝑥𝛽 is a basis ofB(𝑀𝛽). If dim𝑀𝛽 = 2, then𝑀𝛽 has braiding as in (2.16): that is,B(𝑀𝛽)

is a quantum plane with basis 1, 𝑥𝛽, 𝑥𝛽
, 𝑥𝛽𝑥𝛽

, and the claim follows.
(ii) By Proposition 5.4, relations (5.25), (5.26), (5.27), (5.28), (5.29), (5.30), and (5.31) hold inB(𝑀).

Also, (5.39) and (5.40) hold in B(𝑀) because the subalgebra generated by 𝑀𝛽 is isomorphic
to B(𝑀𝛽) as an algebra. Therefore, if B denotes the quotient of 𝑇(𝑀) by all these relations,
then there exists a canonical projectionB ↠ B(𝑀) of graded Hopf algebras. Moreover,

B = B̂(𝑉)∕⟨(𝑉)+⟩,
soB̂(𝑉) = (𝑉)B by [15, Lemma 2.4]. By Propositions 5.6 and 5.4,

B =
⎛⎜⎜⎝

∏
𝛽∈Δ𝑉

+∶dim𝑀𝛽=2

(1 + 𝑡𝛽)2
⎞⎟⎟⎠
⎛⎜⎜⎝

∏
𝛽∈Δ𝑉

+∶dim𝑀𝛽=1

(1 + 𝑡𝛽)
⎞⎟⎟⎠ = B(𝑉),

and we deduce that B = B(𝑀). □

Remark 5.8. The order of the elements in the PBW basis in Theorem 5.7 (i) is given by the expres-
sion of the element 𝑤0 of maximal length fixed below. For example, for type 𝜙4, we have the
following PBW basis:

𝑥
𝑎1
4

𝑥
𝑎2
34

𝑥
𝑎3

234
𝑥
𝑎4
234

𝑥
𝑎5

22324
𝑥
𝑎6

23
𝑥
𝑎7

23
𝑥
𝑎8

2234
𝑥
𝑎9

223
𝑥
𝑎10

2
𝑥
𝑎11
2

𝑥
𝑎12

123324
𝑥
𝑎13

123324
𝑥
𝑎14

122324

𝑥
𝑎15

122324
𝑥
𝑎16

12243342
𝑥
𝑎17

12234
𝑥
𝑎18

12234
𝑥
𝑎19

1234
𝑥
𝑎20

1234
𝑥
𝑎21
34

𝑥
𝑎22

1224334
𝑥
𝑎23

1224324
𝑥
𝑎24

1223324

𝑥
𝑎25

1223324
𝑥
𝑎26

1223
𝑥
𝑎27

1223
𝑥
𝑎28

1222324
𝑥
𝑎29

123
𝑥
𝑎30

123
𝑥
𝑎31

122234
𝑥
𝑎32

12223
𝑥
𝑎33

12
𝑥
𝑎34

12
𝑥
𝑎35

1
𝑥
𝑎36

1
, 𝑎𝑖 ∈ 𝕀0,1.

(5.42)
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38 ANGIONO et al.

5.5 Rigidity of Nichols algebras

We briefly discuss rigidity for Nichols algebras of Yetter–Drinfeld modules of types 𝛼𝜃, 𝛾𝜃, 𝛿𝜃,
𝜖𝜃, or 𝜙4, inspired by [18] where rigidity for finite-dimensional Nichols algebras over abelian
groups is studied. This will come in handy in the next section, where we study the liftings of
these Nichols algebras.
Let 𝑀 ⊂ 𝑇(𝑀) be the set of defining relations as in Theorem 5.7. We start by describing the

Yetter–Drinfeld structure of 𝕜𝑀 . Recall the index 𝓁 introduced in (3.5).

Remark 5.9.

(1) The 𝐺-degree of 𝑥
𝑖𝑖
is g2

𝑖
𝜅. Using Example 2.4, it is easy to see that

𝜒𝑖 ∶ 𝐺 → 𝕜×, 𝜒𝑖(ℎ) ∶=

{
𝜒𝑖(ℎg−1

𝑗
ℎg𝑗) ℎ ∈ 𝐺g𝑖 ,

𝜒𝑖(𝜅)𝜒𝑖(ℎ
2) ℎ ∉ 𝐺g𝑖 ,

(5.43)

is a character, and the 𝐺-action on 𝑥
𝑖𝑖
is given by 𝜒𝑖 .

(2) The 𝐺-degree of 𝑥2
𝑖
and 𝑥2

𝑖
is g2

𝑖
. The 𝐺-action when 𝑖 ⩽ 𝓁 is

g ⋅ 𝑥2
𝑖 =

{
𝜒2

𝑖
(g)𝑥2

𝑖
, g ∈ 𝐺g𝑖 ,

𝜒2
𝑖
(g−1

𝑗
g)𝑥2

𝑖
, g ∉ 𝐺g𝑖 ;

g ⋅ 𝑥2

𝑖
=

{
𝜒2

𝑖
(g)𝑥2

𝑖
, g ∈ 𝐺g𝑖 ,

𝜒2
𝑖
(gg𝑗)𝑥

2
𝑖
, g ∉ 𝐺g𝑖 .

If 𝑖 > 𝓁, then the action on 𝑥2
𝑖
is given by 𝜒2

𝑖
.

(3) Let 𝑖 < 𝑗 ⩽ 𝓁 be such that 𝑎𝑖𝑗 = −1, and set

𝑟1 ∶= 𝑥
𝑖𝑗

+ 𝜒𝑗(g
2
𝑖 )𝑥𝑖𝑗

, 𝑟2 ∶= 𝑥
𝑖𝑗

+ 𝜒𝑖(𝜅)𝑥𝑖𝑗.

The 𝐺-degrees of 𝑟1 and 𝑟2 are g𝑖g𝑗𝜅 and g𝑖g𝑗 . The 𝐺-action is given by

(4) Let 𝑖 < 𝑗 ⩽ 𝓁 be such that 𝑎𝑖𝑗 = 0. Both 𝑥𝑖𝑗 and 𝑥
𝑖𝑗
have 𝐺-degree g𝑖g𝑗 , while the 𝐺-degree

of 𝑥
𝑖𝑗
and 𝑥

𝑖𝑗
is g𝑖g𝑗𝜅. For the action, as 𝐺g𝑖 and 𝐺g𝑗 are both subgroups of index 2, there

are two possibilities. If 𝐺g𝑖 ≠ 𝐺g𝑗 †, then we choose g𝑎 ∈ 𝐺g𝑖 − 𝐺g𝑗 and g𝑏 ∈ 𝐺g𝑗 − 𝐺g𝑖 . By
Example 2.4, the 𝐺-action is given by:

† This occurs, for example, in type 𝛼𝜃 whenever 𝑗 − 𝑖 ⩾ 3. We may choose g𝑎 = g𝑗−1 ≠ g𝑏 = g𝑖+1.
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POINTED HOPF ALGEBRAS OVER NONABELIAN GROUPS 39

Hence, 𝑥𝑖𝑗 , 𝑥𝑖𝑗
, 𝑥

𝑖𝑗
, 𝑥

𝑖𝑗
span a four-dimensional irreducible Yetter–Drinfeld submodule.

In the case 𝐺g𝑖 = 𝐺g𝑗 , we choose g𝑎 = g𝑏 ∉ 𝐺g𝑖 , and the action is described by the second
and last rows of the previous table. There are two Yetter–Drinfeld submodules, spanned by
{𝑥𝑖𝑗, 𝑥𝑖𝑗

}, and by {𝑥
𝑖𝑗
, 𝑥

𝑖𝑗
}.

(5) Let 𝑖 ⩽ 𝓁 < 𝑗 be such that 𝑎𝑖𝑗 = 0. The 𝐺-degree of 𝑥𝑖𝑗 is g𝑖g𝑗 , while the 𝐺-degree of 𝑥
𝑖𝑗
is

g𝑖g𝑗𝜅. For the action, notice that g𝑗 ∈ 𝑍(𝐺): if we pick 𝐠 ∉ 𝐺g𝑖 , then

(6) For 𝑖, 𝑗 such that 𝑎𝑖𝑗 = −2, the 𝐺-degree of (ad𝑐 𝑥𝑗)𝑥𝑖𝑗𝑖
is g2

𝑖
g2
𝑗
𝜅, where 𝐺 acts via 𝜒1𝜒

2
𝑗
.

(7) Let 𝑖 < 𝑗 < 𝑘 be such that 𝑎𝑗𝑖 = 𝑎𝑗𝑘 = −1. Consider

𝐫1 ∶= (ad𝑐 𝑥𝑗)𝑥𝑖𝑗𝑘, 𝐫2 ∶= (ad𝑐 𝑥𝑗)𝑥𝑖𝑗𝑘
,

which have 𝐺-degrees g𝑖g
2
𝑗
g𝑘𝜅 and g𝑖g

2
𝑗
g𝑘, respectively. The 𝐺-action is given by

(8) Let 𝛽 ∈ Δ𝑀
+ − {𝛼𝑖}. The 𝐺-degrees of 𝑥2

𝛽
and [𝑥𝛽, 𝑥𝛽

]𝑐 are g2
𝛽
and g2

𝛽
𝜅, respectively, where g𝛽 is

as in Remark 5.5. We define accordingly 𝜒𝛽 ∶= 𝜒
𝑎1
1
⋯𝜒

𝑎𝜃

𝜃
, and 𝐺 acts on 𝑥2

𝛽
and [𝑥𝛽, 𝑥𝛽

]𝑐 via
𝜒𝛽 .

Remark 5.10. Let 𝑖, 𝑗 ∈ 𝕀 such that 𝐺g𝑖 ≠ 𝐺g𝑗 and g𝑖 , g𝑗 ∉ 𝑍(𝐺). Then

𝐺g𝑖g𝑗 = (𝐺g𝑖 ∩ 𝐺g𝑗 ) ∪ (𝐺 − (𝐺g𝑖 ∪ 𝐺g𝑗 ))

and the following rule defines a character:

𝜒𝑖𝑗 ∶𝐺g𝑖g𝑗 → 𝕜×, 𝜒𝑖𝑗(ℎ) ∶=

{
𝜒𝑖(ℎ)𝜒𝑗(ℎ), ℎ ∈ 𝐺g𝑖 ∩ 𝐺g𝑗 ,

𝜒𝑖(ℎg𝑗)𝜒𝑗(ℎg𝑖), ℎ ∉ 𝐺g𝑖 ∪ 𝐺g𝑗 .
(5.44)

Theorem 5.11. Let𝑀 ∈ 𝕜𝐺
𝕜𝐺
 of type 𝛼𝜃 , 𝛾𝜃 , 𝛿𝜃 , 𝜖𝜃 or 𝜙4. Then

Hom𝕜𝐺
𝕜𝐺(𝕜𝑀,𝑀) = 0.

Proof. Let 𝚛 ∈ 𝑀 be 𝐺-homogeneous of degree 𝚐 ∈ 𝐺. By direct computation, 𝚐 ⋅ 𝚛 = 𝚛. On the
other hand,𝑀 has a basis {𝑥𝑖|𝑖 ∈ 𝕀} ∪ {𝑥

𝑗
|𝑗 ∈ 𝕁}, where 𝕁 = {𝑖 ∈ 𝕀| dim𝑀𝑖 = 2}. Here 𝑥𝑖 has degree
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40 ANGIONO et al.

g𝑖 , while 𝑥
𝑗
has degree g𝑗𝜅, and

g𝑖 ⋅ 𝑥𝑖 = −𝑥𝑖, 𝑖 ∈ 𝕀; g𝑗𝜅 ⋅ 𝑥
𝑗
= −𝑥

𝑗
, 𝑗 ∈ 𝕁.

Hence, the claim follows. □

Recall that a graded braided bialgebra is rigid if it has no nontrivial graded deformations. See
[18, §2] and the references therein for details. Next, we address rigidity forB(𝑀).

Theorem 5.12. Let𝑀 ∈ 𝕜𝐺
𝕜𝐺
 be of type either 𝛼𝜃 , 𝛾𝜃 , 𝛿𝜃 , 𝜖𝜃 , or 𝜙4. ThenB(𝑀) is rigid.

Proof. The category 𝕜𝐺
𝕜𝐺
 is semisimple and Hom𝕜𝐺

𝕜𝐺
(𝕜𝑀,𝑀) = 0 by Theorem 5.11. Hence, [18,

Theorem 5.3] applies for B(𝑀). □

Remark 5.13. The previous notion of rigidity is related to another one introduced in [48] coming
from the action of an appropriate algebraic group on the Nichols algebra (viewed as a braided
Hopf algebra). In fact, the notion of rigidity in loc. cit. is equivalent to generation in degree 1, which
holds by Theorem 4.1. This gives a different proof of Theorem 5.12, independent of Theorem 5.11.
Anyway, we need Theorem 5.11 to compute liftings.

