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Abstract

We construct finite-dimensional Hopf algebras whose
coradical is the group algebra of a central extension of
an abelian group. They fall into families associated to a
semisimple Lie algebra together with a Dynkin diagram
automorphism. We show conversely that every finite-
dimensional pointed Hopf algebra over a nonabelian
group with nonsimple infinitesimal braiding of rank at
least 4 is of this form. We follow the steps of the Lifting
Method by Andruskiewitsch-Schneider. Our starting
point is the classification of finite-dimensional Nichols
algebras over nonabelian groups by Heckenberger—
Vendramin, which consist of low-rank exceptions and
large-rank families. We prove that the large-rank fami-
lies are cocycle twists of Nichols algebras constructed by
the second author as foldings of Nichols algebras of Car-
tan type over abelian groups by outer automorphisms.
This enables us to give uniform Lie-theoretic descrip-
tions of the large-rank families, prove generation in
degree 1, and construct liftings. We also show that every
lifting is a cocycle deformation of the corresponding
coradically graded Hopf algebra using an explicit presen-
tation by generators and relations of the Nichols algebra.
On the level of tensor categories, we construct families
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of graded extensions of the representation category of a
quantum group by a group of diagram automorphism.
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POINTED HOPF ALGEBRAS OVER NONABELIAN GROUPS 3

1 | INTRODUCTION
1.1 | Background

Groups and Lie algebras have in common that they both admit a tensor product of representations
and a dual for each finite-dimensional representation; in other words, their categories of repre-
sentations are tensor categories. More generally, the category of representations of a Hopf algebra
is also a tensor category. Prominent examples of Hopf algebras are the quantum groups U,(g) by
Drinfeld-Jimbo [22, 40], which are deformations of the enveloping algebra of a semisimple Lie
algebra g by a formal parameter g, and the small quantum groups u,(g) by Lusztig [46], which
are finite-dimensional nonsemisimple quotients of U,(g) for q a root of unity. One of the initial
motivations for quantum groups was their relation to the monodromy of certain differential equa-
tions in conformal field theory [27] and invariants of knots and 3-manifolds [53]. Small quantum
groups, their representation categories, and their semisimplification are related to Lie algebras
in positive characteristic [1, 45] and affine Lie algebras [28], and they have again applications to
topology [41] and conformal field theory [25, 44].

While the classification of finite-dimensional semisimple Hopf algebras is still a very hard prob-
lem, we may ask for the classification of Hopf algebras H with a given maximal cosemisimple part
H,, called the coradical. For example, if H, = kG is a group ring, then H is called a pointed Hopf
algebra. The so-called Lifting Method developed by Andruskiewitsch and Schneider is a program
for the classification of pointed Hopf algebras. The present article contributes to the classification
of finite-dimensional pointed Hopf algebras over an algebraically closed field k of characteristic
zero by means of this method for G a nonabelian group. Let us quickly recall the main steps and
involved notions.

The Nichols algebra Z(V) of an object V in certain braided tensor category is the smallest
braided Hopf algebra generated by V' and such that the space of primitive elements is precisely
V. It is a difficult problem to determine the structure of the Nichols algebra of a given braided
vector space, even to determine whether it is finite-dimensional. A main structural insight [31,
36, 38] is the existence of generalized root systems and Weyl groupoids. It is generalized in the
sense that the Weyl groupoid moves between different sets of simple roots for which the sets of
positive roots look different since reflections may change the braiding and even the Cartan matrix
— an effect that already appears for contragredient Lie superalgebras. Nevertheless, finite Weyl
groupoids can be classified [20] and show again a pattern of Lie theory, with some infinite series
plus low-rank exceptions.

The entry gate of Nichols algebras into the classification of Hopf algebras is the coradical fil-
tration. Namely, every Hopf algebra H comes with a coalgebra filtration H, C H; C ... where H,
is the coradical. If we assume that H,, is a subalgebra, then the associated graded coalgebra gr H
is a Hopf algebra, which decomposes as bosonization gr H ~ (D, R,)#H,. Here,R = P, R,
is a (coradically) graded Hopf agebra in a braided category; we pay special attention to the sub-
space R; of primitive elements and the subalgebra of R it generates, which is (isomorphic to) the
Nichols algebra (R, ). As an example, for the (infinite-dimensional) quantum group H = Uq(g),
the coradical H,, is the group algebra spanned by the root lattice, the space R, is spanned by the
simple root vectors E;, F;, the Nichols algebra is the tensor product of the positive and negative
parts U,(g)*, and in the graded algebra gr H, the relation [E;, F;] = 0 holds in contrast to the

-1
- in H.

L

nontrivial relation [E;, F;] =
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4 | ANGIONO ET AL.

To classify pointed Hopf algebras H with a given coradical H, = kG, the Lifting Method
proposes the following three steps.

* First, one classifies kG-Yetter-Drinfeld modules V' with finite-dimensional Nichols algebra
AB(V). When G is finite and abelian, V is a braided vector space of diagonal type and
Heckenberger has classified all these finite-dimensional Nichols algebras in [32]. Besides the
Nichols algebras uq(g)+ coming from small quantum groups, his list contains Nichols algebras
associated to Lie superalgebras in any characteristic and some exceptions [3].

* Second, one wants to prove that the subspace R, #H,, generates the entire algebra gr H, which
is known as the generation in degree 1 problem. In the abelian group case, this has been proved
in [12] using a presentation by generators and relations of the Nichols algebras of diagonal type.

* Third, one determines all possible Hopf algebras H associated to each Nichols algebra in the
first step, the so-called liftings. For the Nichols algebra uq(g)+ with q of sufficiently large order,
the possible liftings are described by deforming relations such as [E;, F;] = 0 and Eif =0 [10].
For an arbitary Nichols algebra over an abelian group, the liftings were determined in [16] and
involves the proof that every lifting is a cocycle deformation of the graded Hopf algebra in the
sense of [21, 47].

1.2 | Nichols algebras over nonabelian groups

We now discuss Nichols algebras Z(M) of Yetter-Drinfeld modules M over a finite nonabelian
group G, see §2.2. The simple Yetter-Drinfeld modules M(¢®, x) are parametrized by a conjugacy
class g© in G and a simple representation y of the centralizer GY of g. An arbitrary Yetter-Drinfeld
module M is semisimple; we identify the simple summands of M with the simple roots of a gen-
eralized root system and call their number the rank. The study over nonabelian groups started in
[49], where G is a Coxeter group and g is a reflection; two main examples were considered.

* The symmetric group S,, has a single conjugacy class of reflections with (72’) elements, which
yields an irreducible Yetter-Drinfeld module. The associated Nichols algebras for n = 3,4, 5
have dimension 12, 576, 8 294 400 and were considered by Fomin and Kirillov [26] in a very
different context; for n > 6, they are conjecturally infinite-dimensional.

* The dihedral group D, has two conjugacy classes of reflections, each with two elements. These
yield a Yetter-Drinfelf module M = M; @ M, of dimension 2 + 2 and rank 2. As it turns out,
the generalized root system is of type A,, indicating roughly that there is a space of braided
commutators M,,, associated to the third conjugacy class with two elements, and all higher
commutators vanish. Since the Nichols algebras of the irreducible modules M, M,, M, have
each dimension 4, the Nichols algebra (M) has dimension 43.

The study now naturally branches into two directions: Nichols algebras of rank 1, meaning of
irreducible Yetter-Drinfeld modules, and Nichols algebras of rank > 1 composed of the former via
root system theory. In rank 1, more finite-dimensional examples of Nichols algebras were discov-
ered in [7, 29, 33]; later, the research concentrated on successfully ruling out finite-dimensional
Nichols algebras over simple groups, see [6] and the references there.

A systematic classification for finite-dimensional Nichols algebras of rank > 1 was achieved by
Heckenberger, Schneider, and Vendramin, relying on root system theory. The program was initi-
ated with a study in rank 2 in [34], and after a series of works, it culminated in a full classification
for rank > 2 [37]. The surprising observation was that the existence of a finite root system severely
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POINTED HOPF ALGEBRAS OVER NONABELIAN GROUPS | 5

restricts the possible groups G, so that only very few of the (not yet fully classified) Nichols alge-
bras of rank 1 can appear in rank > 2. Next, we summarize the classification over an algebraically
closed field of characteristic zero.

Theorem 1.1 [37]. Let G be a nonabelian group and let M =M, @ --- ® M, € kgyl), where
each M; is simple and n > 2. Assume that the support of M generates G and that M is braid-
indecomposable. If the Nichols algebra (M) is finite-dimensional, then M belongs to one of the
following.

(i) Lie-theoretic families of typeat, (n > 2),8,(n>4),y,(n>3), ¢, (n=6,7,8), ¢,.
(ii) Five new exceptional Weyl classes in rank 2 or one of the exceptions ,8; g’ in rank 3.

Thus [37] gives a partial answer for the first step of Lifting Method over nonabelian groups
under a mild restriction. This classification is the starting point of our work; in §2.2, we give a
precise description of the modules of types «,,, §,,, ¥,,, €,,, and ¢.

Nichols algebras in the families (i) had been previously constructed by Lentner via the fold-
ing method [42, 43], which produce central extensions of Hopf algebras and Nichols algebras. In
fact, a main result of the present article (Theorem 3.18) is that ultimately, all Nichols algebras in
the families (i) can be reduced to this construction. Folding assigns to any Nichols algebra (M)
over a group I with a group T of diagram automorphisms, a new Nichols algebra Z(M) over
the central extension ¥ — G — TI'. For example, when applied to the positive part of the small
quantum group u, (A, X A,)T and T = 7, for a suitable automorphism switching the two copies
of A,, the folding construction gives a Nichols algebra over the dihedral group. Similarly, fold-
ing method can be applied to Z(M) = u,(g)* for q?> = —1 in cases where g is simple and has a
diagram automorphism, namely, 2A,,,, and 2E,, and in cases where g consists of two copies of
the same simply laced Lie algebra interchanged by £ = Z,, which we denote 2A2 and “D2 and
ZE,%, n = 6,7,8. The root system attached to Z(M) is the folded root system considered in Lie
theory, with Z-orbits of roots becoming the new roots. In all cases, the root system is of Lie type
and the Weyl groupoid is again a Weyl group (they are standard) and correspond to the families
from (i):

[43] Ay ’Dy Ep | *Agn *E
[37] Uy 5n €n Vn ¢4
Rootsystem | A, D, E, C, F,

1.3 | Summary of the main results

The main goal of our article is to determine all pointed Hopf algebra over a finite nonabelian
group whose infinitesimal braiding belong to the Lie-theoretical families (i) of [37], by solving the
remaining two steps of the Lifting Method. On the other hand, the exceptional Nichols algebras
in low rank (ii) have no uniform description and need to be treated by hand, see, for example, [19].

‘We now discuss the organization and main results of this paper in more detail. In §2, we review
the preliminaries and the classification result by Heckenberger-Vendramin. Thereafter, the paper
consists of three main parts, summarized below.
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6 | ANGIONO ET AL.

1.3.1 | Reduction via folding

The goal of §3 is to relate the output of Heckenberger-Vendramin classification with the folding
construction. Here we follow the construction mainly in the setting of [42]. Namely, for a given
Hopfalgebra H and a group of biGalois objects, one obtains a Hopf algebra structure on their direct
sum. Now we specialize to the case where the Hopf algebra is a smash product H = Z(M)#kI and
the biGalois objects are based on a 2-cocycle o for I' and a twisted symmetry of M. Then the folding
is again a smash product of the centrally extended group with the folded Nichols algebra. Our first
main result is that the Nichols algebras of all modules in the family (i) are twists of foldings over
central extensions. This opens the door for a uniform and abelian-theoretic treatment of these
Nichols algebras.

Theorem 3.18. Let G be a finite nonabelian group, M € gigyD of type a,, ¥p» Op» €, OF $4 Whose

support generates G. Then there exists o € H?(G, k) such that M° is a folding.

Notice that, by construction, the folding technique produces Nichols algebras with trivial action
of the central subgroup X = (x). Thus, to prove this result, we need to somehow trivialize the
action of that central element. We show in Lemma 2.7 that x acts trivially on large-rank families
in [37]. For small-rank cases «,, &3, 8,, ¥3, ¥4, and ¢,, we show in Proposition 3.15, that there exists
a group cocycle o as above such that x acts trivially on the twisted module M. This requires a
finer analysis on the structure of the group G and significant group cohomology computations,
postponed to the Appendix.

1.3.2 | Generation in degree 1

In the brief §4, we see the first application of Theorem 3.18. Namely, we give a positive answer to
the generation in degree 1 question by translating it to the respective assertion for certain Nichols
algebras of diagonal type.

Theorem 4.1. Let H be a finite-dimensional pointed Hopf algebra with infinitesimal braiding of
type &, ¥, O €, OF ¢4. Then H is generated by skew-primitive and group-like elements.