6 LIFTINGS OF NICHOLS ALGEBRAS

We describe all liftings for Nichols algebras of Yetter–Drinfeld modules of types 𝛼𝜃, 𝛾𝜃, 𝛿𝜃, 𝜖𝜃, and
𝜙4. Even when the braided vector space is of diagonal type (i.e., when 𝜅 acts trivially), we cannot
invoke [16] since the Yetter–Drinfeld realizations considered here are not principal. Nevertheless,
we will perform an adaptation of the strategy developed in [5, 16].
We study the lowest rank type 𝛼2 first, with a double purpose. On the one hand, we will only

show all the details in this case, with explicit formulas for the defining relations. On the other
hand, it will be the starting point to prove the general case, in which we will conclude that all
liftings are cocycle deformations of the associated graded Hopf algebras.
Recall that a lifting of𝑀 over 𝐺 is a finite-dimensional Hopf algebra 𝐻 with coradical 𝕜𝐺 and

infinitesimal braiding𝑀. Hence, gr𝐻 ≃ B(𝑀)#𝕜𝐺 by Theorem 4.1.
The family of liftings of𝑀 over 𝐺 will be indexed by a set𝑀 ⊆ 𝕜𝐾 of deformation parameters,

where 𝐾 is the number of suitable chosen Yetter–Drinfeld submodules of the subspace spanned
by a minimal set  of generators for the ideal defining B(𝑀).
For each 𝝀 ∈ 𝑀 and 𝑖 ∈ 𝕀𝐾 , we define 𝝀(𝑖), 𝝀(−𝑖) ∈ 𝕜𝐾 by

(𝝀(𝑖))𝑗 ∶=

{
0 𝑗 ≠ 𝑖,

𝜆𝑖 𝑗 = 𝑖;
(𝝀(−𝑖))𝑗 ∶=

{
𝜆𝑖 𝑗 ≠ 𝑖,

0 𝑗 = 𝑖;
𝑗 ∈ 𝕀𝐾. (6.1)

The aforementioned strategy starts by choosing a good stratification  = 0 ⊔ 1 ⊔⋯ ⊔ 𝑙, mean-
ing that the vector space spanned by 𝑘 is a Yetter–Drinfeld submodule ofB(𝑀) and the elements
of 𝑘 are primitive in the braidedHopf algebraB𝑘 ∶= 𝑇(𝑀)∕⟨∪𝑘−1

𝑗=0
𝑗⟩, 𝑘 ∈ 𝕀𝑙+1, with one possible

exception: we do not require primitiveness for the last step.
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POINTED HOPF ALGEBRAS OVER NONABELIAN GROUPS 41

6.1 Liftings of type 𝜶𝟐

Let 𝑀 ∈ 𝕜𝐺
𝕜𝐺
 of type 𝛼2. Let 𝑀 be the set of tuples 𝝀 = (𝜇1, 𝜇2, 𝜆1, 𝜆2, 𝜆12, 𝜇12, 𝜇

′
12
) ∈ 𝕜7 that

satisfy the constraints

𝜇𝑖 = 0 if either 𝜒2
𝑖 ≠ 𝜀 or g2

𝑖 = 1, 𝑖 ∈ 𝕀2,

𝜆𝑖 = 0 if either 𝜒𝑖 ≠ 𝜀 or g2
𝑖 = 𝜅, 𝑖 ∈ 𝕀2,

𝜆12 = 0 if 𝜒12 ≠ 𝜀,

𝜇12 = 0 if either 𝜒1𝜒2 ≠ 𝜀 or (g1g2)2 = 1,

𝜇′
12 = 0 if either 𝜒1𝜒2 ≠ 𝜀 or (g1g2)2 = 𝜅.

(6.2)

The definition of 𝜒𝑖 and 𝜒𝑖𝑗 was given in (5.43) and (5.44). This subsection is devoted to prove the
following.

Theorem 6.1. Let𝑀 ∈ 𝕜𝐺
𝕜𝐺
 be of type 𝛼2. For each 𝝀 ∈ 𝑀 , let(𝝀) be the quotient of 𝑇(𝑀)#𝕜𝐺

by the following set of relations:

𝑧2
𝑖 − 𝜇𝑖(1 − g2

𝑖 ), 𝑧
𝑖𝑖
− 𝜆𝑖(1 − g2

𝑖 𝜅),

𝑧
12

+ 𝜒1(𝜅)𝑧12 − 𝜆12(1 − g1g2),

𝑧2
12 + 𝜆1𝜇2(1 − g2

1 𝜅)g
2
2 − 𝜒1(𝜅)𝜇1𝜆2(1 − g2

1 )g
2
2 𝜅 − 𝜇12(1 − g2

1 g
2
2 𝜅),

[𝑧12, 𝑧12]𝑐 + 2(1 + 𝜒1𝜒2(𝜅))𝜇1𝜇2(1 − g2
1 )g

2
2 − 𝜆1𝜆2(𝜅 − g2

1 )g
2
2 − 𝜇′

12(1 − g2
1 g

2
2 ),

where we changed the labels (𝑥𝑖, 𝑥𝑖
)𝑖∈𝐼2

of the generators of 𝑇(𝑀) to (𝑧𝑖, 𝑧𝑖
)𝑖∈𝐼2

. Then:

(a) (𝝀) ≃ 𝐿((𝝀),B(𝑀)#𝕜𝐺).
(b) (𝝀) is a lifting of𝑀 over 𝕜𝐺.
(c) (𝝀) is a cocycle deformation ofB(𝑀)#𝕜𝐺.

Conversely, if 𝐿 is lifting of𝑀 over 𝕜𝐺, then there exist 𝝀 ∈ 𝑀 such that 𝐿 ≃ (𝝀).

Fix a Yetter–Drinfeld module 𝑀 over 𝐺 of type 𝛼2. As 𝑥2
𝑖
, 𝑥2

𝑖
, 𝑥

𝑖𝑖
, 𝑥

12
+ 𝜒2(g

2
1
)𝑥

12
and 𝑥

12
+

𝜒1(𝜅)𝑥12 are primitive in 𝑇(𝑀) and

Δ(𝑥2
12) = 𝑥2

12 ⊗ 1 + 𝑥11g
2
2 ⊗ 𝑥2

2 − 𝜒1(𝜅)𝑥
2
1g

2
2 𝜅 ⊗ 𝑥22 + g2

1 g
2
2 𝜅 ⊗ 𝑥2

12,

Δ([𝑥12, 𝑥12]𝑐) = [𝑥12, 𝑥12]𝑐 ⊗ 1 − 𝜒−1
1 (g2

2 )𝑥11g
2
2 𝜅 ⊗ 𝑥22 + 𝜒1(g

2
2 )𝑥

2
1g

2
2 ⊗ 𝑥2

2

+ 𝜒1(g
2
2 )𝑥

2

1
g2
2 ⊗ 𝑥2

2
+ 𝜒1𝜒2(𝜅)𝑥

2

1
g2
2 ⊗ 𝑥2

2 + 𝑥2
1g

2
2 ⊗ 𝑥2

2
+ g2

1 g
2
2 ⊗ [𝑥12, 𝑥12

]𝑐,

we may choose the following stratification:

0 = {𝑥2
𝑖 , 𝑥

2

𝑖
, 𝑥

𝑖𝑖
}, 1 = {𝑥12 + 𝜒2(g

2
1 )𝑥12, 𝑥12 + 𝜒1(𝜅)𝑥12}, 2 = {𝑥2

12, [𝑥12, 𝑥12]𝑐}.

The Yetter–Drinfeld structure for each stratum is given in Remark 5.9.
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42 ANGIONO et al.

Let 𝑘 ∶= B𝑘#𝕜𝐺. Next, we introduce a family of cleft objects of 𝑘 parametrized by the set
𝑀 . Given 𝝀 ∈ 𝑀 , define 0(𝝀) = B0 = 𝑇(𝑀), 1(𝝀) = B1, but we change the labels of the gen-
erators to (𝑦𝑖, 𝑦𝑖

)𝑖∈𝕀2
in order to differentiate with generators (𝑥𝑖, 𝑥𝑖

)𝑖∈𝕀2
of the pre-Nichols algebras

B𝑘. Let

1(𝝀) ∶= 0(𝝀)∕
⟨
𝑦2
𝑖 − 𝜇𝑖, 𝑦

2

𝑖
− 𝜇𝑖, 𝑦𝑖𝑖

− 𝜆𝑖 ∶ 𝑖 ∈ 𝕀2

⟩
,

2(𝝀) ∶= 1(𝝀)∕
⟨
𝑦12 + 𝜒2(g

2
1 )𝑦12 − 𝜆12, 𝑦12 + 𝜒1(𝜅)𝑦12 − 𝜆12

⟩
,

3(𝝀) ∶= 2(𝝀)∕
⟨
𝑦2
12 − 𝜇12, [𝑦12, 𝑦12

]𝑐 − 𝜇′
12

⟩
.

Each 𝑖(𝝀) is a 𝕜𝐺-module algebra since the ideal is stable under the 𝐺-action by (6.2). Thus,
we may introduce𝑖(𝝀) ∶= 𝑖(𝝀)#𝕜𝐺.

Lemma 6.2. Let 𝑘 ∈ 𝕀3. Then 𝑘(𝝀) ≠ 0 and each𝑘(𝝀) is an𝑘-cleft object. There exists an𝑘-
colinear section 𝛾𝑘 ∶ 𝑘 → 𝑘 that restricts to an algebra map (𝛾𝑘)|𝕜𝐺 ∈ Alg(𝕜𝐺,𝑘).

Proof. Fix 𝝀 ∈ 𝑀 ; to simplify the notation, we suppress 𝝀 and put 𝑘 = 𝑘(𝝀),𝑘 = 𝑘(𝝀). We
prove the claim recursively on 𝑘.
For 𝑘 = 1, we notice that 1 ≠ 0 (and a fortiori1 ≠ 0) by [5, Lemma 5.16]. Notice that g𝑗(𝑦2

𝑖
−

𝜇𝑖)g
−1
𝑗

= 𝑦2

𝑖
− 𝜆𝑖 if 𝑖 ≠ 𝑗, so in1, we have

⟨𝑦2
𝑖 − 𝜇𝑖, 𝑦

2

𝑖
− 𝜇𝑖 ∶ 𝑖 = 1, 2⟩ = ⟨𝑦2

𝑖 − 𝜇𝑖 ∶ 𝑖 = 1, 2⟩.
Wemay refine the stratification and proceed in four steps, quotient out first by 𝑥2

1
, then by 𝑥2

2
, now

by 𝑥11, and finally by 𝑥22. At each step, we consider the subalgebra 𝑌′ generated by the relation
𝑟 in the corresponding pre-Nichols algebra, note that 𝑌′ is isomorphic to a polynomial ring in
one variable since 𝑟 ∈ (𝑇(𝑀))g − 0, and for this g , we have g ⋅ 𝑟 = 𝑟. Consider 𝑌 = (𝑌′). As
𝑌 is a polynomial algebra generated by 𝑟g−1, there exists an algebra map 𝜙 ∶ 𝑌 →  such that
𝜙(𝑟g−1) = 𝑟g−1 − 𝜆g−1, 𝜆 ∈ 𝕜, which is-colinear. Applying repeatedly [30, Theorem 8] as in [5,
Proposition 5.19],1 is a1-cleft object and the existence of the desired section 𝛾1 follows by [5,
Proposition 5.8].
For 𝑘 = 2, it is enough to show that 2 ≠ 0. Indeed, in that case, [30, Theorem 8] assures

that 2 is an 2-cleft object. Now [5, Proposition 5.8] provides a section 𝛾2 such that (𝛾2)|𝕜𝐺 ∈

Alg(𝕜𝐺,2). As in [16, Lemma 3.4], nonvanishing of2 would follow from

2(𝝀
(5)) = B1∕

⟨
𝑦
12

+ 𝜒2(g
2
1 )𝑦12

− 𝜆12, 𝑦12
+ 𝜒1(𝜅)𝑦12 − 𝜆12

⟩
≠ 0.

Indeed, if 𝜛1∶ 1(𝝀
(5)) = 1 ↠ 2(𝝀

(5))#𝕜𝐺 is the canonical projection, then the composition
of the (restriction to 1 of the) coaction 1 → 1 ⊗1, which is an algebra map, with id⊗𝜛1

factors through 2 = 2(𝝀).
To check that 2(𝝀

(5)) ≠ 0, we use that (1)𝜎 is the bosonization of a pre-Nichols algebra
of diagonal type by 𝐺, and that the (1, g1g2𝜅)- and (1, g1g2)-primitive elements 𝑦12 + 𝜒2(g

2
1
)𝑦12

and 𝑦12 + 𝜒1(𝜅)𝑦12 span the same subspace as 𝚡12 and 𝚡12, see the proof of Proposition 5.4. The
quotient (1)𝜎∕⟨𝚡12 − 𝜆12, 𝚡12 − 𝜆12⟩ is not zero by [4], and

(1)𝜎∕⟨𝚡12 − 𝜆12, 𝚡12 − 𝜆12⟩ ≃ 𝐹𝜎

(
2(𝝀

(5))
)
,
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POINTED HOPF ALGEBRAS OVER NONABELIAN GROUPS 43

which implies2(𝝀
(5)) ≠ 0. Notice that

g1
(
𝑦
12

+ 𝜒2(g
2
1 )𝑦12

− 𝜆12

)
g−1
1 = −𝜒1(𝜅)𝜒2(g

2
1 )
(
𝑦
12

+ 𝜒1(𝜅)𝑦12 − 𝜆12

)
,

so in2,

⟨𝑦
12

+ 𝜒2(g
2
1 )𝑦12

− 𝜆12, 𝑦12
+ 𝜒1(𝜅)𝑦12 − 𝜆12⟩ = ⟨𝑦12

+ 𝜒1(𝜅)𝑦12 − 𝜆12⟩.
Finally, as 2 = B̂(𝑀)#𝕜𝐺, 3 = B(𝑀)#𝕜𝐺, we have 

co 𝜋2
2

= (𝑀), a skew-polynomial
algebra in variables 𝑥2

12
, [𝑦12, 𝑦12]𝑐 by Proposition 5.6. Hence, [30, Theorem 4] applies and 3

is3-cleft. The claim about 𝛾3 follows from [5, Proposition 5.8]. □

Proof of Theorem 6.1. Now follows by the same procedure as in [19, Theorem 5.6], using
Theorem 5.11. Indeed, if we define 0(𝝀) = 0,

1(𝝀) = 0(𝝀)∕
⟨
𝑧2
𝑖 − 𝜇𝑖(1 − g2

𝑖 ), 𝑧𝑖𝑖
− 𝜆𝑖(1 − g2

𝑖 𝜅)
⟩
,

2(𝝀) = 1(𝝀)∕
⟨
𝑧12 + 𝜒1(𝜅)𝑧12 − 𝜆12(1 − g1g2)

⟩
,

and 3(𝝀) = (𝝀), we can prove recursively that 𝑖(𝝀) ≃ 𝐿(𝑖(𝝀),𝑖). □

6.2 The general case

Let 𝑀 ∈ 𝕜𝐺
𝕜𝐺
 of type 𝛼𝜃, 𝛾𝜃, 𝛿𝜃, 𝜖𝜃 or 𝜙4. Recall the characters 𝜒𝑖 and 𝜒𝑖𝑗 defined in (5.43)

and (5.44). The set 𝑀 of deformation parameters contains tuples 𝝀 satisfying the following
constraints:

𝜇𝑖 = 0 if either 𝜒2
𝑖 ≠ 𝜀 or g2

𝑖 = 1, 𝑖 ∈ 𝕀𝜃;

𝜆𝑖 = 0 if either 𝜒𝑖 ≠ 𝜀 or g2
𝑖 = 𝜅, 𝑖 ∈ 𝕀𝜃;

𝜆𝑖𝑗 = 0 if 𝑖 < 𝑗 ⩽ 𝓁, 𝑎𝑖𝑗 = −1, 𝜒𝑖𝑗 ≠ 𝜀;

𝜆𝑖𝑗 = 0 if 𝑖 < 𝑗 ⩽ 𝓁, 𝑎𝑖𝑗 = 0, 𝜒𝑖𝑗 ≠ 𝜀;

𝜆′
𝑖𝑗 = 0 if 𝑖 < 𝑗 ⩽ 𝓁, 𝑎𝑖𝑗 = 0, 𝜒𝑖𝑗 ≠ 𝜀;

𝜆𝑖𝑗 = 𝜆′
𝑖𝑗 if 𝑖 < 𝑗 ⩽ 𝓁, 𝑎𝑖𝑗 = 0, 𝐺g𝑖 ≠ 𝐺g𝑗 ;

𝜆𝑖𝑗 = 0 if 𝑖 ⩽ 𝓁 < 𝑗, 𝑎𝑖𝑗 = 0, 𝜒𝑖𝑗 ≠ 𝜀;

𝜆𝑖𝑗𝑘 = 0 if 𝑖 < 𝑗 < 𝑘, 𝑎𝑗𝑖 = 𝑎𝑗𝑘 = −1, 𝜒𝑗𝜒𝑖𝑘 ≠ 𝜀;

𝜆𝑗𝑖 = 0 if 𝑖 < 𝑗, 𝑎𝑖𝑗 = −2, 𝜒𝑖𝜒
2
𝑗 ≠ 𝜀;

𝜇𝛽 = 0 if either 𝜒𝛽 ≠ 𝜀 or g2
𝛽
= 1 (𝛽 ∈ Δ𝑉

+ − {𝛼𝑖});

𝜇′
𝛽
= 0 if either 𝜒𝛽 ≠ 𝜀 or g2

𝛽
= 𝜅 (𝛽 ∈ Δ𝑉

+ − {𝛼𝑖}, dim𝑀𝛽 = 2). (6.3)
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44 ANGIONO et al.

In this subsection, we prove our last main result:

Theorem 6.3. Let𝑀 ∈ 𝕜𝐺
𝕜𝐺
 of type 𝛼𝜃 , 𝛾𝜃 , 𝛿𝜃 , 𝜖𝜃 , or 𝜙4. For each 𝝀 ∈ 𝑀 , see (6.3), let (𝝀) be

the quotient of 𝑇(𝑀)#𝕜𝐺, where we change the labels of the generators to (𝑧𝑖)𝑖∈𝕀𝜃+𝓁
by the following

relations:

𝑧2
𝑖 − 𝜇𝑖(1 − g2

𝑖 ), 𝑖 ∈ 𝕀𝜃;

𝑧
𝑖𝑖
− 𝜆𝑖(1 − g2

𝑖 𝜅), 𝑖 ∈ 𝕀𝓁 ;

𝑧
𝑖𝑗

+ 𝜒𝑖(𝜅)𝑧𝑖𝑗 − 𝜆𝑖𝑗(1 − g𝑖g𝑗), 𝑖 < 𝑗 ⩽ 𝓁, 𝑎𝑖𝑗 = −1;

𝑧𝑖𝑗 − 𝜆𝑖𝑗(1 − g𝑖g𝑗), 𝑧𝑖𝑗
− 𝜆′

𝑖𝑗(1 − g𝑖g𝑗𝜅), 𝑖 < 𝑗 ⩽ 𝓁, 𝑎𝑖𝑗 = 0;

𝑧𝑖𝑗 − 𝜆𝑖𝑗(1 − g𝑖g𝑗), 𝑖 ⩽ 𝓁 < 𝑗, 𝑎𝑖𝑗 = 0;

(ad𝑐 𝑧𝑗)𝑧𝑖𝑗𝑖
− (2)𝜒𝑗(g

2
𝑖
𝜅)𝜇𝑗𝜆𝑖(1 − g2

𝑗 )g
2
𝑖 + 𝜇𝑖𝜆𝑗(1 − g2

𝑗 𝜅)g
2
𝑖 − 𝜆𝑗𝑖(1 − g2

𝑖 g
2
𝑗 ), 𝑎𝑖𝑗 = −2;

(ad𝑐 𝑧𝑗)𝑧𝑖𝑗𝑘 − (2)𝜒𝑗(g𝑖g𝑘𝜅)
𝜇𝑗𝜆

′
𝑖𝑘
(1 − g2

𝑗 )g𝑖g𝑘𝜅 + 𝜆𝑖𝑘𝜆𝑗(1 − g2
𝑗 𝜅)g𝑖g𝑘 − 𝜆𝑖𝑗𝑘(1 − g𝑖g

2
𝑗 g𝑘𝜅),

𝑖 < 𝑗 < 𝑘, 𝑎𝑗𝑖 = 𝑎𝑗𝑘 = −1;

𝑧2
𝛽
− 𝐳𝛽 − 𝜇𝛽(1 − g2

𝛽
), 𝛽 ∈ Δ𝑀

+ − {𝛼𝑖};[
𝑧𝛽, 𝑧𝛽

]
𝑐
− 𝐳𝛽 − 𝜇′

𝛽
(1 − g2

𝛽
𝜅), 𝛽 ∈ Δ𝑀

+ − {𝛼𝑖}, dim𝑀𝛽 = 2,

where 𝐳𝛽 , 𝐳′𝛽 ∈ 𝑇(𝑀)#𝕜𝐺 are defined recursively on 𝛽 ∈ Δ𝑀
+ − {𝛼𝑖} such that 𝑧2

𝛽
− 𝐳𝛽 is (g2

𝛽
, 1)-

primitive and [𝑧𝛽, 𝑧𝛽
]𝑐 − 𝐳′

𝛽
is (g2

𝛽
𝜅, 1)-primitive in the quotient of 𝑇(𝑀)#𝕜𝐺 by the previous

relations. Then:

(a) (𝝀) ≃ 𝐿((𝝀),B(𝑀)#𝕜𝐺),
(b) (𝝀) is a lifting of𝑀 over 𝕜𝐺,
(c) (𝝀) is a cocycle deformation ofB(𝑀)#𝕜𝐺.

Conversely, if 𝐿 is lifting of𝑀 over 𝕜𝐺, then there exist 𝝀 ∈ 𝑀 such that 𝐿 ≃ 5(𝝀).

Let𝑀 ∈ 𝕜𝐺
𝕜𝐺
 of type 𝛼𝜃, 𝛾𝜃, 𝛿𝜃, 𝜖𝜃, or 𝜙4. We choose first a stratification  = ⊔4

𝑖=0
𝑖 on the set

of defining relations found in Theorem 5.7

0 = {𝑥2
𝑖 , 𝑥

2

𝑖
, 𝑥

𝑖𝑖
|𝑖 ∈ 𝕀𝓁} ∪ {𝑥2

𝑖 |𝑖 > 𝓁};

1 = {𝑥
𝑖𝑗

+ 𝜒𝑗(g
2
𝑖 )𝑥𝑖𝑗

, 𝑥
𝑖𝑗

+ 𝜒𝑖(𝜅)𝑥𝑖𝑗|𝑖 < 𝑗 ⩽ 𝓁, 𝑎𝑖𝑗 = −1};

2 = {𝑥𝑖𝑗, 𝑥𝑖𝑗
, 𝑥

𝑖𝑗
, 𝑥

𝑖𝑗
|𝑖 < 𝑗 ⩽ 𝓁, 𝑎𝑖𝑗 = 0} ∪ {𝑥𝑖𝑗, 𝑥𝑖𝑗

|𝑖 ⩽ 𝓁 < 𝑗, 𝑎𝑖𝑗 = 0};

3 = {𝑟𝑖𝑗𝑘 ∶= (ad𝑐 𝑥𝑗)𝑥𝑖𝑗𝑘, 𝑟𝑖𝑗𝑘 ∶= (ad𝑐 𝑥𝑗)𝑥𝑖𝑗𝑘
|𝑖 < 𝑗 < 𝑘, 𝑎𝑗𝑖 = 𝑎𝑗𝑘 = −1}

∪ {(ad𝑐 𝑥𝑗)𝑥𝑖𝑗𝑖
|𝑎𝑖𝑗 = −2};

4 = {𝑥2
𝛽
|𝛽 ∈ Δ𝑉

+ − {𝛼𝑖}} ∪ {[𝑥𝛽, 𝑥𝛽
]𝑐|𝛽 ∈ Δ𝑉

+ − {𝛼𝑖}, dim𝑀𝛽 = 2}.
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POINTED HOPF ALGEBRAS OVER NONABELIAN GROUPS 45

This stratification is good since

Δ(𝑟𝑖𝑗𝑘) = 𝑟𝑖𝑗𝑘 ⊗ 1 − 𝜒𝑗(g𝑖g𝑘𝜅)𝑥
2
𝑗g𝑖g𝑘𝜅 ⊗ 𝑥

𝑖𝑘
− 𝜒𝑗(g

2
𝑖 g

2
𝑘
)𝑥2

𝑗g𝑖g𝑘𝜅 ⊗ 𝑥
𝑖𝑘

+ 𝑥𝑗𝑥𝑗
g𝑖g𝑘 ⊗ 𝑥𝑖𝑘 + 𝜒𝑗(g𝑖g𝑘𝜅)𝑥𝑗

𝑥𝑗g𝑖g𝑘 ⊗ 𝑥
𝑖𝑘

+ g𝑖g
2
𝑗 g𝑘𝜅 ⊗ 𝑟𝑖𝑗𝑘,

Δ(𝑟𝑖𝑗𝑘) = 𝑟𝑖𝑗𝑘 ⊗ 1 − 𝜒𝑗(g𝑖g𝑘𝜅)𝑥
2
𝑗g𝑖g𝑘 ⊗ 𝑥

𝑖𝑘
− 𝜒𝑗(g

2
𝑖 g

2
𝑘
)𝑥2

𝑗g𝑖g𝑘 ⊗ 𝑥𝑖𝑘

+ 𝑥𝑗𝑥𝑗
g𝑖g𝑘𝜅 ⊗ 𝑥

𝑖𝑘
+ 𝜒𝑗(g𝑖g𝑘𝜅)𝑥𝑗

𝑥𝑗g𝑖g𝑘𝜅 ⊗ 𝑥
𝑖𝑘

+ g𝑖g
2
𝑗 g𝑘 ⊗ 𝑟𝑖𝑗𝑘.