1.3.3 | Computation of relations and liftings

The rest of the paper is devoted to a classification all pointed Hopf algebras with infinitesimal
braiding of type a,,, ¥,,, 8,,, €., OF P,.

The first step toward that goal is to obtain defining relations for these Nichols algebras; this is
achieved in §5. Here we present a sketch of our third main result, and refer to the actual Theorem
for a precise statement.

Theorem 5.7. Given M € gigyD of type &,,, Vo 6,5 €45 OF ¢4, we have a presentation by G-
homogeneous generators and relations, and a Poincare-Birkhoff-Witt type basis (PBW basis), for
the Nichols algebra B(M).

To obtain this presentation, we adapt certain constructions and techniques developed in [12,
14] for Nichols algebras of diagonal type. Namely, for each M as above, we construct in §5.2 a
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POINTED HOPF ALGEBRAS OVER NONABELIAN GROUPS | 7

pre-Nichols algebra Z(M). Then in §5.3, we show that the subalgebra of coinvariants under the
canonical map @(M ) = PB(M) is actually a Hopf subalgebra, and describe its algebra structure.
We close §5 with Theorem 5.12, where we show that these Nichols algebras are rigid in the sense
of [18].

Finally, in §6, we classify all liftings. Following previous experiences, for example, [4, 16, 19],
we first construct a big family of them via Hopf-Galois objects, and then show that this family
exhausts all liftings. So, in particular, all liftings are cocycle deformation of the associated graded
Hopf algebra. For simplicity, here we provide only a sketch of the actual statement.

Theorem 6.3. Let M € :igyD of type &y, Vo Ops €, OF ¢y. Let Ry, denote the set of deformation
parameters defined in (6.3), and for each A € R, consider the Hopf algebra L(A) defined explictly
in §6.

Then, foreach A € R, the Hopf algebra L(A) is a lifting of M over kG and a cocycle deformation
of B(M)#kG.

Conversely, if L is lifting of M over kG, then there exists L € R, such that L ~ L(A).

In §6.3, we discuss how these liftings can be viewed as foldings of liftings of Nichols algebras
over the corresponding abelian group.
We close the paper with some open questions and future directions of research, see §7.

2 | PRELIMINARIES
Conventions

WedenoteN = {1,2,3,..}and Ny = {0} UN.Givenk < 6inNy, weputly o ={n €N, : k <n <06}
and Iy = I, o. When 6 is clear from the context, we just write [ = l,. The canonical basis of 7% is
denoted by (@;);ey, -

We work over an algebraically closed field k of characteristic zero and use k* to denote the
group of nonzero elements. If N € N, we use Gy, to denote the subgroup of Nth roots of unity; the
subset of those with order N is G;V.

Given a group G and an element g, we use ¢¢ and G to denote the conjugacy class and the
centralizer of g, respectively. By G, we mean the group of characters, and kG stands for the group
algebra. If K is another group, then a pairing (also called a bicharacter) isamap P : G X K — k*
such that for all g, ¢’ € G, k, k' € K:

P(gg',k) = P(g,k)P(g", k), P(g,kk") = P(g,k)P(g,k").

A skew-polynomial algebra in variables z, ...,z is a quotient of the free algebra in these
variables by an ideal generated by ZiZj — 122, 1<1i,j<k,forsomet j € kX*.

We denote Hopf algebras by tuples (H, i, A, S) where u is the multiplication, A the comultipli-
cation, and S the antipode, which we always assume bijective. The subspace of primitive elements
is P(H). The group of group-like elements is G(H).If §: V — H ® V is a left H-comodule, we
write 5(v) = v_; ® vy; for g € G(H), we put V, :={v € V : §(v) = g ® v}. We refer to [51] for
any unexplained terminology on Hopf algebras and to [5, §2] for preliminaries on Hopf-Galois
objects and cocycle deformations.
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8 | ANGIONO ET AL.

2.1 | The Nichols algebra of a braided vector space
A braided vector space is a pair (V, c) where V is a vector space and ¢ € GL(V ® V) satisfies
(c ®id)(id ®c)(c ® id) = (id ®c)(c ® id)(id ®c).

By declaring the elements of V' to be primitive, the tensor algebra T(V') becomes an N,-graded
braided Hopf algebra. There is a largest coideal .7 (V) among those that trivially intersect k @ V; it
happens to be graded, so we denote J (V) = @n>2 J"™(V). The Nichols algebra of (V, ¢) is defined
as the quotient (V) = T(V)/J (V). This is again an N,-graded braided Hopf algebra, which is
strictly graded as a coalgebra and generated by V as an algebra, see [36, §7]. Any intermediate
quotient £ = T(V)/J by an Ny-homogeneous Hopf ideal 7 is called a pre-Nichols algebra of V.

The braided commutator of T(V') is defined by

[—,—]. = mult(id —c) : T(V) ® T(V) = T(V).

Ifu e Vandv € T(V), we denote (ad, u)v = [u,v],. In §2.2.1, will define ad, u for arbitrary u €
T(V). For a fixed basis (x;);c; of V and k > 2, we set

X = (ad. x; ) - (ad. x;

le—1

)i, i el 2.1)

iy iy
Example 2.1. Given q = (g;;); j @ matrix of elements of k*, there is a braided vector space (V, ¢%)
where V has basis (x;);; and c1 is given by

(x ® %)) =¢q;x; @, i,jel (2.2)

A braided vector space is called of diagonal type [9] if (2.2) holds in some basis of V for some
q = (g;j);,jer- In this case, we denote the Nichols algebra of (V, ¢) by %, which is now 7'-graded;
we refer to q as the braiding matrix. The Dynkin diagram of q is a graph with [ as the set of vertices,
each vertex i labeled with g;;. There is an edge between i # j if and only if g;; := g;;q;; # 1; such
an edge is labeled with this scalar.

We say that q is of Cartan type [8] if there is a Cartan matrix a = (q;;) such that

4ij .
99 = 4q; > foralli,j el

If some g;; is not a root of unity, then the integers q;; are uniquely determined. Otherwise we
impose —ord g;; < a;; < 0 for all j # i. In this case, we say that q is of Cartan type a.

Although braided vector spaces of Cartan type seem quite simple, the structure of the corre-
sponding Nichols algebra is related either with quantized enveloping algebras (when the entries
of q are not roots of unity), or with Frobenius-Lusztig kernels.

The following example of Cartan type will be particularly relevant in later sections.

Example 2.2. Fix a finite Cartan matrix a with simply laced Dynkin diagram. Assume that q =
(q;;) satisfies the following conditions:
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POINTED HOPF ALGEBRAS OVER NONABELIAN GROUPS | 9

g =—1; 9 = { Loa;=-1, ijel (2.3)
1, a; =
Then q is of Cartan type a.

LetB; < 3, < -+ < B3, be a convex order on the set of positive roots A of a. In [12], we can find
arootvectorxg € %, foreachf € A, of 7'-degree B, obtained recursively as braided commutator
of root vectors with smaller degree.

In this case, the Nichols algebra %, is presented by generators (x;);; and relations

x2 =0, aEA; (2.4)
X.: = O’ a.. = 0. (2.6)

t

Moreover, by [3, 12], a basis for %, is given by the set

{xgixgz XZZ | n; € {0,1}}. 2.7)

Remark 2.3. Let q as above. In §5, we will need the following constructions, due to [14].

(I) The distinguished pre-Nichols algebra égq is the quotient of T(V)) by (2.5), (2.6), and

X;ij =0, a;; = -1 (2.8)

The set {x' x> ...xM | n; € N,} is a basis of &,.
BB B q
(II) Letm : B, » %, be the canonical projection. By [14], the subalgebra of coinvariants Z :=
@30” is a g-polynomial algebra with generators xé, peA,.
(III) Let @q be the quotient of T(V") by (2.5), (2.6), and Xl.z, i € 1. Then @q is a pre-Nichols algebra,

which coincides with the quotient of @q by xiz, i €. The set

{xglxgz ng In; € {0, 1} if B, is simple, n; € N, otherwise}

is a basis of %q, so its Hilbert series is

H,@q= H 1—1t5 <H1+ti>.

BeA] —{a;} i€l

2.2 | Nichols algebras over nonabelian groups

The goal of this subsection is to introduce the notion of Weyl grupoids. These play a funda-
mental role in the classification achieved in [37]. We refer to the book [36] for details and
unexplained terminology.
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10 | ANGIONO ET AL.

221 | Yetter-Drinfeld modules over groups

For a group G, the category of Yetter-Drinfeld modules Kgyl) consists of G-graded vector spaces
V =, V, endowed with a G-action such that h -V, C V), 1 for all h,g € G. This is a
braided tensor category where the braiding ¢, : VW — W ®V is given by c(v @ w) =
g-w®vforveV, and w € W. We recall that a G-grading on a vector space V = @geG v,
is equivalent to a kG-comodule structure § : V — kG ® V, declaring 6(v) = ¢ ® v if and only
ifv € V. The support of V' is

suppV ={g € G|V, # O}

Let (R, u, A, S) be a Hopf algebra in BzgyD. The braided commutator defined above satisfies the
following identity: If u € R 9 and v € R;, for some g, h € G, then for any w € R,

([, vl w] = [, [0, w],] = (g - VY[, W], + [, k- w],v. 29
R admits a braided adjoint representation ad, : R — End(R) given by
(ad, u)v = p(u @ S)(Id ®c)(A ® id)(u ® v), u,v €R.
When u is primitive, ad, u and [u, —], coincide. Notice also that

g-((ad, u)v) =(ad, g - u)(g - v), g €G,uePR),vER. (2.10)

2.2.2 | The Nichols algebra of a Yetter-Drinfeld module

Each V e Egyp is a braided vector space, so it has a Nichols algebra #(V) as discussed in
§2.1. In this setting, T(V) and (V) =T(V)/J(V) turn out to be Ny-graded Hopf algebras
inkeyp

kG "

2.2.3 | Skew derivations

There is a criterion, proven, for example, in [49, Proposition 2.4], to decide if any given element
of T(V) belongs to J (V). Fix a basis x, ..., x, of V' with x; of degree h;. For each i, we define a
skew derivation d,. € End(T(V)) recursively in V& n > 0.Forn =0, put d,.(1) = 0;in Vel put
dy,(x;) = §; ; and in general define

8, (xy) = xB,, () + 8y, (M -, xy € T(V).

Then, forany n > 2, we have x € J"(V)if and only if . (x) € J"Y(V) for alli. The compositions
of these derivations with the braided adjoint action satisfy

6xl_ ((ad, u)v) = uaxi(v) - axi(g “Vh-u, ueV,veTlV)iel,. (2.11)

g’
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POINTED HOPF ALGEBRAS OVER NONABELIAN GROUPS 1

224 | Simple Yetter-Drinfeld modules

Fix ¢ € G and (V, ) an irreducible representation of the centralizer GY. We consider the induced
G-module kG ®;, V endowed with the G-grading determined by declaring the degree of x @ v
to be gxg~! for all x € G and v € V. This is a simple Yetter-Drinfeld module over G, which is
denoted by M(¢®, x) because it depends on the conjugacy class g© rather than the element g
itself. Moreover, all the simple objects of Eigyl) arise in this way, and if G is finite, the category
kgyv is semisimple. There is a concrete description of M(¢%, y) in [2, Example 24], which we

will use several times to perform computations in tgyD.

Example 2.4. Let G be a finite group. Assume that g € G is such that ¢¢ = {g, gx} for some
x # e € G.Then there exists g, € G such that g9 = x©ggy, GY = G9* = GY 'isa subgroup of index
two since G = GY9 U g,GY, and x € Z(G), x> = e.

Let y be a one-dimensional representation of G7, thatis,V = kand y € Gi,andM = M (4%, 2).
Then dim M = 2: we may fix a basis {x, y} such that y = g, - x and the coaction is given by §(x) =
g®x,8(y) =gk ®y.As hygy, g;'h € GY forall h & GY, the action satisfies

g -1 g
h‘x_{)((h)x, h € G, h. :{)((go hgy)y, he€GY, —

L xo; )y, g &G x(hgo)x, h & GY;

x(g) x(gx)

2(9%) x(g) ]; from this, we deduce that

Thus, M is of diagonal type with braiding matrix [
dim (M) < oo if and only if ¥(g) € {~1} U G].

2.2.,5 | Weyl groupoid

Next, we recall the definition of the Weyl groupoid of a nonsimple element M € Kgyv such that
dim Z(M) < co. Let M = @;c,M;, where each summand M, is simple: M; = M(¢°, x;) € FSYD
for some g; € G, y; an irreducible representation of G9.