Set𝑘 ∶= B𝑘#𝕜𝐺. The Yetter–Drinfeld structure of each stratum is given in Remark 5.9.
Let 𝝀 ∈ 𝑀 . Define 0(𝝀) = B0 = 𝑇(𝑀), but we change the labels of the generators to (𝑦𝑖, 𝑦𝑖

)𝑖∈𝕀

to differentiate from the generators (𝑥𝑖, 𝑥𝑖
)𝑖∈𝕀 of the pre-Nichols algebras B𝑘. Let

1(𝝀) ∶= 0(𝝀)∕
⟨
𝑦2
𝑖 − 𝜇𝑖, 𝑦

2

𝑖
− 𝜇𝑖, 𝑦𝑖𝑖

− 𝜆𝑖 ∶ 𝑖 ∈ 𝕀𝜃

⟩
,

2(𝝀) ∶= 1(𝝀)∕
⟨
𝑦
𝑖𝑗

+ 𝜒𝑗(g
2
𝑖 )𝑦𝑖𝑗

− 𝜆𝑖𝑗, 𝑦𝑖𝑗
+ 𝜒𝑖(𝜅)𝑦𝑖𝑗 − 𝜆𝑖𝑗|𝑖 < 𝑗 ⩽ 𝓁, 𝑎𝑖𝑗 = −1

⟩
,

3(𝝀) ∶= 2(𝝀)∕

⟨
𝑦𝑖𝑗 − 𝜆𝑖𝑗, 𝑦𝑖𝑗

− 𝜆′
𝑖𝑗
, 𝑦

𝑖𝑗
− 𝜆′

𝑖𝑗
, 𝑦

𝑖𝑗
− 𝜆𝑖𝑗, 𝑖 < 𝑗 ⩽ 𝓁, 𝑎𝑖𝑗 = 0;

𝑦𝑖𝑗 − 𝜆𝑖𝑗, 𝑦𝑖𝑗
− 𝜆𝑖𝑗, 𝑖 ⩽ 𝓁 < 𝑗, 𝑎𝑖𝑗 = 0

⟩
,

4(𝝀) ∶= 3(𝝀)∕

⟨
(ad𝑐 𝑦𝑗)𝑦𝑖𝑗𝑘 − 𝜆𝑖𝑗𝑘, (ad𝑐 𝑦𝑗)𝑦𝑖𝑗𝑘

− 𝜆𝑖𝑗𝑘, 𝑎𝑗𝑖 = 𝑎𝑗𝑘 = −1,

(ad𝑐 𝑦𝑗)𝑦𝑖𝑗𝑖
− 𝜆𝑗𝑖, 𝑎𝑖𝑗 = −2

⟩
,

5(𝝀) ∶= 4(𝝀)∕

⟨
𝑦2
𝛽
− 𝜇𝛽, 𝛽 ∈ Δ𝑉

+ − {𝛼𝑖},[
𝑦𝛽, 𝑦𝛽

]
𝑐
− 𝜇′

𝛽
, 𝛽 ∈ Δ𝑉

+ − {𝛼𝑖}, dim𝑀𝛽 = 2

⟩
.

Each 𝑖(𝝀) is a 𝕜𝐺-module algebra since each defining ideal above is stable under the 𝐺-action
by (6.3). Thus, we may introduce𝑖(𝝀) ∶= 𝑖(𝝀)#𝕜𝐺.

Lemma 6.4. Let 𝑘 ∈ 𝕀5. Then 𝑘(𝝀) ≠ 0 and each𝑘(𝝀) is an𝑘-cleft object. There exists an𝑘-
colinear section 𝛾𝑘 ∶ 𝑘 → 𝑘 that restricts to an algebra map (𝛾𝑘)|𝕜𝐺 ∈ Alg(𝕜𝐺,𝑘).

Proof. Fix 𝝀 ∈ 𝑀 ; again, we simplify the notation and write 𝑘 = 𝑘(𝝀),𝑘 = 𝑘(𝝀). The proof
is analogous to that of Lemma 6.2, recursively on 𝑘.
When 𝑘 < 5, the key step is to prove that 𝑘 ≠ 0, which implies that 𝑘 ≠ 0: if so, then [30,

Theorem 8] applies again to conclude that𝑘 is𝑘-cleft; hence, there exists a section 𝛾𝑘 as in the
statement by [5, Proposition 5.8].
To show that 𝑘 ≠ 0, it is enough to verify nonvanishing when we deform just one submodule

of relations; that is, to consider the case 𝝀 = 𝝀(𝑖) for each 𝑖 and then proceed as in [7, Lemma 3.4].
Indeed, if𝜛𝑘 ∶ 𝑘(𝝀

(𝑖)) = 𝑘−1 ↠ 𝑘(𝝀
(𝐼))#𝕜𝐺 is the canonical projection, then the composition

of the algebra map 𝑘−1 → 𝑘−1 ⊗𝑘−1 (given by the coaction) with (id⊗𝜛𝑘) factors through
𝑘 = 𝑘(𝝀).
To verify that 𝑘(𝝀

(𝑖)) ≠ 0 when the submodule of relations to be deformed is neither
{(ad𝑐 𝑥𝑗)𝑥𝑖𝑗𝑘, (ad𝑐 𝑥𝑗)𝑥𝑖𝑗𝑘

}, where 𝑎𝑗𝑖 = 𝑎𝑗𝑘 = −1, nor {(ad𝑐 𝑥𝑗)𝑥𝑖𝑗𝑖
} with 𝑎𝑖𝑗 = −2, we may use

Lemma 6.2. For these two exceptions, we adapt the argument given in Lemma 6.2 for relations
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46 ANGIONO et al.

𝑦12 + 𝜒2(g
2
1
)𝑦12 and 𝑦12 + 𝜒1(𝜅)𝑦12, and then use the cocycle 𝜎 to reduce to deformations of

Nichols algebras of diagonal type, so the result follows by [4, Proposition 4.2].
Finally, for 𝑘 = 5, we have that co 𝜋4

4
= (𝑀) is a skew-polynomial algebra in variables 𝑥2

𝛽
,

[𝑥𝛽, 𝑥𝛽
]𝑐 by Proposition 5.6; thus, [30, Theorem 4] assures that5 is5-cleft. The section 𝛾5 can

be chosen so that (𝛾𝑘)|𝕜𝐺 ∈ Alg(𝕜𝐺,𝑘) by [5, Proposition 5.8]. □

We are ready to prove the main theorem of this section.

Proof of Theorem 6.3. We proceed as in [19, Theorem 5.6], using correspondingly Theorem 5.11 and
Lemma 6.4. Indeed, starting with0(𝝀) = 0, we define successive quotients𝑖(𝝀), 𝑖 ∈ 𝕀5, where
4 is the quotient by all the relations of (𝝀) except the last two sets (parametrized by 𝛽 ∈ Δ+).
Each 𝑘(𝝀), 𝑘 < 5, is a Hopf algebra since one if obtained from the previous one by recursively
quotient by skew-primitive elements. Working as in [4, Theorem 1.6], 4(𝝀) ≃ 𝐿(4(𝝀),4), and
there exist 𝐳𝛽 ∈ 4(𝝀) and 𝐳′

𝛽
∈ 4(𝝀) as stated below; moreover,(𝝀) ≃ 𝐿(5(𝝀),5). The proof

that these are all the liftings follows exactly as in [19, Theorem 5.6] □

6.3 Foldings of liftings

The folding construction in [42, Part 1] was formulated in the following general setting: Let𝐻 be
a Hopf algebra and 𝐻𝜎, 𝜎 ∈ Σ̂ a group of biGalois objects with coherent choice of isomorphisms
𝜄𝜎,𝜏 ∶ 𝐻𝜎𝜏 ≅ 𝐻𝜎□𝐻𝜏. By [42, Theorem 1.6], the direct sum of algebras

𝐻̃ ∶=
⨁∑

𝜎∈Σ̂

𝐻𝜎

can be endowed with the structure of a Hopf algebra with coproduct
⨁

𝜎,𝜏 𝜄𝜎,𝜏.
Conversely by [42, Theorem 3.6], any Hopf algebra 𝐻̃ with Σ a central subgroup is a folding

of 𝐻 = 𝐻̃∕Σ+𝐻̃ by Σ. The biGalois objects are quotients of 𝐻̃ associated to a central character
on Σ. The folding data in Section 3 were formulated specifically for the situation 𝐻 = B(𝑀)#𝕜Γ

and for biGalois objects arising from 2-cocycles 𝜎 on the group Γ, trivially extended to 𝐻, and
twisted Yetter–Drinfeld isomorphisms 𝐮 ∶ B(𝑀)𝜎 → B(𝑀), extended by the identity on 𝐺 to 𝐻.
In Theorem 3.6, we have stated the folding solely in terms of 𝜎, 𝐮, while in Theorem 3.7, we have
stated the folding with these specific choices of biGalois objects as above.
We now discuss the following alternative systematic way to understand the liftings of folded

Nichols algebras, which we constructed in the previous section: Let 𝐻′ be a lifting of 𝐻 =

B(𝑀)#𝕜Γ for a diagonal Nichols algebra, which are classified in [4, 16]. Let again (𝐻′
𝜎)𝜎∈Σ̂ be

a group of biGalois objects over the lifting, then we have a folding 𝐻′, whose graded algebra is
the folding 𝐻̃ = B(𝑀̃)#𝕜𝐺 of𝐻. One source for such biGalois objects could be again folding data
(𝜎, 𝐮) where in addition 𝕦 is compatible with the lifting 𝐻′, and more precisely, leaves a lifting
cocycle invariant. But there are also other possibilities, namely, the 2-cocycle 𝜎 over Γ could be
nontrivially extended to B(𝑀)#𝕜Γ, which would cause a folding of 𝐻 that is a lifting of 𝐻̃ with
values in the new center.
Conversely, we obtain in this way all liftings of 𝐻̃ where Σ is central, acting trivially on 𝑀̃. We

have already shown for each Nichols algebra in Theorem 3.18, that this trivial action can always
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POINTED HOPF ALGEBRAS OVER NONABELIAN GROUPS 47

be achieved by a Doi twist; however, it is not a-priori clear that these Doi twists carry over to the
lifting. We will now use this tool to analyze the smallest example:

Example 6.5 (Case 2𝐴2
2
). We consider the Nichols algebra of a module of type 𝛼2 defined in Sec-

tion 2.3.1 over a group 𝐺 generated by g1, g2 with g1g2 = 𝜅g2g1 and 𝜅 central of order two, which
is a central extension of the abelian group Γ generated by ḡ1, ḡ2. We computed all its liftings in
Section 6.1. We can conveniently take the group action from Remark 5.9 and the braiding from
Section 2.3.1 to replace 𝑧𝑖𝑗 again by the braided commutator. For example, the first three relations
depending on the parameters 𝜇𝑖, 𝜆𝑖, 𝜆12 read

𝑧2
𝑖 = 𝜇𝑖(1 − g2

𝑖 ), 𝑧𝑖𝑧𝑖
+ 𝜒𝑖(𝜅)𝑧𝑖

𝑧𝑖 = 𝜆𝑖(1 − g2
𝑖 𝜅),

𝑧1𝑧2 − 𝜒2(𝜅g
2
1 )𝑧2𝑧1 + 𝜒1(𝜅)𝑧1𝑧2 − 𝜒1(𝜅)𝑧2𝑧1 = 𝜆12(1 − g1g2).

Note that acting with a group element on a relation may produce more relations, as we explained
in the proof of Lemma 6.2 for the cleft objects. For example, acting with g𝑗 on the first relation
produces the relation 𝑧2

𝑖
= 𝜇𝑖(1 − g2

𝑖
).

The associated Nichols algebra and its liftings are foldings if and only if 𝜅 is a central element
in the Hopf algebra, that is, 𝜒1(𝜅) = 𝜒2(𝜅) = 1 (which we saw that it is true up to Doi twist). In
this case, we saw in Remark 3.14 that the braiding diagonalizes in the basis

𝚡𝑖 = 𝑧𝑖 + 𝑞𝑖𝑗𝑧𝑖
, 𝚡

𝑖
= 𝑧𝑖 − 𝑞𝑖𝑗𝑧𝑖

.

The elements 𝚡𝑖 , 𝚡𝑖
are not 𝐺-homogeneous, but Γ-homogeneous with degrees ḡ𝑖 , 𝑖 ∈ 𝕀2. On the

other hand, they are 𝐺-eigenvectors with g𝑖 , g𝑗 acting on 𝚡𝑖 with eigenvalues −1,−𝑞𝑗𝑖 and on 𝚡
𝑖

with eigenvalues −1, 𝑞𝑗𝑖 . The diagonal braiding matrix is of type 𝐴2 × 𝐴2

⎛⎜⎜⎜⎜⎝
−1 −𝑞12 −1 𝑞12

−𝑞21 −1 𝑞21 −1

−1 −𝑞12 −1 𝑞12

−𝑞21 −1 𝑞21 −1

⎞⎟⎟⎟⎟⎠
and a twisted symmetry switching the two copies. In the folding construction, 𝑧𝑖, 𝑧𝑖

arise as
eigenvalues of this symmetry.
We now rewrite the relations in this basis, starting with those involving just one orbit 𝚡𝑖, 𝚡𝑖

,
which is a diagonal Nichols algebra of type 𝐴1 × 𝐴1:

1

4
(𝚡𝑖 + 𝚡

𝑖
)2 = 𝜇𝑖(1 − g2

𝑖 ),
𝑞−2
𝑖𝑗

4
(𝚡𝑖 − 𝚡

𝑖
)2 = 𝜇𝑖(1 − g2

𝑖 ),

𝑞−1
𝑖𝑗

4
((𝚡𝑖 + 𝚡

𝑖
)(𝚡𝑖 − 𝚡

𝑖
) + (𝚡𝑖 − 𝚡

𝑖
)(𝚡𝑖 + 𝚡

𝑖
)) = 𝜆𝑖(1 − g2

𝑖 𝜅).

These relations rewrite to

𝚡2
𝑖 = (1 + 𝑞2

𝑖𝑗)𝜇𝑖(1 − g2
𝑖 ) + 𝑞𝑖𝑗𝜆𝑖(1 − g2

𝑖 𝜅), 𝚡𝑖𝚡𝑖
+ 𝚡

𝑖
𝚡𝑖 = 2(1 − 𝑞2

𝑖𝑗)𝜇𝑖(1 − g2
𝑖 ) = 0,

𝚡2

𝑖
= (1 + 𝑞2

𝑖𝑗)𝜇𝑖(1 − g2
𝑖 ) − 𝑞𝑖𝑗𝜆𝑖(1 − g2

𝑖 𝜅),
1

2
(𝚡2

𝑖 − 𝚡2

𝑖
) = 𝑞𝑖𝑗𝜆𝑖(1 − g2

𝑖 𝜅),
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48 ANGIONO et al.

where we have to take into account that Section 6.1 states that 𝜇𝑖 ≠ 0, respectively, 𝜆𝑖 ≠ 0, only if
𝑞2
𝑗𝑖

= 1, so the anticommutator vanishes.
This is consistent with the possible liftings of diagonal 𝐴1 × 𝐴1:

∙ The anticommutator relation admits a nontrivial lifting if 𝜒𝑖𝜒𝑖
= 𝜖, but in our case

𝜒𝑖(g𝑗)𝜒𝑖
(g𝑗) = −1.

∙ The truncation relations admit nontrivial liftings if 𝜒2
𝑖
= 𝜖, which is the case if and only if 𝑞2

𝑗𝑖
=

1. If the respective lifting parameters are equal, then this lifting datum is compatible with a
folding using the group 2-cocycle. This produces the symmetric lifting depending on 𝜇𝑖 .

∙ On the other hand, the antisymmetric lifting depending on 𝜆𝑖 requires a lifting cocycle that is
nontrivially extended to the Nichols algebra. The corresponding nontrivial biGalois object is
determined by plugging the nontrivial central character 𝜅 ↦ −1.

We now turn to the relation involving 𝜆12:

𝜆12(1 − g1g2) =
𝑞−1
12

2
(𝚡1 − 𝚡1)

𝑞−1
21

2
(𝚡2 − 𝚡2) − 𝑞2

12
1

2
(𝚡2 + 𝚡2)

𝑞−1
12

2
(𝚡1 − 𝚡1)

+ 1

2
(𝚡1 + 𝚡1)

1

2
(𝚡2 + 𝚡2) −

𝑞−1
21

2
(𝚡2 − 𝚡2)

1

2
(𝚡1 + 𝚡1)

= 1

2
(𝚡1𝚡2

− 𝑞12𝚡2
𝚡1) +

1

2
(𝚡

1
𝚡2 + 𝑞12𝚡2𝚡1

)𝜆12(1 − g1g2𝜅)

= −
𝑞12

2
(𝚡1𝚡2

− 𝑞12𝚡2
𝚡1) +

𝑞12

2
(𝚡

1
𝚡2 + 𝑞12𝚡2𝚡1

).

Section 6.1 with 𝜒12 in (5.44) applied to g2
𝑖
and g1g2 states that 𝜆12 ≠ 0 only if 1 = 𝑞2

𝑖𝑖
𝑞2
𝑖𝑗
and 1 =

𝑞11𝑞
2
21

⋅ 𝑞22𝑞
2
12
, which is again equivalent to 𝑞2

𝑖𝑗
= 𝑞2

𝑗𝑖
= 1. Possibly reversing 1,2, we may assume

that we are in the case 𝑞12 = 1, 𝑞21 = −1, and then adding and subtracting the previous relations
returns:

𝚡1𝚡2 + 𝚡2𝚡1 = 2𝜆12

(
1 − g1g2

𝜅+1

2

)
, 𝚡1𝚡2 − 𝚡2𝚡1 = 2𝜆12

(
1 − g1g2

𝜅−1

2

)
.

On the other hand, the diagonal Nichols algebra 𝐴2 × 𝐴2 has such liftings of

∙ 𝚡
1
𝚡2 − 𝑞𝑗𝑖𝚡2𝚡1

if 𝜒
1
𝜒2 = 𝜖, which is the case for 𝑞12 = 1, 𝑞21 = −1.

∙ 𝚡1𝚡2
+ 𝑞𝑖𝑗𝚡2

𝚡1 if 𝜒1𝜒2
= 𝜖, which is the case for 𝑞12 = −1, 𝑞21 = 1.

Altogether, there is no𝐮-symmetric lifting of this type, and the solutionwe find starts with a lifting
𝐻′ for one of these relation, again visible at the central character 𝜅 ↦ 1, and the other of these
relations appears in the biGalois object that is nontrivially extended from the group 2-cocycle.
We refrain from discussing the last two relations in a similar manner.

7 FUTURE DIRECTIONS

We conclude by some outlook questions that naturally arise from our work.

Question 1. Is there a modified folding construction that produces the remaining Nichols
algebras in Heckenberger–Vendramin classification?
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POINTED HOPF ALGEBRAS OVER NONABELIAN GROUPS 49

Question 2. Several folded Nichols algebras in [43] do not appear in [37] because their support
is too small. More precisely, these are the cases 2𝐷𝑛 and 3𝐷4 and 2𝐴2

1
familiar from Lie theory,

as well as unfamiliar cases 2𝐴2 at a third root of unity and several cases involving other diagonal
Nichols algebras. We expect that our methods can be applied in these cases.

Question 3. Which modular tensor categories can be constructed from the new pointed Hopf
algebras described here?
From the categorical perspective, there is a rather unique Σ-graded extensions of tensor cate-

gories with a Σ-crossed braiding [24]. Since the operations of Σ-graded extension and taking Hopf
algebra representations commute, this extension could be computed by taking a Σ-symmetric
Nichols algebra over an abelian group,which can thenbe folded toNichols algebra over the known
Σ-extension of the abelian group. To get a braiding, this would require a nontrivial associator (an
effect familiar for quantumgroup of even order root of unity), and forΣ = ℤ2 conjecturally involve
a Tambara–Yamigami category.

Question 4. The Logarithmic Kazhdan–Lusztig Correspondence, see, for example, [25, 44] con-
jectures the existence of a vertex algebra, realized as subalgebra of a free field algebra, whose
tensor category of representations is equivalent to representations of a small quantum group. The
folding construction and the previous problem suggests an extension of this construction, where
the free field algebra is replaced by an orbifold model.

APPENDIX: PROOF OF THEOREM 3.18

Here,we complete the proof of Theorem3.18,which states thatNichols algebras of Yetter–Drinfeld
modules of types 𝛼𝜃, 𝛾𝜃, 𝛿𝜃, 𝜖𝜃, and 𝜙4 become of diagonal type when an appropriate twist is
performed. The cases that remain unsolved are 𝛼2, 𝛼3, 𝛾3, 𝛾4, 𝛿4, and 𝜙4, which will be dealt with
in Proposition 3.15. The other cases are diagonal by Lemma 2.7.

A.1 Group cohomology tools

We start by collecting some useful group extensions and group cohomology statements for later
use, following [42, Chapter 7]. Recall the definition of 𝚉𝑢,𝑣,𝜅 in (2.27).

Definition A.1. Let 𝚉 be an abelian group and 𝚝 a generator of ℤ. For each 𝑤 ∈ 𝚉, 𝑟 ∈ ℕ, we
consider the abelian group

𝚉( 𝑟
√

𝑤) ∶= 𝚉 × ℤ∕⟨(𝑤, 𝚝−𝑟)⟩.
We shall identify g ∈ 𝚉, 𝚝𝑘, 𝑘 ∈ ℕ, with their images (g , 𝑒), (𝑒, 𝚝𝑘) in 𝚉( 𝑟

√
𝑤). The defining relation

becomes 𝑤 = 𝚝𝑟. We think of 𝚉( 𝑟
√

𝑤) as the set {g𝚝𝑘|g ∈ 𝚉, 0 ⩽ 𝑘 < 𝑟} with product

g𝚝𝑗 ⋅ ℎ𝚝𝑘 =

{
gℎ𝚝𝑗+𝑘, if 𝑗 + 𝑘 < 𝑟,

gℎ𝑤𝚝𝑗+𝑘−𝑟, if 𝑗 + 𝑘 ⩾ 𝑟,
g , ℎ ∈ 𝚉, 0 ⩽ 𝑗, 𝑘 < 𝑟.

Remark A.2. Fix 𝚉 an abelian group, 𝑢, 𝑣, 𝑤, 𝜅 ∈ 𝚉, where 𝜅2 = 𝑒, 𝑟 ∈ ℕ.

(i) The inclusion 𝚉 ↪ 𝚉( 𝑟
√

𝑤) extends to an injective map

𝚉𝑢,𝑣,𝜅 ↪ 𝚉( 𝑟
√

𝑤)𝑢,𝑣,𝜅.
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50 ANGIONO et al.

(ii) Fix also 𝑧 ∈ 𝚉, 𝑠 ∈ ℕ. There is a canonical isomorphism 𝚉( 𝑟
√

𝑤)( 𝑠
√

𝑧) ≅ 𝚉( 𝑠
√

𝑧)( 𝑟
√

𝑤), which,
in turn, induces an isomorphism

𝚉( 𝑟
√

𝑤)( 𝑠
√

𝑧)𝑢,𝑣,𝜅 ≅ 𝚉( 𝑠
√

𝑧)( 𝑟
√

𝑤)𝑢,𝑣,𝜅.

Proposition A.3. Let 𝚉 be an abelian group, 𝑢, 𝑣, 𝑤, 𝜅 ∈ 𝚉, where 𝜅2 = 𝑒, 𝑟 ∈ ℕ. Given 𝜎 ∈

𝐻2(𝚉𝑢,𝑣,𝜅, 𝕜
×), consider 𝑓 ∶= 𝑓𝜎 ∶ 𝚉 → 𝕜× given by

𝑓(g) = 𝜎(g , 𝑤)∕𝜎(𝑤, g), g ∈ 𝚉.

Then 𝜎 lifts to a 2-cocycle 𝜎 ∈ 𝐻2(𝚉( 𝑟
√

𝑤)𝑢,𝑣,𝜅, 𝕜
×) if and only if there exists 𝚏 ∈ 𝚉𝑢,𝑣,𝜅 such that 𝚏𝑟 =

𝑓, 𝚏(𝑤) = 1. In this case,

𝜎(g , 𝚝)𝜎−1(𝚝, g) = 𝚏(g), for all g ∈ 𝚉. (A.1)

If 𝑤 = 1, then any 𝜎 ∈ 𝐻2(𝚉𝑢,𝑣,𝜅, 𝕜
×) lifts to 𝜎 ∈ 𝐻2(𝚉( 𝑟

√
𝑤)𝑢,𝑣,𝜅, 𝕜

×).

Proof. Set 𝚉 ∶= 𝚉𝑢,𝑣,𝜅, 𝐺 = 𝚉( 𝑟
√

𝑤)𝑢,𝑣,𝜅. We can write 𝐺 as the following central extension:

1 → ⟨𝑤𝚝−𝑟⟩→ 𝚉 × ⟨𝚝⟩→ 𝐺 → 1.

As 𝕜× is divisible, the map 𝐻1(⟨𝚝⟩, 𝕜×) → 𝐻1(⟨𝑤𝚝−𝑟⟩, 𝕜×) is surjective and 𝐻2(⟨𝚝⟩, 𝕜×) =

𝐻2(⟨𝑤𝚝−𝑟⟩, 𝕜×) = 1. Hence, the exact sequence in [39, §1] associated to the central extension
below is

1 → 𝐻1(𝐺, 𝕜×) → 𝐻1(𝚉 × ⟨𝚝⟩, 𝕜×) → 𝐻1(⟨𝑤𝚝−𝑟⟩, 𝕜×) →

→ 𝐻2(𝐺, 𝕜×) → 𝐻2(𝚉 × ⟨𝚝⟩, 𝕜×) → Pair(𝚉 × ⟨𝚝⟩, ⟨𝑤𝚝−𝑟⟩).
Using the results above, the Künneth formula for the cohomologies of the direct product, and
decomposing the pairings, we get

1 ⟶ 𝐻2(𝐺, 𝕜×) ⟶ 𝐻2(𝚉, 𝕜×) × Pair(𝚉, ⟨𝚝⟩) Φ
⟶ Pair(𝚉, ⟨𝑤𝚝−𝑟⟩) × Pair(⟨𝚝⟩, ⟨𝑤𝚝−𝑟⟩),

where Φ is defined as follows:

∙ for 𝜎 ∈ 𝐻2(𝚉, 𝕜×), we have Φ(𝜎) = (𝐵𝜎, 1), where 1 ∈ Pair(⟨𝚝⟩, ⟨𝑤𝚝−𝑟⟩) is the trivial pairing,
and 𝐵𝜎 ∈ Pair(𝚉, ⟨𝑤𝚝−𝑟⟩) is given by

𝐵𝜎(g , 𝑤𝚝−𝑟) = 𝜎(g , 𝑤)𝜎−1(𝑤, g), g ∈ 𝚉,

∙ for 𝑃 ∈ Pair(𝚉, ⟨𝚝⟩), we have Φ(𝑃) = (𝐹′
𝑃
, 𝐹′′

𝑃
), where

𝐹′(g , 𝑤𝚝−𝑟) = 𝑃(g , 𝚝)−𝑟, g ∈ 𝚉; 𝐹′′(𝚝, 𝑤𝚝−𝑟) = 𝑃(𝑤, 𝚝).