Foreachi # j €1, set (adMl-)OMj =M, and forn € N,

(adM;)"M; = {(ad. m;) - (ad. m,, )m|m, € M;,m € M;} C B(M).
The generalized Cartan matrix of M is CM = (cl?‘;.f ) € 2™, where

cM=> cM = —min{n e Nol(adMi)”“Mj = 0}, Jj#i. (2.12)

ii ij

The i-reflection of M is p;M = ), M, where

jel
_ .M

y o= @M)TIM,

- M, j=i.

EachM; € tgyz) is simple and dim (M) = dim %(p;M).

These reflections generate the Weyl groupoid of M, see [36].
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12 | ANGIONO ET AL.

2.3 | Heckenberger-Vendramin classification

Let M = @;¢;,M; be a finite-dimensional Yetter-Drinfeld module over a nonabelian group G,
where each M; is simple. Here 6 is called the rank of M.

In [37, Theorem 2.5], the authors classify Yetter-Drinfeld modules as above of rank at least 2,
such that the associated Nichols algebra is finite-dimensional. To be precise, one needs to assume
that the support of M generates G, and impose a mild nondegeneracy condition on the braiding
between different summands of M. Up to a few exceptions in ranks 2 and 3, the classification
consists on families ag, ¥4, and 4 of arbitrary rank, and types ¢g, 6 = 6,7, 8, ¢,, which resemble
the classification of finite-dimensional Lie algebras. These Yetter—Drinfeld modules are invariant
under the Weyl groupoid action; we say that they are standard, adopting the terminology used for
diagonal type, see [3]. In this paper, we study this class; next, we give an explicit description of
each module.

231 | Typesay, 6y, and g,

Fix a simply laced indecomposable Cartan matrix a = (q;;) € 7879 of finite type; that is, of type
Ag, 6 22,Dp,0 >4, 0r Eg for 0 € g 5. Let A, be the set of positive roots. Following [37, Lemma
6.2], we describe a Yetter-Drinfeld module M = @,,;M; over a nonabelian group G with simply
laced skeleton and Cartan graph of standard type a. Assume that there exist

» x € Z(G)such thatx # 1, x% = 1,
* g € Gwith g¢ = {g;,xg;} foralli € I,
* x; € G% such that y,(g,) = —1forall i € I,

satisfying the following:

995 = x99, xikgDx;kgH) =1, a;=-1 (2.13)
9:9; = 99 xi(g)x;(g) =1, a;; =0; (2.14)
)(i(K)Xj(K) =1, ajj = 0. (2.15)

Fori € lg,let M; = M(g°, x;) € 'S YD, which has a basis {x;, x;} with coaction x; - g; ® x;, X;
xg; ® X;. As in [2, Example 37], the braidings Ch, M, for i, j € lg are determined by

c(xx;®x) cx;®x)| _ [ —x®x —Xi(10)x; @ x; | . (2.16)

c;®x) c®x)|  |-x0Ox;®x  —x®x |’ '
i @xp) i ®xp| | xOx  1(5)x; @ @ =-1;  (217)
(5 ®x;) c(x;® xJ—.) )(j(K)x7 ®x; xjlkg)x; ® x; J

i ®x) cx@xp)] [ xile)x; ®x xj(xgi>x;®xi] oo @8
— 5 ij — V. .

(5 ®x;) c(x;® xJ—.)_ _)(j(K!]i)xj ® x; Xj(gi)xj_- ® x;

The generalized Cartan matrix of M = @, M; is a, and we have dim Z(M) = 224+!,
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POINTED HOPF ALGEBRAS OVER NONABELIAN GROUPS 13

Remark 2.5.

* The braiding on M; is of diagonal type and szw o, = id

* Ifa;; = 0, then M; @ M; is of diagonal type and Chiy MMy M, = ide®M[.

* If a;; =—1, then M; ® M; is of diagonal type if and only if y;(x) = x;(x) =1, but here

Cy,.M,Cnapm, # 1da @

232 | Typey,, 6=3

Following [37, Lemma 7.6], we describe, for each rank 6 > 3, a Yetter-Drinfeld module M of type
Yo over a nonabelian group G. Assume that there exist

+ x € Z(G)such thatx # 1, x% = 1,
* g15.., 99 € Gwith gl.G ={g;,xg;}fori € l5_; and geG ={gs},
* Xi S C/T‘El such that Xl(gl) = _1,

satisfying (2.13), (2.14), and (2.15) for i, j € lg_,, and

99 = 99>  Xi(90)xe(g) =1, i<6-1; (2.19)

Xo-1(90)x0(go—1) = —1. (2.20)

LetM; = M(¢%, x;) € “SYD.Then M = @,,M; is of type 7, and dim (M) = 22~ Notice that
M, @ - & My_, isof type ag_;, 50, by §2.3.1, we have a basis {x;, x;} of M; such that fori, j € ly_;,
the braiding ¢y, M; is determined by (2.16), (2.17), and (2.18). On the other hand, My = k{x,}is one-
dimensional concentrated in degree g; € Z(G). The braidings CMy My> CM; My CMpM;» | € lg_y, are
determined by

c(xg ® xg) = —x5 ® Xg; (2.21)

c(x; ® xg) = xo(g)xe ® X3, ¢ ® Xp) = Yok gi)Xp ® X33 (2.22)

c(xp ® X;) = xi(90)x; ® X5, c(xg @ x7) = x;(go)x; ® Xg. (2.23)
233 | Type ¢,

Following [37, Lemma 9.2], we describe a Yetter-Drinfeld module M over a nonabelian group G
with Cartan matrix of type F,. Assume that there exist

* x € Z(G)such thatx # 1, x% = 1,
* G1s» 94 € Gwith g¢ = {g;,xg;} fori =1,2and g = {g;} fori = 3,4,
. )(l' (S é\gl Such that Xl(gl) =-1

satisfying the following:

X1(9)x3(91) = X190 x4(91) = x2(9)x4(92) = 1; (2.24)
X3(9)x4(93) = x2(93)x5(92) = —1; (2.25)
919 = X9 G1» )(1(K922))(2(K912) =1 (2.26)
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14 | ANGIONO ET AL.

Let M; = M(g°, x;)- The Cartan matrix of M = @;;M; is of type F, and dim Z(M) = 2%. The
braidings Ch, M, Are given as in types ag, ¥4, depending on i, j.

2.4 | On the structure of the group G

Fix an abelian groupZand x,y € Z, X Z, such thatZ, X Z, = (x,y). Forevery u,v € Z and every
x € Z such that k2 = e, there exists a 2-cocycle g € 22(22 X Z,,Z) such that

B(x,x) =u, B(x,y) =x, B(y,x) =e, B(y,y) = v.

We denote by Z the associated central extension of Z by Z, X Z,:

TRIRS

Z L)Zu,v,k > Zy XZ; =(x,y), (2.27)

where [x,y] =%, x> = u, y*> = v.

Next, we describe some general features of a group G realizing the braidings described in §2.3.1,
§2.3.2, and §2.3.3. Let M = @;¢;M; be of type ag, ¥4, Jg, €g, O ¢,. Here M; = M(gl.G,)(i) € B:gyl),
hence supp M = | J;¢, g°. Note that

« there exists x € Z(G) such that x> = e and gl.G = {g;, xg;} for all i such that g; & Z(G),
« for i with g = {g;, xg;}, there exists j # i such that g;g; = xg;g;; hence ng = {g;,xg;}.

The relevance of the central extensions constructed above is explained next.

Lemma 2.6. Leti # j € | be such that g;g; = xg;g;, and let N = G% n GYi. Then

(a) The subgroup N is normal, and G/N ~ Z, X Z,.
(b) If G = (supp M), then N is an abelian subgroup, generated by the elements

s forall k € U such that g, g; = 6,9, 99 = 9; 9>
9 Yi> forallk € Vsuch that g,.g; = gi9x, 9x9; = ¥g; 9, and
9c9j> forallk € 1 such that g, g; = g;9k> 9k = %g;Gk-

(¢) IfN is abelian, thenG ~ N > .
i9j
Proof. For (a), we note first that [G : G%] =[G : G%] = 2, so both G% and G are normal

subgroups, and [G : N] = 4since G = G;G;. Let g € Gt

* Ifgg9™" = g1 999" = gj. then gN = N.
. Ifggl-g_l =9 ggjg_l =xg;j, then gN = ¢;N.
. Ifggl-g_l =X, ggjg_l = 9j> then gN = ng,

* If g9~ = xg;, 99;97" = xg;, then gN = g;g;N.

Hence, G/N = {N, g;N, g;N, g;g;N}. Since gl.z,gj2 € N,wegetG/N ~ 7, X Z,.
(b) and (c) are straightforward. O
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POINTED HOPF ALGEBRAS OVER NONABELIAN GROUPS 15

A more detailed description of these groups is postponed to the Appendix.

2.41 | The parity vector
An important invariant of M = @, M; € tgyl) is

P = (x,00)qco € {£11°. (2.28)

IfP =(1,...,1), then the G-action on M factors to one of G/(x). We show next that this happens
in most of the cases, in which case M is a braided vector space of diagonal type.

Lemma 2.7. Let M be either of type ag, 6 2 4, ¥, 6 25, 85, 0 2 5, or €y, 0 =6,7,8. Then P =
1, ...,1). In other words, x acts trivially on M.

Proof. We consider first the case ;. By (2.14), g1, g, € G%, and by (2.13), x = g, 9,9, "¢, '; hence,
Xa(x) = 1. By (2.15), x;(x) = 1 for alli € I,.

Now the proof for ay, 8 > 5, 85, 6 > 5, or €5, 6 = 6,7, 8 follows because each M; is contained
in a submodule of type a,; thus, x acts trivially on M; by the paragraph above. The same fact
says that, for type yq, x;(x) =1 for all i € l5_,. Finally, we use that g5_,,¢9_; € G% and x =
Jo-196—295", 95, to deduce that y,(x) = 1. O

3 | FOLDINGS OF NICHOLS ALGEBRAS AND TRIVIALIZING THE
ACTION OF THE CENTER

Motivated by Lemma 2.7, we pay special attention to Yetter—Drinfeld modules where x acts triv-
ially. We will show that these examples are related to diagonal braidings (of Cartan type) via the
folding construction for Nichols algebras, developed by the second author in [42, 43]. Then we
show that for the other cases, the action of the central element can be trivialized via a twist. First,
we introduce basic notions needed for the folding construction.

3.1 | Categorical action on Yetter-Drinfeld modules
Given a group I' and a 2-cocycle o € Z*(T,k*), we get a pairing b, : I'XT' — kX given by

by(g,h) = a(hgh™, h)a~'(h, g). Each 2-cocycle o yields a tensor functor F,, : \LYD — *LYD as
follows:

+ for an object M, let F, (M) denote the same kI'-comodule;
* the kI-module structure on F (M) is given by

g:sm=b,(g,m_y)g-my, geT, meM;

* on Hom spaces F is the identity; thus, F is k-linear, faithful, and exact;
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16 | ANGIONO ET AL.

* the monoidal structure J, : F,(M) ® F,(N) - F_(M ® N) is defined by
J.(m®n) =a(m_;,n_;)m, @ n,, meM,n€eN.

We note that J; satisfy the hexagon axiom thanks to the cocycle condition on o.

Given V,W € [L.VD, one can see that F, ® F, commutes with ¢y if and only if

a(ghg™t, g9)o(hgh™', h) = o(g, h)a(h, g) for all g € suppV, h € supp W. Hence, F, is braided if
and only if that equality holds for all g, h € T, which certainly happens if T is abelian; indeed, we
will only use this construction when T is abelian. Anyhow, these functors patch together to an
action by tensor autoequivalences of the group Z*(T', k*) on ‘LYD:

* the trivial cocycle acts as the identity, and
* F,F, = F,, foralln,o € Z*(T, k).

Given a Hopf algebra 4 in :gyD, we set, by abuse of notation,
0 . BHKT @ BH#HKT — k, o(x#g ® y#h) = e(x)e(y)o(g, h). (3.1)

Lemma 3.1.

(i) The map o is a Hopf 2-cocycle for #KkT.
(ii) ForallM € {1 YD, we have (B(M)#KT), ~ FB(F,(M))#kT.

Proof. (i) is clear. For (ii), apply [5, 4.14 (a) & (b)]. O
Here is the first notion toward the folding construction.

Definition 3.2. A folding datum is a triple (0, M,u) where o € Z*(T,k*), M € [{ YD and
u: F (M) — M is an isomorphism in L ¥D.

We will mainly deal with folding data coming from the following source.