Hence, (𝜎, 𝑃) ∈ kerΦ if and only if 𝜎(g , 𝑤)𝜎−1(𝑤, g) = 𝑃(g , 𝚝)𝑟 for all g ∈ 𝚉 and 𝑃(𝑤, 𝚝) = 1. If
𝜎 lifts to a 2-cocycle 𝜎 ∈ 𝐻2(𝚉( 𝑟

√
𝑤)𝑢,𝑣,𝜅, 𝕜

×), then set 𝚏 as in (A.1). Reciprocally, if there exists
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POINTED HOPF ALGEBRAS OVER NONABELIAN GROUPS 51

such 𝚏, we define 𝑃 ∈ Pair(𝚉, ⟨𝚝⟩), by 𝑃(g , 𝚝) = 𝚏(g), and get (𝜎, 𝑃) ∈ kerΦ. By exactness of the
sequence, kerΦ is the image of the injective map 𝐻2(𝐺, 𝕜×) ⟶ 𝐻2(𝚉, 𝕜×) × Pair(𝚉, ⟨𝚝⟩); thus,
𝜎 lifts to a 2-cocycle 𝜎 ∈ 𝐻2(𝚉( 𝑟

√
𝑤)𝑢,𝑣,𝜅, 𝕜

×). Moreover, 𝑃 describes the values on the additional
generator. The last statement is clear. □

Corollary A.4. Let 𝚉 be an abelian group, 𝑢, 𝑣, 𝑤, 𝑧, 𝜅 ∈ 𝚉, where 𝜅2 = 𝑒, 𝑟, 𝑠 ∈ ℕ. Then 𝜎 ∈

𝐻2(𝚉𝑢,𝑣,𝜅, 𝕜
×) lifts to 𝜎 ∈ 𝐻2(𝚉( 𝑟

√
𝑤)( 𝑠
√

𝑧)𝑢,𝑣,𝜅, 𝕜
×) if and only if there exists 𝚏, 𝚐 ∈ 𝚉𝑢,𝑣,𝜅 such that

𝚏𝑟 = 𝑓 = 𝚐𝑠, 𝚏(𝑤) = 1 = 𝚐(𝑤).

Proof. Use the isomorphism in Remark A.2 and Proposition A.3. □

Next we assume that 𝚉 splits as 𝚉 = Λ ⊕ Ω, where 𝑢 ∈ Λ, 𝑣, 𝜅 ∈ Ω. Recall the extension 𝚉 ↪

𝚉𝑢,𝑣,𝜅 ↠ ℤ2 × ℤ2 = ⟨𝑥, 𝑦⟩ from (2.27). Consider

∙ Λ the subgroup of 𝚉𝑢,𝑣,𝜅 generated by Λ and 𝑥,
∙ Ω the subgroup of 𝚉𝑢,𝑣,𝜅 generated by Ω and 𝑦.

Hence, 𝚉𝑢,𝑣,𝜅 ≃ Λ⋉Ω, where 𝑥 acts on Ω by

𝑥 ⋅ 𝑦 = 𝜅𝑦, 𝑥 ⋅ ℎ = ℎ, ℎ ∈ Ω.

Let 𝐻̃2(𝚉𝑢,𝑣,𝜅, 𝕜
×) denote the kernel of the restriction map

𝐻2(𝚉𝑢,𝑣,𝜅, 𝕜
×) → 𝐻2(Λ, 𝕜×).

By [52, Theorem 2 (I)], we have that

𝐻2(𝚉𝑢,𝑣,𝜅, 𝕜
×) ≃ 𝐻2(Λ, 𝕜×) ⊕ 𝐻̃2(𝚉𝑢,𝑣,𝜅, 𝕜

×).

By [52, Theorem 2 (II)], there exists an exact sequence

0 ⟶ 𝐻1
(
Λ, Ω̂

)
⟶ 𝐻̃2(𝚉𝑢,𝑣,𝜅, 𝕜

×)
𝑟𝑒𝑠
⟶ 𝐻2(Ω, 𝕜×)Λ. (A.2)

The image of the first map is the subspace of 𝐻2(𝚉𝑢,𝑣,𝜅, 𝕜
×) of 2-cocycles that are cohomologi-

cally trivial on Λ andΩ. Next, we will characterize𝐻1(Λ, Ω̂) and describe the shape of 2-cocycles
coming from this group.

Proposition A.5. Let  denote the set of triples (𝑃, 𝜒, 𝜓) ∈ Pair(Λ,Ω) × Λ̂ × Ω̂ such that

𝜓(𝑣)𝜓(𝜅) = 𝜒(𝑢); 𝑃(g , 𝜅) = 1, 𝜒(g)2 = 𝑃(g , 𝑣), 𝜓(ℎ)2 = 𝑃(𝑢, ℎ), for all g ∈ Λ, ℎ ∈ Ω.

(a) The map𝐻1(Λ, Ω̂) →  , 𝜙 ↦ (𝑃𝜙, 𝜒𝜙, 𝜙(𝑥)|Ω), where

𝑃𝜙(g , ℎ) = 𝜙(g)(ℎ), 𝜒𝜙(g) = 𝜙(g)(𝑦), g ∈ Λ, ℎ ∈ Ω, (A.3)

is bijective.
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52 ANGIONO et al.

(b) The image 𝜎 ∈ 𝐻̃2(𝚉𝑢,𝑣,𝜅, 𝕜
×) ⊆ 𝐻2(𝚉𝑢,𝑣,𝜅, 𝕜

×) of a triple (𝑃, 𝜒, 𝜓) ∈  (viewed as an element of
𝐻1(Λ, Ω̂)) under the map 𝜕 in (A.2) satisfies

𝜎(g , ℎ)
𝜎(ℎ, g)

= 𝑃(g , ℎ),
𝜎(g , 𝑦)
𝜎(𝑦, g)

= 𝜒(g),
𝜎(𝑥, ℎ)

𝜎(ℎ, 𝑥)
= 𝜓(ℎ),

for all g ∈ Λ, ℎ ∈ Ω. In particular, we have that

𝜎(g , 𝜅)
𝜎(𝜅, g)

= 1 for all g ∈ 𝚉,
𝜎(𝜅, 𝑦)

𝜎(𝑦, 𝜅)
= 𝜒(𝜅),

𝜎(𝑥, 𝜅)

𝜎(𝜅, 𝑥)
= 𝜓(𝜅).

Proof.

(a) As Λ acts trivially on Ω̂, each crossed morphism 𝜙 ∈ 𝐻1(Λ, Ω̂) restricts on Λ to a homomor-
phism, and hence to a pairing Λ × Ω → 𝕜×, which we think as a pair (𝑃, 𝜒) ∈ Pair(Λ,Ω) × Ω̂

as in (A.3) such that 𝜒(g)2 = 𝑃(g , 𝑣) for all g ∈ Λ (because 𝑦2 = 𝑣). We set 𝜒𝜙 ∶= 𝜙(𝑥)|Ω ∶

Ω → 𝕜. As 𝑥 acts trivially on Ω, 𝜒 is a group homomorphism. Hence, we have an injective
map

𝐻1
(
Λ, Ω̂

)
→ {(𝑃, 𝜒, 𝜓) ∈ Pair(Λ,Ω) × Λ̂ × Ω̂ | 𝜒(g)2 = 𝑃(g , 𝑣), for all g ∈ Λ}.

If 𝜉 ∶= 𝜙(𝑥)(𝑦) ∈ 𝕜, then 𝜉2 = 𝜙(𝑥)(𝑣) = 𝜒(𝑣) and

𝜙(g𝑥𝑖)(ℎ𝑦𝑗) = 𝑃(g , ℎ)𝜓(g)𝑗𝜒(ℎ)𝑖𝜉𝑖𝑗, g ∈ Λ, ℎ ∈ Ω, 𝑖, 𝑗 ∈ {0, 1}. (A.4)

Reciprocally, given a triple (𝑃, 𝜒, 𝜓) as above, set 𝜙 ∶ Λ → Ω̂ as in A.4. Then 𝜙 is a crossed
homomorphism if and only if for all g ∈ Λ, ℎ ∈ Ω,

𝜙(g𝑥)(ℎ𝑦) = 𝜙(𝑥g)(ℎ𝑦) = 𝜙(𝑥)(ℎ𝑦)(𝑥 ⋅ 𝜙(g)(ℎ𝑦)) = 𝑃(g , 𝜅ℎ)𝜓(g)𝜒(ℎ)𝜉,

𝜙(𝑢)(ℎ) = 𝜙(𝑥2)(ℎ) = 𝜙(𝑥)(ℎ)(𝑥 ⋅ 𝜙(𝑥)(ℎ)) = 𝜒(ℎ)2,

𝜙(𝑢)(ℎ𝑦) = 𝜙(𝑥2)(ℎ𝑦) = 𝜙(𝑥)(ℎ𝑦)(𝑥 ⋅ 𝜙(𝑥)(ℎ𝑦)) = 𝜒(ℎ)2𝜉2𝜒(𝜅).

This means 𝑃(g , 𝜅) = 1 for all g ∈ Λ, 𝜒(ℎ)2 = 𝑃(𝑢, ℎ) and 𝑃(𝑢, ℎ)𝜓(𝑢) = 𝑃(𝑢, ℎ)𝜒(𝑣)𝜒(𝜅) for
all ℎ ∈ Ω.

(b) This follows by explicit computation of the coboundary map 𝜕, see, for example, the proof of
[52, Theorem 2 (II)]. □

The next result will allow us to reduce the question about the existence of a 2-cocycle just for
groups of order a power of 2.

PropositionA.6. Let𝚉 = 𝚉2 × 𝚉𝑜𝑑𝑑, where |𝚉2| = 2𝑛 for some𝑛 ∈ ℕ, and |𝚉𝑜𝑑𝑑| is odd. Let𝑢 = 𝑢2𝚞,
𝑢 = 𝑣2𝚟, with 𝑢2, 𝑣2 ∈ 𝚉2, 𝚞, 𝚟 ∈ 𝚉𝑜𝑑𝑑. Then

𝚉𝑢,𝑣,𝜅 ≃ (𝚉2)𝑢2,𝑣2,𝜅
× 𝚉𝑜𝑑𝑑, 𝐻2(𝚉𝑢,𝑣,𝜅, 𝕜

×) ≃ 𝐻2((𝚉2)𝑢2,𝑣2
, 𝕜×) × 𝐻2(𝚉𝑜𝑑𝑑, 𝕜

×).
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POINTED HOPF ALGEBRAS OVER NONABELIAN GROUPS 53

Proof. Let𝑚, 𝑛 ∈ ℕ0 be such that |𝚞| = 2𝑚 + 1, |𝚟| = 2𝑛 + 1.Wewrite 𝑥, 𝑦 for the extra generators
of (𝚉2)𝑢2,𝑣2,𝜅

and keep 𝑥, 𝑦 for those in 𝚉𝑢,𝑣,𝜅. Then

𝚉𝑢,𝑣,𝜅 → (𝚉2)𝑢2,𝑣2,𝜅
× 𝚉𝑜𝑑𝑑,

g2𝚐𝑥
𝑖𝑦𝑗 ↦ g2𝚞

𝑖(𝑚−1)𝚟𝑗(𝑛−1)𝑥𝑖𝑦𝑗𝚐, g2 ∈ 𝚉2, 𝚐 ∈ 𝚉𝑜𝑑𝑑, 𝑖, 𝑗 ∈ {0, 1},

is a group isomorphism. The isomorphism between cohomology groups follows by Künneth’s
formula. □

A.2 Nonabelian groups and 2-cocycles

Next, we discuss how to apply Propositions A.3 and A.5 to the main classes of groups 𝚉𝑢,𝑣,𝜅 that
will appear in the proof below in order to obtain the desired 2-cocycles.

A.2.1 Quotient group 𝑍 = ℤ2

If 𝚉 = ℤ2 = ⟨𝚔⟩, then 𝚉1,1,𝚔, 𝚉1,𝚔,𝚔, 𝚉𝚔,1,𝚔 are isomorphic to the dihedral group of order 8.†

(a) We apply Proposition A.5 to 𝚉1,𝚔,𝚔 with Λ = 1, Ω = 𝚉, 𝑃 = 1, 𝜒 = 1, 𝜓(𝚔) = −1; then
𝐻2(𝚉1,𝚔,𝚔, 𝕜

×) ≃ ℤ2 = ⟨𝜎⟩, where
𝜎(𝑥, 𝚔)𝜎−1(𝚔, 𝑥) = −1, 𝜎(𝑦, 𝚔)𝜎−1(𝚔, 𝑦) = 1.