Example 3.3. Fixg, €T, x; € T, 0 € ZX(I,k%). Let f : | — [ be a permutation such that
9ri@) = i foralli el
Consider M = @,o;M(g;, x;) € BgyD, and let 0 # x; € M(g;, x;)- Note that M is of diagonal type
with braiding matrix q = (q;;); jei» ¢ij = X (g;)- Then the linear isomorphism u : F,(M) — M,
X; = Xy is in [L YD if and only if
Xi() = bs(= 91X forall j €.
In this case, we have that
9i.1(j) = bo(9:> 9));; foralli,j €1,

and f induces an automorphism of the Dynkin diagram of q because b,(g;,g;) =1 and
b,(9j, 9:)bs(g;, gj) = 1foralli # j €.

k

*In other words, the pair (M, u) is an object in the category 6

g)?D)" of o-equivariant objects.

d ‘0 ‘Xir209rT

10177541y wouy

5B SUOWWOD dAIERID 3|qeal(dde au Ag peusenoB e sajoilie YO ‘9sn JO S3jnJ 10 Aeiq 1 auluO AB|IM UO (SUOIPUOD-PUR-SWBIAL0Y"AB | 1M Areig Ut UO//:SA1IY) SUORIPUOD pue SWS | 841 38S *[£202/60/20] UO Aeiqiauliuo A|im eunuebiyeuelyoo) Ag 65521 swd/ZTTT 0T/I0pwod B (1mAReiqipullL



POINTED HOPF ALGEBRAS OVER NONABELIAN GROUPS 17

Fixed M, the folding data form a group with unit (1, M, id) and product
(0,M,u) * (¢/,M,u’) = (c0’, M, uoF (u')).

The next results are extracted from [42, Part I].

Remark 3.4.

(a) Let (g,M,u) be a folding datum, H = Z(M)#kI. By Lemma 3.1, u induces a Hopf algebra
isomorphismu : H;, — H.

(b) Themap (1 ®u)Ay : H, - H, X H makes H aright H-Galois object. Moreover, ,H is an
(H, H)-bi-Galois object.

(¢) Given two folding data (o, M, u), (¢’, M, u’), the map

(id@u)Ay_, 1 Hypr — H, (1H,

is an isomorphism of bi-Galois objects.
(d) The map in (c) determines a group homomorphism from the group of folding data over M €
t?yD to the group of bi-Galois objects of H = ZB(M)#kI.

3.2 | Folding construction

Letl - £ —» G —» I - 1beacentral extension of a finite abelian group I' by a finite abelian group
Y. Fix a set-theoretic section s : I’ = G, and let

T € ZX(T, ), (g, h) = s(g)s(h)s(gh)™", g.h€T.
For each t € £, we denote by o, € Z2(T,k*) the 2-cocycle o, = tot. The assignment t - o, is a
group homomorphism £ — Z(T, k). Now we fix

 a Yetter-Drinfeld module M over kI,

* isomorphisms u, : Fat M)—> M,t e $ in ggyD such that the map ¢t — (o,, M, u,) is a group
homomorphism from £ to the group of folding data for M. In particular, we have u, =
id: , H=H- H.

Note that the above data specify a folding datum in the sense of Definition 3.2.

Remark 3.5. M becomes a £-module, where ¢ € £ acts by the automorphism u,. As £ is finite
abelian, the S-action diagonalizes and M decomposes as a direct sum of Z-eigenspaces:

M=@Mp, MP={meM: u&m):t(p)mforalltef}.
PEZ

Theorem 3.6 ([43, Theorem 3.6)). Let T, G, and M as above. The following structure defines a kG-
Yetter-Drinfeld module M:

* as a vector space, M = M,
* the G-action is obtained by pulling back the T-action (hence X acts trivially),

* the G-grading is given by Mg = M;s(g)_l i=Mgn M@ foreach g € G.

Also, as a braided vector space, M =M.
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18 | ANGIONO ET AL.

Next, we introduce the folding construction, which produces a Nichols algebra over G starting
from folding data on a Nichols algebra over I'. The procedure gives a central extension of Hopf
algebras and is related with the Fourier transform developed in [7].

Theorem 3.7. Let H : = B(M)#kTI. There exists a Hopf algebra structureon H : = @D,esH, o, given
by

AlU[H = @ (1d®utu)AH . HCT[ g @ HCT[/ ® HG[//; €|H = €H, €|HG'[ = 0, t Sé 0.

el =¢ el =t
Moreover, H ~ %(M)#kG as Hopf algebras.

Remark 3.8. By the results above, the group of folding data induces a homomorphism of 2-
groups £ — BiGal(H). This, in turn, defines a homomorphism of 2-groups £ — BrPic(Rep(H))
by [50] and thus defines by [23] a Z-extension of the tensor category Rep(H). This tensor category
coincides with Rep(H).

A way to see this fact comes from the equivariantization process applied to Hopf algebras
because the folding data give a functor from (the category defined from) X to the Drinfeld dou-
ble of Rep(H). Reciprocally, Rep(H) is the deequivariantization of Rep(H) associated to a central
extension of Hopf algebras [17], see also [42, Theorem 3.6].

3.3 | Folding data for trivial action of x

Next, we realize most of the examples of types ag, ¥4, 94, €5, and ¢, as foldings of braided vector
spaces of diagonal type. In all cases, we can proceed as in Example 3.3 with £ = Z, = {e, x}.

Example 3.9. Fixa finite Cartan matrixa = (a;;); je) With simply laced Dynkin diagram. Assume
that I' is a finite abelian group generated by g;, i € [, which admits a 2-cocycle

ki, i<jel
7 € Z%(T, =) such that (g1, ;) = { =/ (3.2)
e izjel

Let G be the extension of I by X associated to 7. Thus, G is generated by g; and x; in G, we have
919 = xi gjg; fori # j € 1. Assume further that we have y; € Fiel, satisfying

xi(g) = -1, Xxi(g)x () = (=), izjel

ThenV = Gaiel[k)g{i" is of Cartan type a with g = —1, as in Example 2.2.
Here, $ = {e, t}, with t(x) = —1. Set ¢ := tor, and

Jive = Ui Xive 1= bo(— g)x; €T, iel, M =@, ki
Then M =V @ F,(V), and is of Cartan type with Cartan matrix @ := (2 2).

Setalso f : l,g — lyg, i = i + 6 modulo 26. Thenu : F (M) — M as in Example 3.3 is a fold-
ing datum, and the map from £ to the group of folding data such that t ~— (o, M, u) is a group
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POINTED HOPF ALGEBRAS OVER NONABELIAN GROUPS | 19

homomorphim. Following [43], if a is of type Xy € {A45|0 > 2} U{Dy|0 > 4} U{E4|0 = 6,7,8}, we
use 2X§ to denote the corresponding folding of X, X X by f, u as above.

Example 3.10. Fix a finite abelian group I" generated by g;, i € I,, which admits
7 € Z*(T, ) such that (g, 9;) = x5is%i, i,jel,. (3.3)

Let G be the extension of I' by X associated to 7. Now G is generated by g¢; and x; the relations
Assume further that y; € T, i e 1, satisfy

xilg) = -1, L ey xi(gpx(g) = (=), i<jel,.
Again, fixt € $ such that t(x) = —1. Set o := tor, and
Jit2 = Yi Xivz i=b(— o)y €T, i €1{3,4} M = @igélkifii.
Then M is of Cartan type E4. Let f : I — I be the bijection that exchanges 3 « 5 and 4 < 6.

Thenu : F (M) — M asin Example 3.3 is a folding datum, and the map t — (o, M, u) is a group
homomorphim from £ to the group of folding data. Following [43], 2E, denotes a folding as above.

Example 3.11. Fix a finite abelian group I' generated by ¢;, i € I, which admits a 2-cocycle

x, j=i+1<6,
7 € ZX(I, ) such that w(g;> 9;) = J . (3.4)
e, otherwise.

Let G be the extension of I' by T associated to 7. Thus, G is generated by g; and «; in G, we have
the relations g;g;;, = xg;419; if i <6 —1,and g;g; = g;g; otherwise.
Assume further that y; € T, i eI, satisfy

xi(g) = -1, iel xilgpx(g) = (=11, i<jel

Again, fixt € $ such that t(x) = —1.Set o := tot, and

. r : . Xi
96—i = Ui Xoo—i ‘=bs(= g9)x; €T, L€y, M = @iey,, k-

Then M is of Cartan type A,g_;. Let f : lhg_1 — lyg_q, f(i) =20 —i. Thenu : F,(M) -» M asin
Example 3.3 is a folding datum, and the map t — (o, M, u) is a group homomorphim from £ to
the group of folding data. Following [43], 2A,,,_; denotes the folding above.

Remark 3.12. In the three examples above, we can take I' = Z”z, see [43, §5].

Theorem 3.13. Let M asin §2.3.1, §2.3.2, or §2.3.3. Assume that x acts trivially on M.

(a) IfM is of type ag, 8y, OF €g, then ZB(M) is a folded Nichols algebra as in Example 3.9.
(b) IfM is of type ¢,, then ZB(M) is a folded Nichols algebra as in Example 3.10.
(c) If M isof type yo, then Z8(M) is a folded Nichols algebra as in Example 3.11.
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20 | ANGIONO ET AL.

Proof. Since x acts trivially, this follows by [43, Theorems 5.6, 5.7, 5.8]. O

Remark 3.14. Fix a braided vector space M of type either ag, 6 > 4, 84,0 > 5,0r€g,6 = 6,7, 8 (type
Ye Was already considered in general), with Cartan matrixa = (a;;); je,- By Lemma 2.7, y;(x) = 1
foralli € [, so M is of diagonal type. We exhibit a basis in which the braiding is of diagonal type,
and we give the braiding matrix.

(I) Setq; =—1foralli € ly, and g;; = x;(g;) if a;; = 0.
(I) Letl<i< j<Obesuchthata;; = —1.Letg;; € kX besuch thatqizj = x;(¢9?),andsetq;; :=

—qi‘jl. By Step 4 of Proposition 5.2, if k > i also satisfies that a;;, = —1, we may choose g;;.
4qij-

(IIT) We also set q = (g;;) where

i,jeﬂze’
-1, i<f<jorjgo<i
—Gi—gj-6. LJ>6,aigj0=-1
digjo 5J>6,014;9=0;
-1, i=j>6.

qij =

Given i € lg, there is j # i in [y such that q;; # 0. If possible, take j > i such that a;; # 0;
otherwise, take j < i with a;; # 0. By (II) above, we can define

X =X+ gy, Xp L= X — QX iel

Using (2.16), (2.17), and (2.18), we verify that

. . —1, 1= J
-1, i=j,
o ® Xj) = Lo c(xlf ® x]—.) =1"qj> & =-L
qij, 1 *J.
qu’ aij =0
L= -1, i=j
C(Xi ® X;) = _qij’ aij = —1, C(le® X]) =< qij’ aij - _1,
9ij»  a;; =0. (9, @;j=0.

so the braiding matrix of M is q, and M is, respectively, of type Ag X Ag, Dg X Dy or E4 X Eg, both
copies with parameter g = —1.

3.4 | Trivializing the action of x via a twist

Retain the notation introduced in §3.3. Thus, G is a nonabelian group and M = @;¢;M; € E‘;gyz),
where M; = M(g°, x,)-

For the cases not covered by Lemma 2.7, we will show the existence of a 2-cocycle ¢ such that
x acts trivially on F (M). Recall the parity vector P = (y;(x), ..., x5(x)) from (2.28).
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Leto € H?(G, k). Following §3.1, the twisted Yetter-Drinfeld module associated to o is F,(M) =
M? = @;eM(g;, x7), where 7 € GY is given by the following formula:

x{(h) = a(hgh™t, W)~ (h, g)x:(h), h eq.
Since x is central in G, we have x? (x) = o(g;, 1)1 (x, g;)x;(x).

Proposition 3.15. Let G be a nonabelian group, M € Kgyv of type a5, a3, 84, V3, Ya» OF Py SUCh
that supp M generates G. There exists 0 € H*(G, kX) with X7 (x) =1 foralli.

Let us outline the strategy that will be used in the Appendix to prove this statement.

(i) We go through the cases and list the possible P = (y;(x)); € {+1}".
(ii) Itis sufficient to consider one P representing each Weyl groupoid orbit. The ith reflection of
M is

—¢; —¢;;
piM=®jeﬂM(gjgi Ja)(j)(,- s

and the parity vector of o;M is P’ = (x; (1) x;(x)") -

(iii) Next, we introduce an auxiliary minimal group G™". Namely, G™" C End M is generated
by (the action of) g;. The definition of G™" depends only on the scalars )(i(gj), xi(x). It is
enough to prove Proposition 3.15 for this group, since the asserted 2-cocycle o on G™" can
be pulled back to G.

(iv) In the next steps, we show case-wise that there exists o € H2(G™", k*) such that

o(g;, K)o (x, )" = x;(x), foralli € 1.

(v) For type a,, there are two Weyl groupoid orbits for P = (y;(x), x,(x)), namely, {(1, 1)} and
{(1,-1),(-1,-1),(—1, 1)}, the first one corresponding to P trivial. For (-1, 1), we get three
different types of groups according to the order of )(z(glz): we find the desired cocycle using
semidirect product decompositions.

(vi) The cases a; and y; are treated using spectral sequences arguments for a central extension.
Necessary information about the structure of the group (minimal orders of central elements,
e.g.) enters conveniently via the existence of a one-dimensional representation, constructed
from the structure of M.

(vii) The remaining cases are treated using two simultaneous extensions.

We postpone the proof until §A.3 since we need technical results on group cohomology.
By assumption, G is a central extension of an abelian group I' by (x) ~ Z,, say:

1—272,—G—T—1

To illustrate the proof of Proposition 3.15, we give an example where such central extensions are
related to symplectic forms on Z¢.

Example 3.16. LetI' = Zg with generators g;, i € I. The commutator in G defines a symplectic
form on I' such that the radical Z; is the image of the center Z(G); in particular, g;, g ; commute if
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22 | ANGIONO ET AL.

and only if the symplectic form on them is zero; hence, the size of the conjugacy class of g; is 1 or 2
depending if g; is in the radical or not. This symplectic form of type (6, r) is uniquely determined.

Central extensions Z, — G — I are classified by quadratic forms with fixed symplectic form.
For type a,, we have (6, 7) = (2,0) and there are two types of central extensions of order 8 with this
commutator structure, namely, the extraspecial groups 22! (the quaternion group) and 21“ (the
dihedral group). The group 2! has defining relations 912 = 922 = x and trivial second cohomology
H?(22*1,Kk¥), while the group 27 has defining relations g7 = e, g? = x (depending on a choice
of generators) and nontrivial second cohomology H 2(21“, k) = {1, o}. Our proof works for the
group 22*! because the relations (2.13) defining M imply

00 = xi(g)) =1, X200) = x2(93) = 1.

For 2_2++1, both P = (1,1) and P = (-1, 1) are possible and we have a 2-cocycle o with

o(g1, )0 e, g1) = =1, (g, %) (x, g) = 1.

The other choices of generators for 21“ work similarly and also follow from the first choice by
using Weyl groupoid reflections.

The cases as, d,, V3, ¥4, ¢4 Present similar behavior because %(6 —r) =1 in all of them. For
each case, there is an underlying extraspecial group 2*1.

Remark 3.17. The proof becomes more involved for an arbitrary abelian group I' because there are
many central extensions by Z,, parametrized by the powers of the generators, and the existence
of a nontrivial group cohomology is very sensitive to these choices.

We are ready to state the main result of this section, which states that the Nichols algebra of a
Yetter-Drinfeld module of type ay, ¥4, g, €5, OF ¢, is a twist of the corresponding Nichols algebra
of diagonal type as in §3.3.

Theorem 3.18. Let G be a finite nonabelian group, M € tgyD of type either ag, vg, g, €g, OF Py

whose support generates G. Then there exists ¢ € H*(G, k) such that F (M) is of diagonal type.

Proof. If M is of type ag, 8 >4, yg, 0 2 5, 8g, 8 2 5, or €5, 6 = 6,7,8, then x acts trivially by
Lemma 2.7, so M is naturally a Yetter-Drinfeld module over I' = G/(x), a finite abelian group;
thus, M is itself of diagonal type. For the other cases, we apply Proposition 3.15. O

LetGand M = @, M; € kgyz) be as above. Consider

2 for type ¢,,
£ :=96—1 fortype g, (3.5

6 otherwise.

Keeping the notation used for §2.3.1, §2.3.2, and §2.3.3, we have the following.

o Ifi<Z,thendimM,; =2, gl.G = {g;,xg;}, where x € Z(G) satisfies x> = 1. We fix a basis x;, x; of
M, as above.
o Ifi> ¢, thendimM,; =1, giG = {g;}. For a basis, we fix any nonzero element X; in M;.
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POINTED HOPF ALGEBRAS OVER NONABELIAN GROUPS 23

Remark 3.19. Let G be the group generated by g;, i € I and x with relations

X35> i#j<¢, a;j = -1,
giX = Xg;» k" =e, 9i9; = .

9i9i otherwise,
where a = (qg; j) denotes the Cartan matrix of M. Then G is a central extension of Z' by Z,, and
the braided vector space M has a realization over G. Moreover, the subgroup of G generated by
supp M is a quotient of G.

The Z'-grading on T(M) and its homogeneous quotients (in particular, (M)) is given by the

induced coaction of kZ' ~ kG/{(x).

4 | GENERATION IN DEGREE 1

Using Theorem 3.18 and generation-in-degree-one for the diagonal setting [12], we get the
following.

Theorem 4.1. Let H be a finite-dimensional pointed Hopf algebra with infinitesimal braiding M of
type atg, ¥g, O, €g, OF 4. Then

gr H ~ Z(M)#kG(H).
In other words, H is generated by skew-primitive and group-like elements.

Proof. Let R be the diagram of H, so gr H ~ R#kG(H). We need to show that R is generated by its
degree 1 elements M = R(1). Or, equivalently, we need to show that the canonical map (M) < R
is an isomorphism. Put also & := R*. Notice that W := M* is of the same type as M; we fix g;,
i € l,xasin §2.2. Let G be the subgroup of G(H) generated by g;,i € I. Then # € kgyv is a finite-
dimensional pre-Nichols algebra of W; thatis, #Z = @,,,,%", where 2" = R(n)*, is a graded Hopf
algebra such that 2° = k1 and is generated as an algebra by W = %

For 0 € H*(G,k*) as in Theorem 3.18, set o : B#kG @ ##kG — k as in (3.1), and let H : =
(B#HKG),, B 1= #"#kG. Then H = @, H" is a graded coalgebra, because twisting by o leaves
the coalgebra structure unchanged. Thus, H is pointed with coradical H® ~ kG by [51, 5.3.4]. As o
is trivial in degree > 0, H is a graded Hopf algebra: By [5, 4.14 (a)], H ~ %' #kG, where %' € tgyl)
is a pre-Nichols algebra of F_(W).

As x € Z(G) and it acts trivially on W, we have that x € Z(H). Set Q :=H/H(x —1), ' =
G/(x). The G-actions on F,(W) and on %’ induce respective I-actions on them. Also, F,(W) and
%' become kI'-comodulesvia7w : G -» I'. Moreover, with these structures both %’ and F (W) are
in t?yD, and #' € tgyp isa pre-Nichols algebra of F,(W). We identify H ~ %' #kG and consider
the map ® : H » %' #kT, ®(x#g) = x#7(g). Then @ is a surjective Hopf algebra map such that
®(x — 1) = 0; hence, ® induces a surjective Hopf algebra map ¢ : Q - %Z’#kI'. As H s a central
extension of Q by kZ, (since x¥* = 1, x # 1),

dimQ = %dimH - %dim%’|G| — dim #'|T),

S0 ¢ is an isomorphism.
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24 | ANGIONO ET AL.

Now I' is an abelian group since for each i # j either g;g; = g;g; or g;g; = xg;9; in G, and I is
generated by the images of the g;’s (see §2.2). Hence, [12] implies that ' = Z(F,(W)), so & =
B(W) by [5, 4.14 (b)]. Dualizing, R = (M), as desired. O

5 | GENERATORS AND RELATIONS FOR NICHOLS ALGEBRAS

In this section, we exhibit a presentation by generators and relations for the Nichols algebras of the
Yetter-Drinfeld modules M = @, M; € Bzgyl) asin §2.3.1, §2.3.2, and §2.3.3, which are standard,
that is, all reflection p; M are of the same type as M. In particular, the root system AM is a classical
one. We may assume that G is the group in Remark 3.19.

51 | Typesa, and «;

We give a presentation of Nichols algebras of types «, and «;. They will be a key step toward

the presentation for the general case, since all relations that are not powers of root vectors are
supported on smaller submodules of these types.

511 | Typea,

Let G be a group, e # x, ¢, g, € G such that
N9 = X0, K" =e, 97 ={g-xg} i=12.
Following [34], the subgroup of G generated by ¢, and g, is a quotient of
Gy = (g1, 9, K% = 1, kg = g1%, %y = oK, 201 = K1 62)- (5.1)

Assume that there are y; € GY% such that y;(g;) = —1and )(1(16922))(2(1{912) =1.Fori € l,,setM; =
M(gP, x;) € fSYD; thus, M = M, @ M, is of type a, by [34, Theorem 4.6].

Proposition 5.1. Let M =M, ® M, € Bigyl) of type a, as above. Then (M) is presented by
generators xy, X7, X5, X5 and relations

xl.2 = x;2 =0, (ad, xi)xlr =0, iel (5.2)
x5 = =005, x5 = —x1(0x; (5.3)
xfz =0, [x12, x7,]. = 0. (5.4)

The following set is a PBW basis of (M):

{xgxgxizx‘l_jzx‘fx% i a,b,c,d,e, f €10, 1}}. (5.5)

Proof. We proceed in several steps.

d ‘0 ‘Xir209rT

10177541y wouy

5B SUOWWOD dAIERID 3|qeal(dde au Ag peusenoB e sajoilie YO ‘9sn JO S3jnJ 10 Aeiq 1 auluO AB|IM UO (SUOIPUOD-PUR-SWBIAL0Y"AB | 1M Areig Ut UO//:SA1IY) SUORIPUOD pue SWS | 841 38S *[£202/60/20] UO Aeiqiauliuo A|im eunuebiyeuelyoo) Ag 65521 swd/ZTTT 0T/I0pwod B (1mAReiqipullL



POINTED HOPF ALGEBRAS OVER NONABELIAN GROUPS | 25

Step 1. By (2.16), the Nichols algebra of M; for i = 1,2 is a quantum linear space, and (5.6) implies
that relations (5.2) hold in Z(M).

Step 2. The inclusion M, := (ad, M;)M, & %(M) extends to a Z>-graded algebra inclusion
PB(M,,) & PB(M) and the multiplication

BM,) @ B(M,) @ B(M,) — B(M) (5.6)

is an isomorphism of Z2-graded objects in tgyl), where M, sits in degree a;, M, in degree «,,
and M, in degree a; + a,.

This follows by [34, Theorem 4.6]. In order to find defining relations for Z(M;,) C (M), we
need a more explicit description of the structure of M,,.

Step 3.

(a) Theset{x,,, x7,}isabasis of M,, and the braiding in this basis is of diagonal type with matrix

< -1 —)(1(K))(2(7<)> ' (5.7)

=x1) x5 (%) -1
(b) Relations (5.3) and (5.4) hold in Z(M).

Proof of Step 3. Note that 3, (x,) = x, and 6, (x7,) = xg; thus, x,, and x7, are linearly indepen-
dent in Z8(M). Relations (5.3) are verified using the skew derivations of T(M; @ M,). The braiding
of M, is obtained from a straightforward computation in :zgyD. Now (5.4) follows from (5.6) and

(5.7). [

Note that Z(M,,) is presented by the relations (5.4) and (sz)2 = 0, which has not been included
above because it can be deduced from the previous ones, as we show in Step 4.

With (5.6) in mind, the next step toward exhibiting a presentation of #(M) should be to find
braided commutations between 2(M;) and #(M;,) fori = 1, 2. Such relations are known to exist,
since (ad M;)*M j=0fori#jby [34, Lemma 4.2]. However, we show next that these can be
deduced from some of the already established relations.

Step 4. Let A denote the quotient of T(M; @ M,) by the ideal generated by (5.2) and (5.3). In A,
the following relations hold

(adc xl)x12 =0, (adc xT)x12 =0, (adc xl)xIZ =0, (adc xT)xIZ =0; (58)

[xlzaxz]c = 05 [xlzaxz]c = O’ [xi2’x2]c = 0’ [xfzaxz]c = O’ (59)
2
x2 =0. (5.10)

Proof of Step 4. First, (ad, x;)x;, = (ad, xf)x2 = 0 since xf = 0. Analogously (ad, x7)x7, = 0 fol-

lows from x% = 0. Next, using that x,, is a scalar multiple of x5, we get that (ad, x7)x;, =0

follows from x% = 0. Since xq, is a scalar multiple of x5, we get (ad, x;)x7, = 0 from xf =0.
Thus, (5.8) hold.
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For (5.9), unpacking the definitions, we see that [x,,X,]. = [x,3, %3], = 0 follow from x> =

x% = 0. Now [x1,, x5]. = 0 follows using the previous argument, since x;, is a scalar multiple of
x5 The remaining relation holds similarly.
Finally, we show that (5.10) follows from (5.8), (5.9), and (5.3). In fact,

(x12)2 = (x1x; — x§x1)(adc x1)(x;)
= _(Xz(Kglz))_lx1(adc xl)(xz)xi - Xz(glz)xi(adc xf)(xz)xl (5.10)
= —x,(1)(ad, x7)(x2)x1 X5 + x,(x glz)(adC X7)(X3)x5%4 .