(b) We apply Proposition A.3 to 𝚉1,𝚔,𝚔, where 𝑓(𝑥) = −1, 𝑓(𝑦) = 1. If either 𝑤 = 1 or 2 ∤ 𝑟, then
𝜎 can be lifted to 𝚉( 𝑟

√
𝑤); but when 𝑤 = 𝚔, 2 ∣ 𝑟, the lift does not exist. As a smallest example,

𝚉(
2
√

𝚔) is the almost extraspecial group 23+1, which has cohomologyℤ2
2
: all 2-cocycles are lifts

of the trivial 2-cocycle on 𝚉1,𝚔,𝚔 with 𝑓 = 1 and 𝚏 = ±1.
(c) More generally, if there exists a surjective map 𝜋 ∶ 𝚉 → ℤ2 such that 𝜋(𝑢) = 1, 𝜋(𝑣) = 𝚔 =

𝜋(𝜅), then the pullback of 𝜎 from (ℤ2)1,𝚔,𝚔 to 𝚉𝑢,𝑣,𝜅 can be lifted to 𝚉( 𝑟
√

𝑤) either when 𝜋(𝑤) =

1 or 2 ∤ 𝑟. For 𝜋(𝑤) = 𝜅, 2 ∣ 𝑟, it can also be lifted if there is a character 𝚏 ∶ 𝚉 → 𝕜× such that

𝚏(𝑢) ∈ 𝔾𝑟, 2 ∤𝑟∕ord(𝚏(𝑢)), 𝚏(𝑣) ∈ 𝔾′
𝑟∕2

, 𝚏(𝜅) = 1.

A.2.2 Quotient group 𝑍 = ℤ2 × ℤ2

Let 𝚉 = ℤ2 × ℤ2 = ⟨𝚞⟩ × ⟨𝚔⟩. Reordering generators, the nontrivial possibilities for 𝚉𝑢,𝑣,𝜅 are 𝚉𝚞,1,𝚔

and 𝚉𝚞,𝚔,𝚔, which are groups of order 16 with Gap Id 3,4 and Hall-Senior number #169, #1610, see
[42, Chapter 7].

(a) We apply Proposition A.5 to 𝚉𝚞,1,𝚔 with Λ = ⟨𝚞⟩, Ω = ⟨𝚔⟩, 𝑃 ≡ 1, 𝜓(𝚞) = 𝜒(𝚔) = −1: we get a
2-cocycle 𝜎 such that

𝜎(𝑥, 𝚔)

𝜎(𝚔, 𝑥)
= −1,

𝜎(𝑥, 𝚞)

𝜎(𝚞, 𝑥)
= 1,

𝜎(𝑦, 𝚔)

𝜎(𝚔, 𝑦)
= 1,

𝜎(𝑦, 𝚞)

𝜎(𝚞, 𝑦)
= −1;

for the nontrivial choice 𝑃(𝚞, 𝚔) = −1 there is no suitable 𝜓.

†On the other hand, 𝚉𝚔,𝚔,𝚔 is the quaternion group, which has trivial cohomology.
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54 ANGIONO et al.

For the decomposition Λ = 1, Ω = 𝚉, we have the nontrivial choice 𝑃 = 1, 𝜓 = 1, 𝜒(𝚞) =

𝜒(𝚔) = −1. We obtain a 2-cocycle 𝜎′ such that

𝜎′(𝑥, 𝚔)

𝜎′(𝚔, 𝑥)
= −1,

𝜎′(𝑥, 𝚞)

𝜎′(𝚞, 𝑥)
= −1,

𝜎′(𝑦, 𝚔)

𝜎′(𝚔, 𝑦)
= 1,

𝜎′(𝑦, 𝚞)

𝜎′(𝚞, 𝑦)
= 1.

Accordingly, it is known that𝐻2(#169, 𝕜
×) = ℤ2 × ℤ2.

(b) We apply Proposition A.3 to 𝚉𝚞,1,𝚔 and the 2-cocycle 𝜎 constructed above, where 𝚠 = 𝚔𝑠𝚞𝑡,
𝑓(𝑥) = (−1)𝑠, 𝑓(𝑦) = (−1)𝑡, 𝑠, 𝑡 ∈ {0, 1}.

(c) Assume that there exists a surjective map 𝜋 ∶ 𝚉 → ℤ2 × ℤ2 such that 𝜋(𝑢) = 𝚞, 𝜋(𝑣) = 1,
𝜋(𝜅) = 𝚔. The pullback of 𝜎 from (ℤ2 × ℤ2)𝚞,1,𝚔 to 𝚉𝑢,𝑣,𝜅 can be lifted to 𝚉( 𝑟

√
𝑤) if either

𝜋(𝑤) = 1 or 2 ∤ 𝑟. If 𝜋(𝑤) = 𝜅, 2 ∣ 𝑟, then the 2-cocycle can be lifted to 𝚉𝑢,𝑣,𝜅 if there exists
𝚏 ∈ 𝚉̂ such that 𝚏(𝜅) = 1 and

𝚏(𝑢) (resp. 𝚏(𝑣)) = 𝜉 ∈

{
𝔾𝑟, 2 ∤ 𝑟∕ord(𝜉), if 𝑠 = 1 (resp. 𝑡 = 1),

𝔾′
𝑟∕2

, if 𝑠 = 0 (resp. 𝑡 = 0).

A.2.3 Quotient group 𝑍 = ℤ𝑘 × ℤ𝑘 with 4

Fix 𝑡 ∈ ℕ. Set 𝑘 = 4𝑡, 𝚉 = ℤ𝑘 × ℤ𝑘 with generators 𝚞, 𝚟, and consider 𝚔 ∶= 𝚟2𝑡. The group 𝚉𝚞,𝚟,𝚔 has
order 4𝑘2, center 𝚉, and is presented by generators 𝑥, 𝑦 and relations 𝑥2𝑘 = 𝑦2𝑘 = 1, [𝑥, 𝑦] = 𝑦𝑘,
where 𝚞 = 𝑥2, 𝚟 = 𝑦2, 𝚔 = 𝑦𝑘.
Moreover, ⟨𝑦⟩ ≃ ℤ2𝑘 is a normal subgroup, ⟨𝑥⟩ ≃ ℤ2𝑘 and𝚉𝚞,𝚟,𝚔 ≃ ℤ2𝑘 ⋉ ℤ2𝑘 with action𝑥 ⋅ 𝑦 =

𝑦𝑘+1 (notice that 𝑥2 ⋅ 𝑦 = 𝑦).

(a) We apply Proposition A.5 to 𝚉𝚞,𝚟,𝚔 with Λ = ⟨𝚞⟩, Ω = ⟨𝚟⟩. Fix 𝜉 ∈ 𝔾𝑘.
∙ The pairings 𝑃 ∶ Λ × Ω such that 𝑃(𝚞, 𝚔) = 1 are given by

𝑃(𝚞, 𝚟) = 𝜉2𝑖 for some 𝑖 ∈ 𝕀2𝑡.

∙ 𝜒 ∈ Λ̂ satisfies 𝜒(𝚞)2 = 𝑃(𝚞, 𝚟) if and only if 𝜒(𝚞) = 𝑝1𝜉
𝑖 for some 𝑝1 ∈ {±1}. Analogously,

𝜓 ∈ Ω̂ is given by 𝜓(𝚟) = 𝑝2𝜉
𝑖 , 𝑝2 ∈ {±1}.

∙ As 𝜒(𝚔) = (−1)𝑖 , the condition 𝜓(𝚟)𝜓(𝚔) = 𝜒(𝚞) always holds when 𝑖 is even, and for 𝑖 odd,
there are two choices since we need 𝑝1𝑝2 = −1.

Altogether, when 𝑖 is even, we obtain 4𝑡 different 2-cocycles 𝜎𝑖𝑝1𝑝2
with 𝜒(𝚔) = 1, and for 𝑖

odd, we have 2𝑡 different 2-cocycles 𝜎𝑖𝑝1𝑝2
with 𝜒(𝜅) = −1. Set 𝜎 ∶= 𝜎1+−.

(b) We apply Proposition A.3 to 𝚉𝚞,𝚟,𝚔, 𝜎 as constructed above and 𝚠 = 𝚞𝑠𝚟𝑡: here, 𝑓(𝑥) = 𝜓(𝚟𝑡) =

(−𝜉)𝑡 and 𝑓(𝑦) = 𝜒(𝚞𝑠) = 𝜉𝑠.
(c) More generally, fix a surjective map 𝜋 ∶ 𝚉 → ℤ𝑘 × ℤ𝑘, 𝑢, 𝑣, 𝜅 ∈ 𝚉 such that 𝜋(𝑢) = 𝚞, 𝜋(𝑣) =

𝚟, 𝜋(𝜅) = 𝚔, 𝑤 = 𝑢𝑠𝑣𝑡, 𝑠, 𝑡 ∈ 𝕀𝑘, and 𝑟 ∈ ℕ. The pullback of 𝜎 from (ℤ𝑘 × ℤ𝑘)𝚞,𝚟,𝚔 to 𝚉𝑢,𝑣,𝜅 can
be lifted to 𝚉( 𝑟

√
𝑤) if there exists 𝚏 ∈ 𝚉̂ such that 𝚏(𝑥)𝑟 = (−𝜉)𝑡, 𝚏(𝑦)𝑟 = 𝜉𝑠 and 𝚏(𝜅) = 1.

A.3 Proof of Proposition 3.15

We proceed case-by-case. We use the representations 𝑀(g , 𝜒) coming from the Yetter–Drinfeld
structure for each group in order to get a triple as in Proposition A.5, which, in turn, gives a 2-
cocycle, thenuse PropositionA.3whenweneed to extend the group accordingly. For each𝑀(g , 𝜒),
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POINTED HOPF ALGEBRAS OVER NONABELIAN GROUPS 55

we choose a basis given by centralizer coset representatives and give the corresponding matrices:
When the matrix is a multiple of the identity, we just write the corresponding scalar.

A.3.1 Type 𝛼2

Here 𝑀 = 𝑀(g1, 𝜒1) ⊕ 𝑀(g2, 𝜒2), see §5.1.1. The four possibilities for the parity vector
𝙿 = (𝜒1(𝜅), 𝜒2(𝜅)) fall into two orbits under the Weyl groupoid action, namely, (1,1) and
{(−1, 1), (−1, −1), (−1, 1)}. As the first one corresponds to trivial action of 𝜅, we just need
to study (−1, 1). Set 𝐚 ∶= 𝜒2(g

2
1
) = −𝜒1(g

2
2
)−1, 𝑘 = ord 𝐚. We compute 𝑀(g1, 𝜒1), 𝑀(g2, 𝜒2),

𝑀(g1g2, 𝜒1𝜒2).

From the actions above, we can read off the group 𝐺min explicitly:

𝐺min =
⟨
g1, g2, 𝜅 ∣ [g1, g2] = 𝜅, [g1, 𝜅] = [g2, 𝜅] = (g2

1 𝜅)
𝑘 = (g2

2 )
𝑘 = 𝜅2 = 1,

if 2 ∣ 𝑘 we add (g2
1 𝜅)

𝑘∕2 = 𝜅
⟩
.

By Proposition A.6, we reduce to 2-groups, so we have three cases:

∙ 𝑘 = 1, that is 𝐚 = 1. Then 𝑥2 = 1, 𝑦2 = 𝜅 and the group 𝐺min is the dihedral group of order 8,
see §A.2.1 (a).

∙ 𝑘 = 2, that is, 𝐚 = −1. Here 𝑥2 = 𝑢 has order 2, 𝑦2 = 𝑣 = 1, (𝑥𝑦)2 = 𝜅𝑢. Then 𝐺min is the group
#169 and such 2-cocycle exists, see §A.2.2 (a).

∙ 𝑘 = 2𝑛, 𝑛 ⩾ 2. In this case, 𝑥2𝑛 = 𝑦2𝑛 = 1 and 𝑦2𝑛−1
= 𝜅. Then |𝐺min| = 22+2𝑛, the center is

ℤ2𝑛 × ℤ2𝑛 , and moreover, 𝐺min ≃ ℤ2𝑛+1 ⋉ ℤ2𝑛+1 as in A.2.3 (a), so there exists such 2-cocycle.

A.3.2 Type 𝛼3

Here𝑀 = 𝑀(g1, 𝜒1) ⊕ 𝑀(g2, 𝜒2) ⊕ 𝑀(g3, 𝜒3), see §5.1.2. As 𝜒1(𝜅) = 𝜒3(𝜅), there are four choices
of 𝙿 = (𝜒𝑖(𝜅))𝑖∈𝕀3

, which fall into two orbits under the Weyl groupoid action, namely,

{(1, 1, 1)} and {(−1, 1, −1), (−1, −1, −1), (1, −1, 1)}.