= —x2(0)(ad, xp)(x)(ad, x1)(x5) = x2(kg])(x1,),

as claimed. O

We are ready to give a presentation of Z(M; @& M,). Let R denote the quotient of T(M; & M,)
by the ideal generated by (5.2), (5.3), and (5.4). We already know from (5.6) and Step 3 that the
canonical projection T(M, & M,) — %(M) factors to a surjective algebra map R - #A(M). We
show that this map is injective. Since dim Z(M) = 2°, it is enough to verify that the set (5.5) lin-
early generates R. Let J denote the subspace spanned by (5.5) in R. Since J contains 1, it is enough
to show that J is a left ideal, which reduces to verify that x;,I c I and xle c I fori =1,2. Clearly,
x,J CJ; as x5x, is a scalar multiple of x,x5, it is equally clear that x5J C J. So, we need to verify

2
that x,J C J and x3J C J, which follow since the (5.8) and (5.9) hold in R by Step 4. O

512 | Typea,

Let G denote a nonabelian group andlet M = M; & M, & M, in E‘;gyD of type a;. By [37, Lemma
5.2]fori € 1,, the subgroup (x, g;, g;4;) C G is a quotient of G,, see (5.1). Next, we describe Z(M).

Proposition 5.2. For M of type as, the Nichols algebra %(M) is presented by generators x;, x;, i € [
and relations

X} = xlf =0, (ad, x;)x; =0, iel; (5.12)
X5 = —)(j(giz)x;j, X = —x00x;, i<, a;=-1 (5.13)
xizj =0, [xij,xl.j]C =0, i<j,a;=-1 (5.14)
X33 =x;3 =0, X, = X3 = 0; (5.15)
X1,; =0, [123, X731 = 0; (5.16)
(ad, x5)x153 = 0, (ad, x,)x1,, = 0. (5.17)

A PBW basis of (M) is given by

asy_ bz _ay by; ay by ayp3 bip ayy by ay by .
{x3 XS X3 XXy XXy X Xy XX X ag,bg €{0,1} ;. (5.18)
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POINTED HOPF ALGEBRAS OVER NONABELIAN GROUPS 27

Proof. Again, we proceed in several steps.
Step 1. The multiplication map is an isomorphism of Z3-graded objects in tgyl):
BM3) @ B(My3) @ B(M,) @ B(M33) @ B(My,) @ B(M,) ~ HB(M)
This follows by [34, Theorem 2.6]. Next, we give some relations that hold in Z(M).
Step 2. The relations (5.12), (5.13), and (5.15) hold in B(M).

We know that M;; = 0,0 (5.15) hold, while (5.12) and (5.13) follow since M; & M, and M, & M,
are of type a,. Ol

Following the treatment in §5.1.1, we describe (M,,;) C Z(M). As afirst step in this direction,
we produce a basis for M ;.

Step 3. Let A denote the quotient of T(M; & M, @ M;) by the ideal generated by (5.15) and (5.13).
In A, the following relations hold:

x153 = _XZ(glz)xizy XE3 = _Xl(K)x123' (519)
Proof of Step 3. We only verify the first one. We compute

Xy33 = [0, 65 X3 = [1x1, X3]e, X3]e + (g1 - x5)1x0, X3]e = 230X, X315

=[x, x51e, X351 = _Xz(glz)[[xf, X les X351 = _)(2(912)[3% [x2, X3]c1es

where the second equality follows by (2.9), the third from (5.15), the fourth from (5.13), and the
fifth one by (2.9) and (5.15). O

Surprisingly, there are further restrictions on the character y,:
Step 4. If M, @ M, @ M is of type as, then x,(g7) = x,(g7)-

Proof of Step 4. We compute the action of g, on x,,; € Z(M) following two different approaches.
Applying (2.10) first, followed by (5.13), we get

9y - X123 = —(ad, x7)(ad, x,)x3 = )(3(95)?633
= 23090 ((ad, X3)x3) = 22(kg1) x3(k g1)((ad, X)X3)x7).

On the other hand, if we first unpack the definition of ad, x; and then let g, act, we get

9 X123 = g - (x((ad, x5)x3) — x3(91)((ad, x3)x3)x,)
= —xq((ad, x;)x3) + x,(0) x3(91)((ad, x5)x3)x7
= )(3(922)xT((adC x3)x3) = x3(91)((ad, x,)x3)x7

= X3(922)(XI((adc X3)x3) — )(2(7(99?))(3 (reg)((ad, x3)x3)x7),
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where the second equality follows by (2.10), the third one from (5.13), and the last one from

XZ(Kg3 )X?)(ng) =1
These two equations give (,( 91) X2(93 ))((ad, x;)x3)x7 = 0, and the claim follows because

0 T(((ad X3)X3)x7) = (ad, X;)x; # 0. O

The next result is analog to Step 3 in Proposition 5.1, and its proof follows from similar
arguments, so we only give a sketch.

Step 5.

(a) Abasis of M3 is {X1,3, X7,,}, where the braid is diagonal with matrix

< -1 —Xl(K))(z(K)X3(K)> ' (5.20)

=100 x5 (1) x3(x) -1
(b) Relations (5.16) hold in Z(M).

Proof of Step 5. (a) The set {X;,3, x,,} linearly spans M5 by Step 3, and it is linearly independent
since so are J,, (x123) =X, and J, (xm) = x3,. The braiding is computed using (2.10) and Step
4. Now (b) follows from (a) and Step 1. N

The Nichols algebra of M, ,; is presented by the relations (5.16) and x%% = 0; we will show that

this last relation can be deduced from others.
Braided commutations between M; and M, for i = 1, 3 can now be deduced.

Step 6. Let A denote the quotient of T(M,; & M, @ M;) by the ideal generated by (5.2), (5.15), and
(5.13). In A, the following relations hold :

(ad, x1)x;53 =0, (ad, x7)x153 =0, (ad, x;)x7,, =0, (ad, xp)x1,, =0,  (5.21)
[%123. %3], = 0, [x1235 %3] =0, [X7,5, %3] =0, [X7,5, %3] =0, (5.22)
(adc xi)x123 =—X (92_2)(adc x2)xT23’ (adc xz)x123 —X1 (92_2)(adc x2)x123' (5-23)

Proof of Step 6. The relations (5.21) can be verified using the argument in the proof of Step 4 of
Proposition 5.1. For the first relation in (5.22), use (2.9) to get

[X123, x3]c = [[xl, ng]c, x3]c = [xl, [x23, xs]c]c - xf[xly x3]c + [xp xg]cxz =0.
The three remaining relations follow similarly. For (5.23), use (2.9), (5.13), and (5.8) to get

(adc xz)x123 [x21’ x23] + (QZK xl)[xz’ x23]c X3(g1)[x2’ X5 3]cx1

= —1(05 ) [x,7, X53] = —x1(9;")ad, X;)x05,.
and the other relation follows analogously. O

We employ skew derivations to verify braided commutations between M, and M ,;.

d ‘0 ‘Xir209rT

10177541y wouy

5B SUOWWOD dAIERID 3|qeal(dde au Ag peusenoB e sajoilie YO ‘9sn JO S3jnJ 10 Aeiq 1 auluO AB|IM UO (SUOIPUOD-PUR-SWBIAL0Y"AB | 1M Areig Ut UO//:SA1IY) SUORIPUOD pue SWS | 841 38S *[£202/60/20] UO Aeiqiauliuo A|im eunuebiyeuelyoo) Ag 65521 swd/ZTTT 0T/I0pwod B (1mAReiqipullL



POINTED HOPF ALGEBRAS OVER NONABELIAN GROUPS 29

Step 7. Relations (5.17) hold in Z(M).
Proof of Step 7. We focus on the first relation. One can see directly from (2.10) that
Oy, (My23) = 0,.(M23) = 0, O, (X123) = X132, 0z (X13) = X1,
Now, using (2.10) and also Step 4, we get
ax§(x123) = —x,(1)x,3, Oy, (x73) = —x 3(92 X5

Fori € I, both 8, and d, annihilate the first relation, and we compute

ax3((adc X)X123) = X3X15 — )(3(92 )x12 5 = XoX1p + Xs(ng )xux Xs(ng)[xu’ ] =0,

where the third equality follows by (5.13). Similarly, d, ((ad X3)X123) = x2(0)[x7,, x3]. = 0. The
other relations follow analogously. O

Next, we deduce that braided brackets between % (M,;) and A(M,,) can be rewritten in terms
of intermediate factors of the decomposition given in Step 1.

Step 8. We have [B(M,), B(M53)], C B(M,) @ B(M,,3) in B(M).
Proof of Step 8. This follows from x5 = 0, x% =0, (5.13), and (5.17). As an illustration:
[X12, X3 = (ad. x;)(ad, x;)x3 — X5X123 — X153%2s
which belongs to kx3x,3 + kx,X1,,. 1

Step 9. Let A denote the quotient of T(M, & M, & M;) by the ideal generated by (5.13), (5.19),
(5.21), (5.22), and (5.17). Then in A, we have

xf23 )(2(91))(3(92)35 . (5.24)

Proof of Step 9. Use (5.21), (5.22), and (5.17) several times to get explicit braided commutations
between x,,; and each of its monomials:

xfz3 = (x;%,%5 — X1 X3%; — )(3(g1)x X3X; + )(3(1<gl)x xl)x123
= Xz(gl )75, (61 (505 )(3(92)x3x2) X3( gy )(x5%x5 — ;(3(1<922)x3x5)x1)

- XZ(gl )X?)(gz) 2
where the last equality follows from (5.13) and (5.19). O
As in the proof of Proposition 5.1, by Steps 2, 5, and 7, there exists an algebra surjection from

2, the algebra presented by relations in Proposition 5.2, onto #(M). Now we use Steps 1, 3, 6, 8,
and 9 together with the fact that dim (M) = 2! to conclude that 2 = Z(M). O
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5.2 | AKind of distinguished pre-Nichols algebra

For Nichols algebras of diagonal type, a presentation by generators and relations was achieved by
the first author in [12]. A fundamental role is played by an intermediate quotient known as the
distinguished pre-Nichols algebra. Inspired by that construction, we define a pre-Nichols algebra
9/3?(M ) for each one of the braidings M described in §2.3.1, §2.3.2, and §2.3.3. More precisely, our
construction resembles the algebra @q introduced in Remark 2.3.

This pre-Nichols algebra will also play a key role in §6, where we describe the liftings.

Given M = @, M; asin §2.3.1, §2.3.2, and §2.3.3, let o as in Theorem 3.18, and denote by q the
braiding matrix of W := F_(M) (see §3.1). Recall the index ¢ defined in (3.5). Consider

0+¢—i+1, otherwise,

- i+6, for types ay, 84, €4,

S0 lgyp =1lg U fitie I,}. We fix a basis x;, i € lg, ., such that

* X;, X; is a basis of F,(M;) for each i € [,;
* the braiding in this basis is given by q; that is, ¢(x; ® x;) = q;;%; ® x;.

Let A = (a;)); jey,,, be the Cartan matrix of q.

Remark 5.3. Let 2 : 7%+ — 70 be the group morphism such that

B)=a;, i<6; Ea)=a;, i>6,i=].

This map identifies the two elements of the basis above corresponding to each F, (M;) when
dim M; = 2. Thus, if # is an Ng-graded pre-Nichols algebra such that F (£) is NgM -graded (for
the usual grading as pre-Nichols algebra of diagonal type), then

dim%; = ) dimF,(2),, Bend.
yEE~L(B)

Thus, the Hilbert series H 4 is the image of Hy_() under E.

Let 9§(M ) be the algebra generated x;,i € I, X7, J € 1., subject to the relations

(ad. x)x;, x7, xlf, i€l (5.25)
x7, i> ¢ (5.26)
X5+ )(j(gl.z)x;j, X5 + xi()x;, i<j<?t a=-1 (5.27)
Xijs X Xip o X i<jgée, a;; = 0; (5.28)
Xijs  Xijs ig?<j, a;; =0; (5.29)
(ad, xj)xiﬂ =0, a;; = -2 (5.30)

(ad, x;)x; i, (ad. x;)x;

ik i<j<k,a;= aj=-1 (5.31)

d ‘0 ‘Xir209rT

10177541y wouy

5B SUOWWOD dAIERID 3|qeal(dde au Ag peusenoB e sajoilie YO ‘9sn JO S3jnJ 10 Aeiq 1 auluO AB|IM UO (SUOIPUOD-PUR-SWBIAL0Y"AB | 1M Areig Ut UO//:SA1IY) SUORIPUOD pue SWS | 841 38S *[£202/60/20] UO Aeiqiauliuo A|im eunuebiyeuelyoo) Ag 65521 swd/ZTTT 0T/I0pwod B (1mAReiqipullL
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Proposition 5.4. @(M ) is a graded pre-Nichols algebra with Hilbert series

2
_ 1 2 1
HS?(M) - H <1 _ tﬁ> H(l +1t) H <1——t5> H(l + tj). (5.32)
peal —{a;} Jjel, peaM —{a;} >

Proof. First, @(M) is a quotient of T(M) by an homogeneous ideal, so it is a graded algebra.
Also, (5.25)-(5.29) are primitive elements of T(M), while those in (5.31) are primitive mod-
ulo the previous relations, see the proofs of Propositions 5.1 and 5.2. Thus, BM) is a graded
pre-Nichols algebra.