Thus, we just need to study 𝙿 = (−1, 1, −1). We compute the representations 𝑀(g𝑖 , 𝜒𝑖), which
contains the previous case 𝐴2. Set

𝐚 ∶= 𝜒2(g
2
1 ) = −𝜒1(g

2
2 )

−1, 𝐛 ∶= 𝜒3(g1) = 𝜒1(g3)
−1, 𝐜 = 𝜒2(g1g

−1
3 ).
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56 ANGIONO et al.

Hence, the action of 𝐺 on𝑀 is given by:

Using that g1g2 = 𝜅g2g1, g3g2 = 𝜅g2g3, g1g3 = g3g1, 𝜅 is central and 𝜅2 = 1, cf. §5.1.2, the
subgroup 𝚉̃ generated by †

𝑢 ∶= g2
1 , 𝑣 ∶= g2

2 𝜅, 𝚝 ∶= g3g
−1
1 𝜅, 𝜅,

is contained in 𝑍(𝐺min), and 𝐺min∕𝚉̃ has four elements: 𝚉̃, g1𝚉̃, g2𝚉̃, g1g2𝚉̃. From here, we check
that 𝐺min ≃ 𝚉̃𝑢,𝑣,𝜅, where 𝑥 ↦ g1, 𝑦 ↦ g2.
Let 𝚉 be the subgroup generated by 𝑢, 𝑣, 𝜅. Set𝑁1 = lcm(ord 𝐚, ord 𝐛2),𝑁2 = lcm(ord 𝐚, ord 𝐜2),

𝑁3 = lcm(ord 𝐛, ord 𝐜). As 𝚝𝑁3 = id, we can define

𝑟 ∶= min{𝑠 ∈ 𝕀𝑁3
|𝚝𝑠 ∈ 𝚉}

= min{𝑠 ∈ 𝕀𝑁3
|∃𝑚 ∈ 𝕀𝑁1

, 𝑛 ∈ 𝕀𝑁2
∶ 𝐜2𝑛 = 𝐛2𝑚+2𝑟, 𝐚𝑛𝐛𝑟 = 1, 𝐚𝑚 = 𝐜𝑟}.

We have that 𝚉̃ ≃ 𝚉( 𝑟
√

𝑤) for 𝑤 = 𝚝𝑟. The action of 𝑢, 𝑣, 𝚝 on𝑀1,𝑀2,𝑀3 is given, respectively, by
the following scalars:

(1, 𝐚, 𝐛−2), (𝐚−1, 1, 𝐚−1𝐜−2), (𝐛−1, 𝐜, 𝐛−1).

We also set 𝑘1 = ord 𝐚, 𝑘2 = ord 𝐛, 𝑘3 = ord 𝐜. Then,

𝚉 ≃
⟨
𝜅, 𝑢, 𝑣 ∣ 𝜅2 = 1, 𝑢𝑁1 = 1, 𝑣𝑁2 = 1, 𝜅 = (𝑢𝑖𝑣)𝑘1∕2 if 2 ∣ 𝑘1, 𝐛

2𝑖 = 𝐜−𝑘1
⟩
.

As 𝑘1|𝑁1,𝑁2, there exists a surjective map 𝚉 ↠ 𝚉′, where 𝚉′ is an abelian group as in §A.3.1, so
there exists a 2-cocycle 𝜎′ for 𝚉′ such that 𝜎′(g2,𝜅)

𝜎′(𝜅,g2)
= 1, 𝜎′(g1,𝜅)

𝜎′(𝜅,g1)
= −1 =

𝜎′(g3,𝜅)

𝜎′(𝜅,g3)
. Let 𝜎 be the pullback

of𝜎′ on𝚉: we look for a lift on𝐺min ≃ 𝚉( 𝑟
√

𝑤)𝑢,𝑣,𝜅, sowe look for a character𝚏 as in PropositionA.3.
By Proposition A.6, it is enough to solve the case in which the three 𝑘𝑖 are powers of 2. We split

in three cases as in §A.3.1.

∙ 𝑘 = 1, that is, 𝐚 = 1. Either 𝑤 = 1 or else 𝑘2 > 𝑘3, 𝑤 = 𝜅 and 𝑟 = 𝑘2∕2 > 1. In the second
case, we construct 𝚏 ∈ 𝚉̂ in𝑀(g1, 𝜒1)

∗ ⊗ 𝑀(g3, 𝜒1): that is, 𝚏(𝑢) = 𝐛2 ∈ 𝔾′
𝑟, 𝚏(𝑣) = 𝐜−2 ∈ 𝔾′

𝑟∕2
,

𝚏(𝜅) = 1. Then we apply §A.2.1 (c).
∙ 𝑘 = 2, that is, 𝐚 = −1. If 𝑘2 > 𝑘3, then 𝑟 = 𝑘2∕2,𝑤 = 𝜅; if 𝑘2 < 𝑘3, then 𝑟 = 𝑘3∕2,𝑤 = 𝑢; other-
wise, 𝑘2 = 𝑘3, 𝑟 = 𝑘2∕2 and𝑤 = 𝑢𝜅. In any case, we construct 𝚏 ∈ 𝚉̂ in𝑀(g1, 𝜒1)

∗ ⊗ 𝑀(g3, 𝜒1)

as in §A.2.2 (c), and there exists such a lift.

†We set the generators of 𝚉̃ according to generators for the symplectic root system 𝑛 = 3, 𝑟 = 1 in [43, Thm. 4.5].
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∙ 𝑘 = 2𝑛, 𝑛 ⩾ 2. Here 𝑟 = max(𝑘2∕𝑘1, 𝑘3∕𝑘1, 1), and we construct 𝚏 ∈ 𝚉̂, again in𝑀(g1, 𝜒1)
∗ ⊗

𝑀(g3, 𝜒1):

𝚏(𝜅) = 1, 𝚏(𝑢) = 𝐛2, 𝚏(𝑣) = 𝐜2.

This 𝚏 satisfies the conditions in §A.2.3 (c), and there exists such a lift.

A.3.3 Type 𝛿4

As 𝜒1(𝜅) = 𝜒3(𝜅) = 𝜒4(𝜅), the choices of 𝙿 = (𝜒𝑖(𝜅))𝑖∈𝕀4
fall into two orbits under the Weyl

groupoid action, namely,

{(1, 1, 1, 1)} and {(−1, 1, −1, −1), (−1, −1, −1, −1), (1, −1, 1, 1)},

where the second entry denotes the center node in the Dynkin diagram. Now we study 𝙿 =

(−1, 1, −1, −1).We fix the central elements† 𝑧 = g3g
−1
1
, 𝑧′ = g4g

−1
1
. Then this case can be achieved

by combining the previous result of extending 𝛼2 to 𝛼3 by 𝑧 and by 𝑧′, see Corollary A.4.

A.3.4 Type 𝛾3

Here 𝑀 = 𝑀(g1, 𝜒1) ⊕ 𝑀(g2, 𝜒2) ⊕ 𝑀(g3, 𝜒3), with g3 ∈ 𝑍(𝐺), 𝜒3 ∈ 𝐺. As 𝜅 = [g1, g2], we have
that 𝜒3(𝜅) = 1. The possible 𝙿 = (𝜒𝑖(𝜅))𝑖∈𝕀3

fall into two orbits under the Weyl groupoid action,
namely, {(1, 1, 1)} and {(−1, 1, 1), (−1, −1, 1), (1, −1, 1)}. Fix 𝙿 = (−1, 1, 1) and set

𝐚 ∶= 𝜒2(g
2
1 ) = −𝜒1(g

−2
2 ), 𝐛 ∶= 𝜒3(g1) = 𝜒1(g

−1
3 ), 𝐜 ∶= 𝜒3(g2) = −𝜒2(g

−1
3 ).

Now we compute the representations𝑀(g𝑖 , 𝜒𝑖):

If 𝑢 = g2
1
, 𝑣 = g2

2
, 𝚝 = g3, then 𝐺min ≃ 𝚉( 𝑟

√
𝑤)𝑢,𝑣,𝜅 for 𝚉 = ⟨𝑢, 𝑣, 𝜅⟩ and appropriate 𝑤 ∈ 𝚉,

𝑟 ∈ ℕ. Moreover, 𝐺min is isomorphic to the one in §A.3.2; hence, there exists a 2-cocycle as in
Proposition 3.15.

A.3.5 Type 𝛾4

Here we have central elements 𝑧 = g3g
−1
1
, 𝑧′ = g4, and this case is solved by combining the

previous result of extending 𝐴2 to 𝐴3 by 𝑧 and by 𝑧′, see Corollary A.4.

†According to generators for the symplectic root system, 𝑛 = 4, 𝑟 = 2 in [43].
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A.3.6 Type 𝜙4

Here 𝑀 = 𝑀(g1, 𝜒1) ⊕ 𝑀(g2, 𝜒2) ⊕ 𝑀(g3, 𝜒3) ⊕ 𝑀(g4, 𝜒4), with g3, g4 ∈ 𝑍(𝐺), 𝜒3, 𝜒4 ∈ 𝐺, and
𝜒3(𝜅) = 𝜒4(𝜅) = 1. The possible 𝙿 = (𝜒𝑖(𝜅))𝑖∈𝕀4

fall into two orbits under the Weyl groupoid
action: {(1, 1, 1, 1)} and {(−1, 1, 1, 1), (−1, −1, 1, 1), (1, −1, 1, 1)}. Fix 𝙿 = (−1, 1, 1, 1) and set

𝐚 ∶= 𝜒2(g
2
1 ) = −𝜒1(g

−2
2 ), 𝐛 ∶= 𝜒3(g1) = 𝜒1(g

−1
3 ), 𝐜 ∶= 𝜒3(g2) = −𝜒2(g

−1
3 ),

𝐛′ ∶= 𝜒4(g1) = 𝜒1(g
−1
4 ), 𝐜′ ∶= 𝜒4(g2) = 𝜒2(g

−1
4 ), 𝐝 ∶= 𝜒4(g3) = −𝜒3(g

−1
2 ).

Now we compute the representations𝑀𝑖 ∶= 𝑀(g𝑖 , 𝜒𝑖):

Set 𝑢 = g2
1
, 𝑣 = g2

2
. We will construct a 2-cocycle 𝜎 on 𝐺min by using appropriate 2-cocycles

from the previous cases:

∙ Set 𝐺12 = ⟨g1, g2⟩, 𝚉 = ⟨𝜅, 𝑢, 𝑣⟩; let 𝐺12, 𝚉12 ⊂ End(𝑀1 ⊕ 𝑀2) be the subgroups obtained by
restriction. Then 𝚉, 𝚉12 are central subgroups,𝐺12 = 𝚉𝑢,𝑣,𝜅,𝐺12 = (𝚉12)𝑢,𝑣,𝜅, with canonical pro-
jections 𝐺12 ↠ 𝐺12, 𝚉 ↠ 𝚉12, and 𝐺12, 𝚉12 are as in §A.3.1. Hence, there exists a 2-cocycle as we
need: the pullback 𝜎12 on 𝐺12 satisfies

𝜎12(g1,𝜅)

𝜎12(𝜅,g1)
= −1, 𝜎12(g2,𝜅)

𝜎12(𝜅,g2)
= 1.

∙ For 𝑗 = 3, 4, we set 𝐺12𝑗 = ⟨g1, g2, g𝑗⟩, 𝚉12𝑗 = ⟨𝜅, 𝑢, 𝑣, g𝑗⟩. Then 𝚉12𝑗 is a central subgroup of the
form 𝚉12𝑗 ≃ 𝚉( 𝑟𝑗

√
𝑤𝑗) for appropriate 𝑟𝑗 ∈ ℕ,𝑤𝑗 ∈ 𝚉: the proof for 𝑗 = 3 is the same as in §A.3.4

since 𝑀1 ⊕ 𝑀2 ⊕ 𝑀3 is of type 𝐶3, and for 𝑗 = 4, we have the same structure (luckily). Using
the same argument as in §A.3.4, we check the existence of 2-cocycle 𝜎12𝑗 on 𝐺12𝑗 such that
𝜎12𝑗(g1,𝜅)

𝜎12𝑗(𝜅,g1)
= −1,

𝜎12𝑗(g2,𝜅)

𝜎12𝑗(𝜅,g2)
=

𝜎12𝑗(g𝑗 ,𝜅)

𝜎12𝑗(𝜅,g𝑗)
= 1.

∙ Finally, 𝐺min ≃ 𝚉( 𝑟3
√

𝑤3)(
𝑟4
√

𝑤4)𝑢,𝑣,𝜅 ≃ 𝚉( 𝑟4
√

𝑤4)𝚉(
𝑟3
√

𝑤3)𝑢,𝑣,𝜅. The existence of a 2-cocycle 𝜎 on
𝐺min such that

𝜎(g1, 𝜅)
𝜎(𝜅, g1)

= −1,
𝜎(g2, 𝜅)
𝜎(𝜅, g2)

=
𝜎(g3, 𝜅)
𝜎(𝜅, g3)

=
𝜎(g4, 𝜅)
𝜎(𝜅, g4)

= 1

follows from the 2-cocycles 𝜎12𝑗 on 𝐺12𝑗 , 𝑗 = 3, 4 and Corollary A.4.

This concludes the proof of Proposition 3.15. □
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