We fix G = G defined in Remark 3.19, and M has a canonical G-Yetter-Drinfeld module
structure. Now % := FU(,@(M ) € tgyD is a pre-Nichols algebra of W such that

(.@(M)#kG)G ~ BHKG.

We claim that Z = @q. If so, the statement on the Hilbert series follows from Remarks 2.3 and

5.3. First, note that (2.8) holds in PBforallie lg+r by (5.25) and (5.26).
To verify (2.6), leti < j be such that a;; = 0. We consider five cases.

o i <7, j = i. The space of primitive elements of T(M) of degree 2a; € Ng is three-dimensional,

spanned by xl.z, x2, and x;;. Thus, (M) has no primitive elements of degree 2¢;. On the other
A

hand, the spaces of primitive elements of T(W) of degree a; + a; € Ng+f are one-dimensional

spanned by x;;, and those of degrees 2a;, 2a; are also one-dimensional, spanned by Xl.2 and
X?, respectively. As the space of homogeneous primitive elements of 2 coincides with that of
@(M), we have thatx;; = 0in B

o i<?,0<j,a; =0,where j = k. The space of primitive elements of T(M) of degree a; + o, €
Ng has dimension 4, spanned by x;;, X5> Xi» Xig» SO the space of primitive elements of @(M )
of the same degree is 0. On the other hand, the space of primitive elements of T(W) of degree
a; + ay is spanned by x;, x;j, X5, X As the space of homogeneous primitive elements of %
coincides with that of Z(M), we have that x; j=0=x; in 2. This also shows that x;; = X =
0.

o ig?,0<j,ay =-—1, where j = k. The space of primitive elements of T(M) of degree a; +
a, € Ng is two-dimensional, spanned by (5.27), so ,@(M ) has no primitive elements of this
degree. On the other hand, the spaces of primitive elements of T(W) of degrees «; + a; and
a; + oy are one-dimensional, spanned by x;; and x,;, respectively, and those of degrees a; + a;

j = in =0in e%/?

¢ i< ¢ < j<6.Here,q;; = 0,and the space of primitive elements of T(M) of degree o; + a; € Ng

and a; + a7 are O since a; = a; = —1. Hence, x;

is two-dimensional, spanned by x;; and X;5» 80 the space of primitive elements of (M) of this
degree is 0. On the other hand, the spaces of primitive elements of T(W) of degrees «; + ; and
a; + a; are one-dimensional, spanned by x;; and Xjis respectively. Hence, x; X;= 0in Z.
o i,j <. Hereq; = 0, respectively, a; = 0, and this case is the second one.

j =

Now we check (2.5) in T(W), modulo (2.4) and (2.6). We have three cases:
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Q j < ¢.The space of primitive elements of T(M), modulo (5.25), (5.26), (5.27), (5.28), and (5.29), of
degree a; + 2at; + a; has dimension < 2 and is spanned by (5.31): we can use skew derivations
as in type a3, see the proof of Proposition 5.2. Thus, the space of primitive elements of @(M ) of
this degree is 0. On the other hand, the space of primitive elements of T(W'), modulo (2.4) and
(2.6), of each degree in 271 (a; + 2a ; + ay) is either one-dimensional or 0. Indeed, the nonzero
cases are spanned by
- [Xijk’xj] [ l]k’ ] lf.]<f
- [®e_26-1 e,Xe—1]c, (6420110 X011]c if j = 6 — 1 in type yg;
= [%123, %55 [%653, %51 if j = 2 in type ¢,. R R
As the space of homogeneous primitive elements of 4 coincides with that of (M), we deduce
that (2.5) hold in 4.

© j > £.Thereare three possibilities:i = 6 — 1, j = 6, k = i in types ygor¢,,andi € {2,5}, j = 3,
k = 4 in type ¢,. The proof is analogous, using (5.30) for the first case, and (5.31) for the last
one.

From the analysis above, there exists a surjective Hopf algebra map B > @q. In a similar way,
checking spaces of homogeneous primitive elements of appropriate degree, each defining rela-
tion of (M) annihilates in F _1(% )=F (93 ), so there exists a surjective Hopf algebra map

1(%’ ) > B(M). As F_ preserves the NO graduation of the pre-Nichols algebras, both surjective
maps are indeed isomorphisms. Hence, P = % as we claimed. [

5.3 | The subalgebra of coinvariants

Let 7 : @(M ) » %B(M) be the canonical projection, Z(M) := @(M )°7 the subalgebra of
coinvariants. The next step toward the presentation of (M) is to describe Z(M). To uncover the
structure of this subalgebra, we will use a cocycle o as in Theorem 3.18 to translate the problem
to the diagonal setting, where the situation is better understood. In particular, we compute the
Hilbert series of Z(M). Since we know that of @(M), we will thus obtain the Hilbert series
of B(M).

To do so, and also to compute a PBW basis of (M) later on, we fix a reduced expression of
the element w,, of maximal length (or equivalently, a convex order on A, ) for each type. Using
this reduced expression, [36] defines a submodule Mg € tgyD, B € A,. We exhibit a basis {xz}
or {xg, xE} of the submodule Mg, depending on its dimension.

ag The set of positive rootsis A, ={a;; 1 i < j €1}, and

C(l <C£12<062< A <0(9_] <O£19 <Cf29 < e <0£9

is a convex order on A, . By [36], the modules My can be defined as

= (adc Ml) (adc M]—I)Mj (533)
A basis of M w; is given by

Xoyj = Xiit1js Xai; = X1 (5:34)
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POINTED HOPF ALGEBRAS OVER NONABELIAN GROUPS | 33

8y The positive roots are A, ={o; 1 i< j € —{ag_j9tUlajgr +ag 1 i €lg_r}Ufoe_, +
ajg 1 i < j €lg_y}, and a convex order on A, is given by

Cfl < 0612 < sz < b < 069_2 < al@—l < b < 066_1 < b < Cf@_l
< 0613 + C(ze_z < b < al@ + C{@_z < sze + Of36_2 < A < sze + 069_2
< e < 0(9_36 + 0(9_2 < 0519 < e < 0‘9—26 < oc@.
The Yetter-Drinfeld modules Ma,-j’ J # 6, are defined as for type ag. For j = 0, let
MO{[Q = (ad. M;) --- (ad, My_3)(ad. Mg_;)(ad. Mg_,)Mp.
For the other roots, we have
Ma,-s_2+a9 = (adC Ml) o (adC M9—2)M9’
AigtaAjg_2 = [M“ie—z+“e’M“je—1]C'

A basis of M for either § = a;; or B = aj5_, + g is given as in (5.34). For 8 = a;g + ajg_,, 2
basis of Mg is

xg = [X;...0-28, X...o-11c, Xz = (%5, 1...0—200 Xj6—1lc- (5.35)
€y Here, one can fix a convex order as in [11, §5]. For braidings of diagonal type, a PBW basis
is obtained recursively on the height of the roots, starting with x,, = x; for simple roots, and

later xg = [xg , x5 |. for some pair (8, 8,) such that 8, + 8, = j3, see [13, Corollary 3.17]. For
each nonsimple root § € A, we have, accordingly,

Mﬁ = [M51’Mﬁ2]c’ Xg = [xﬁ1’x52]c’ x/? = [xE’ xﬁz]c'
Yo NOWA+ = {“ij T S] S [I}U{C(ie + Xpo_q - i< J S ﬂ@—l}’ and

O(l < C{lz < O(2 < A < Cfe_l < C{le < 0(29 < A <
g+ A1 <Agt+ g < <Apgt+ag_ < <

O +Upg <" <Upgt+ag_; <+ < 20(@_1 +ag <ag_; +ag <ap,
is a convex order associated to the following reduced expression of wy:
$1(8281)(838281) -+ (So—1 +++ $1)(SgSg—1 =+ 51)(Sg =+ 82) - S

The Yetter-Drinfeld modules M. a Qi # ag, are as in (5.33), and (5.34) is a basis as well. Now,
M, . is one-dimensional, spanned by x4, and for the other roots, we check that

M"‘ie+0¢ke_1 = [Mal-g’Make_l le- (5.36)

d ‘0 ‘Xir209rT

10177541y wouy

5B SUOWWOD dAIERID 3|qeal(dde au Ag peusenoB e sajoilie YO ‘9sn JO S3jnJ 10 Aeiq 1 auluO AB|IM UO (SUOIPUOD-PUR-SWBIAL0Y"AB | 1M Areig Ut UO//:SA1IY) SUORIPUOD pue SWS | 841 38S *[£202/60/20] UO Aeiqiauliuo A|im eunuebiyeuelyoo) Ag 65521 swd/ZTTT 0T/I0pwod B (1mAReiqipullL



34 | ANGIONO ET AL.

Abasisof My o . |

is given by
Xg = [X...00 Xk..0-1]cs X5 = [x§i+1...e’xk---6—1]c- (5.37)
¢, The element w, of maximal length has a reduced expression
5155354525351 57535451 52535,518,53545,535,535453, (5.38)
which induces the following convex order on the set of positive roots:
1, 12, 17273, 172%34, 123, 122%23%4, 1273, 17233%4,
12243%4, 1229334, 1234, 12734, 1223%4%, 12?3%4, 12%3%4, 2,
2%3, 2%34, 23, 2%3%4, 234, 3, 34, 4.
We denote by §; the ith root according with this order.

Next, we give, for each nonsimple root § = 192b3¢49 guch that d # 0, a basis for each Yetter—
Drinfeld submodule M 3 (if d = 0, then we choose a basis as for y,):

Mi2p234 {[x129xI234]c}’ Mi2p2324 : {[x123’xT234]c}!
Mi23324 ¢ {[x1223,x1234]c,[xm, x1234]c}’ Mi2pa324 {[x1223,x12234]c},
Mi254334 {[x1223’x122324]c}’ M3 - {x1234’x1234}’
M2z {[x1234ax2]c,[x1234’x2]c}’ M2p43342 - {[x12234, x122324]c}’
M4 - {[x1234’x23]c’ [xI234!x23]c}’ M2z - {x§234},
M35y {[x122324’x2]c’[XW’XZ]C}’ Mozt {[x53’x234]c}’
My {x234,x534}, M, : {x34}.

where Xg is the first vector fixed for M 3 while for dim M g = 2, we denote by xE the second
vectors in the order fixed above.

a; a4

Remark 5.5. Let § = 141292 ... 0% € AM, g5 1= g1 g% - gg@ cG.

(1) Ifdim Mg = 1, then x4 has G-degree g;.
(2) Ifdim My = 2, then xg has G-degree gg and Xz has G-degree ggx.

We omit the details of the proof that either {xg} or {xg, xﬁ} is a basis of M. The first step is

to check that M is spanned by {xz}, respectively, {xz, xg}, using the defining relations of Z(M);
this can be done recursively on the convex (total) order. If dim Mg = 2, we see that xg, x; have

B
different G-degree by Remark 5.5, so they are linearly independent.

Proposition 5.6. The subalgebra Z(M) = B(Myeom of coinvariants under the canonical projection
7w BM) » B(M) is a Hopf subalgebra of (M). It is a skew-polynomial algebra in variables
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POINTED HOPF ALGEBRAS OVER NONABELIAN GROUPS | 35

xé, B el —fa}, (5.39)

[xﬁ,xg]c, B e Aﬂ\f —{a;} such that dim Mg = 2. (5.40)
Proof. We proceed in several steps. In what follows, 8 € A is not simple.

Step 1. For each § € A, such that dim M = 1, we have xé € Mé N Z(M).

For each 8 € A, such that dim M = 2, we have x2, x%, [xg, xE]C € Z(M).

Proof of Step 1. The subalgebra spanned by M is isomorphic to the Nichols algebra #(Mg) by
[35]. Assume first that dim Mﬁ = 1. The braiding of Mﬁ satisfies that c(xﬁ ® xﬁ) = —Xg ® Xg, SO

xé = 0in Z(M). Thus, xé € ker 7 N M2, and applying F, we get

Fa(xé) € Fc,(kerﬂ nMé) = kerﬂch,(Mﬁ)2 = Z(W).

Hence, xé € Z(M), since F leaves the coalgebra structure unchanged.
Now, if dim M =2 then the braiding of M 3 satisfies

c(xﬁ ® xﬁ) =—Xg ® Xg, c(xE ® xE) = —xE ® xE, cz(xﬁ ® xE) =Xg ® xE.
By a similar argument, xé, x%, [xg, xE]“ € ZM). O

Step 2. For each § € A, such that dim Mg = 1, {xg} is a basis of F,(Mp).
For each g € A, such that dim My = 2, {x, XE} is a basis of F;(Mp).

Proof of Step 2. The statement certainly holds for simple roots, so we fix a nonsimple root 5. For
types g, g, €9, We always have dimMﬁ = 2 and Mﬁ = [Mﬁl’Mﬁz]c for some $3,,8, € A, . Notice

that (ad, xi)x7 = 0foralli, j € Isincei, j belong to different connected components of the Dynkin
diagram of type Xy X X4. Hence, [x,, x5]. forally,5 € A, and arguing recursively,

Fo(Mp) = Fy (IM, Mg, 1. ) = [Fo(M5,). Fo(Mg)|

= [[kxﬁl + [KXE, kxﬁz + [I«XE]C = k[xﬁ1’xﬁz]c + k[xE, XEL = [kxﬁ + IkxE.

For multiply laced types, the proof follows similarly, case-by-case. O

Step 3. There exist Ng-homogeneous elements

* Y € Mé of G-degree gé when dim Mg =1,
" Vg Y5 € Mé of G-degree gg, respectively, gézc, when dim Mg = 2,

whicht g-commute with every G-homogeneous element of . Moreover, Z(M) is a skew-
polynomial algebra in these variables.
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Proof of Step 3. Assume that dim Mg = 2. Note that, for all i € I, the elements Xl.z, x? are linear
1

combinations of elements of G-degree gl.2 and gl.zx with nontrivial components on each degree.

Hence, the elements xé, x% are written as linear combinations of elements of G-degree gg and gé;c

with nontrivial components on each degree, since they are obtained applying Lusztig’s isomor-

phisms to appropriate x7, x2. Thus, there exist y; and yg of G-degrees gg and gék, respectively,
L

2 2

that span the same as x;, and }LZ When dim Mg = 1, we may choose yg = x

B g’
As Z(W) is a skew-polynomial algebra in variables x2, x% and each element xé, x% is skew-
central, the same holds with respect to yg, Vg
Let B € A, be such that dim Mg = 2. We set
Yp :=F(yp) € M, v; = F;(yp) € My,
Then yg, Vs € Z(M) since F, preserves the coalgebra structure. Note that
Fa(xiyﬁ) = 0(g;» gg)Fa(xi)Y,e, Fcr(yﬁxi) = U(gé, gi)YﬁFa(xi),

and these two elements differ up to a nonzero scalar for all i € I, thus Vg is skew-central. The same
happens for Vs and for y; when dim M = 1. In particular, the image under F, of a multiplication
of various yg’s, yE’s is the multiplication to the corresponding yg’s, yE’s up to a nonzero scalar, and

the Step follows. O
Step 4. For each § € A, such that dim Mg = 1, we have kyg = [kxé.
For each 8 € A, such that dim Mg =2, we have kyg = [kxé, [kyE = Ik[xﬁ, xE]C'

Proof of Step 4. Assume first that dim Mz = 1. Then dim Mé =1in #(M), and the claim follows

since both y; and xé are generators of M 2

Now assume that dim Mg = 2. In this case dim Mé =3 in (M) since dimFU(Mz) =3in

%(W). On the other hand, dimMé =1 in A(V): it is generated by XgXg since xé = x% =

[x, xi—?]C = 0. Notice that dim F,(Mz)* N Z(W) = 2,and F,(Mz)* n Z(W) contains elements with

nontrivial components in degrees gé and gé;c. Hence dim Mé N Z(M) = 2, with one-dimensional
2

homogeneous components of degrees 9; and gék. Thus kyg = [kxﬁ

as claimed. O

2 —_ — -
kxE and kyﬁ = [k[xﬁ,xﬁ]c,

Hence, Step 3 shows that Z(M) is a skew-polynomial algebra, and Step 4 assures that we can
choose generating variables as stated. O
5.4 | A presentation of the Nichols algebra

Here we put together the results obtained in §5.2 and §5.3 to get a presentation, a PBW basis, and
the Hilbert series for the Nichols algebra.
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Theorem 5.7.

(i) A set of PBW generators for (M) is given by
Xg, BeA; Xz when dim Mg =2. (5.41)

The height of xg, Xz is2forallf € A,.
(ii) The Nichols algebra 28(M) is presented by generators x;, i € |, x5 J €1, and relations (5.25),
(5.26), (5.27), (5.28), (5.29), (5.30), (5.31), (5.39), and (5.40).

Proof.

(i) By [34, Theorem 2.6], the multiplication map

QR BMy) - 2M)

M
Beay

is an isomorphism of Z%-graded objects in kgyu If dim Mg = 1, then My has braiding —id
and 1, xg is a basis of 2(Mp). If dim Mg = 2, then M has braiding as in (2.16): that is, (M)
is a quantum plane with basis 1, xg, xE, xﬁxE, and the claim follows.

(i) By Proposition 5.4, relations (5.25), (5.26), (5.27), (5.28), (5.29), (5.30), and (5.31) hold in Z(M).
Also, (5.39) and (5.40) hold in #A(M) because the subalgebra generated by M g is isomorphic
to B(M 5) as an algebra. Therefore, if % denotes the quotient of T(M) by all these relations,
then there exists a canonical projection Z » Z(M) of graded Hopf algebras. Moreover,

B =BWV)(ZWV)*),

0 H 3,y = HzyH by [15, Lemma 2.4]. By Propositions 5.6 and 5.4,

My = [T a+#y [ a+)f=nu,
BeAY :dim Mg=2 BeAY :dim Mg=1
and we deduce that Z = ZB(M). O

Remark 5.8. The order of the elements in the PBW basis in Theorem 5.7 (i) is given by the expres-
sion of the element w, of maximal length fixed below. For example, for type ¢,, we have the
following PBW basis:

A6 .47 .48

a0z as a4  0ds a9 010,911,012 a3 14
X, X, X—X X XX, X X 5. X_ - _
4 3475547 2347023247753772370234772237 T2 T 3304 1233247 2324

xals Q16 ay7 aig a9 .02 ,.021,.02) a3 571 (5 42)
12232477122433427 503,77 122347 1334 12347734 T1224334712243247 125330, :

azs Ay 427 028 Az9 030,431 asz a3z a34 0435 036

X = X T X_CX a; €lyq.
12233247 05 1223712223247 1537 12371222347122237 15 12 77 71 i €l
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5.5 | Rigidity of Nichols algebras

We briefly discuss rigidity for Nichols algebras of Yetter-Drinfeld modules of types ay, ¥4, Jg,
€g, OT ¢4, inspired by [18] where rigidity for finite-dimensional Nichols algebras over abelian
groups is studied. This will come in handy in the next section, where we study the liftings of
these Nichols algebras.

Let Ry, C T(M) be the set of defining relations as in Theorem 5.7. We start by describing the
Yetter-Drinfeld structure of kR,,. Recall the index # introduced in (3.5).

Remark 5.9.

(1) The G-degree of x; is gizx. Using Example 2.4, it is easy to see that

Xl(hgj_lhgj) h (S Ggi5

5.43
xixi(h*)  h &G, G439

71' . G b Ikx, Yl(h’) = {

is a character, and the G-action on x; is given by ;.
(2) The G-degree of x? and x2 is g?. The G-action when i < 7 is
L

s xiox, g € G, , | xi@x:,  gecH,
g X = 2/ —1 2 X g-XxX- = !
' X; (!Jj g)x{, g &G i x:(99)x}, g & G
. . 2 . . 2
Ifi > ¢, then the action on x; is given by y;".

(3) Leti < j < besuch that a;; = —1, and set

2

rq = xlj+)(}(gl )xfj’ r ::xi_j+Xi(K)xij'

The G-degrees of ry and r, are g;g;x and g;g;. The G-action is given by

he h-r h-r,
G&E NGY xi(hx,;(Wry xi(Wx;(Wr,
G8 — G& xikh)x(@@hr, | xi(ch)x (g hr,

G& —G* )(i(gfl h)x(xh)r, xi(hg;)x j(xkh)ry
G—(G¥UGH) | xi(hg)x;(ghr )(l-(hgj_l))(j(gi_lh)rz

(4) Leti< j<Z besuch that a;; = 0. Both x;; and x;; have G-degree g;g;, while the G-degree
of X5 and X;; is g; gjx. For the action, as G% and GY% are both subgroups of index 2, there
are two possibilities. If G% # G%", then we choose g, € G% —G% and g, € G% — GY. By
Example 2.4, the G-action is given by:

he h-x;; h-xrj h~xl.7 h~xij
G8i N G¥i xi(h)x(R)x;; Xi(gy " hgp)x;(ga" hga)xg xi(Wyx,(8a hga)x xi(g, " hgp)x; (W
G8 —G¥ ity (ga' Wxg xi(g; " hgp)x;(hga)x;; Xy (hga)x xi(g, hgn)x (8" hxg
G8 — G gy W (W)x;; Xi(hgp)x,(ga" hga)x ;3 xi(gy Wy, (ga" hga)xg Xi(hgp)x;(Wx;;
G- (GouGH) | xilg, W (ga" W xi(hgp)x (hg,)x;; xi(g, Wy (hga)xy; xi(hgp)x (g hx;

T This occurs, for example, in type «p whenever j — i > 3. We may choose g, = 9j—1 # 9p = Gis1-
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Hence, x; j» Xij» X;7> X;; Span a four-dimensional irreducible Yetter-Drinfeld submodule.
In the case G% = GY, we choose g, = g, & G, and the action is described by the second
and last rows of the previous table. There are two Yetter-Drinfeld submodules, spanned by
{xijs xi—j}, and by {xi;, x;j}.
(5) Leti< ¢ < j be such that a;; = 0. The G-degree of x;; is g;9;, while the G-degree of X is
g;gjx. For the action, notice that g; € Z(G): if we pick g & G, then

G# xi(h) x;(W)x;; Xi(g_lhg))(j(h)x;j
G-G* )(i(g_lh))(j(h)x;j Xi(hg)x ;(h)x;;

(6) For i, j such that a;; = —2, the G-degree of (ad, x;)x, ; is 9} gjzk, where G acts via ij"
(7) Leti < j <kbesuchthataj; = aj = —1. Consider
r; 1= (ad, x;)x; ., r, 1= (ad, x;)x;

ijk’

which have G-degrees g, gj2 gix and g; gj2 gi» respectively. The G-action is given by

he Z (W h-m 2 (W7 h
G& N G Xy (e xi(g; ' hgxi()r,
GE — G xWx(g e, | xi(gr hgxi(g;
G8 — G8i )a(g}lh))(k(h)l‘z Xi(hg)x(hry
G—(G8UGH) | xig " Wx(g by | xi(hg)xi(g; W,

(8) Letg € AM —{a;}. The G-degrees of xé and [xg, xg]c are gé and gék, respectively, where g is

2

as in Remark 5.5. We define accordingly yg := 7111 )—{gs’ and G acts on x 3

Xp-

and [xg, xE]C via

Remark 5.10. Leti, j € I such that G% # G and g;, g; € Z(G). Then
G%9 = (G N GY)U (G — (GY% U GY))

and the following rule defines a character:

(5.44)

h 'h9 hEGginng,
Xl'j :Gyig_f - kX’ le(h) c= {Xl( ))(J( )

Xxi(hg)x(hg), h & G%uUGY.

Theorem 5.11. Let M € :igyD of type atg, Yg, Og, €g OF 4. Then

Hom!S (kR ;, M) = 0.

Proof. Let r € R,; be G-homogeneous of degree g € G. By direct computation, g - r = r. On the
other hand, M hasabasis {x;|i € [} U {x;lj € J},where J = {i € 1| dim M; = 2}. Here x; has degree
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g;» while X5 has degree ¢ %, and

g X =—X;, 1L€I giK - X5 = —X=

l 7 i jed.

Hence, the claim follows. [l

Recall that a graded braided bialgebra is rigid if it has no nontrivial graded deformations. See
[18, §2] and the references therein for details. Next, we address rigidity for Z(M).

Theorem 5.12. Let M € gzgyz) be of type either ay, yq, 8y, €g, OF 4. Then B(M) is rigid.
Proof. The category G YD is semisimple and Hom}'"(kR;, M) = 0 by Theorem 5.11. Hence, [18,
Theorem 5.3] applies for Z(M). O

Remark 5.13. The previous notion of rigidity is related to another one introduced in [48] coming
from the action of an appropriate algebraic group on the Nichols algebra (viewed as a braided
Hopf algebra). In fact, the notion of rigidity in loc. cit. is equivalent to generation in degree 1, which
holds by Theorem 4.1. This gives a different proof of Theorem 5.12, independent of Theorem 5.11.
Anyway, we need Theorem 5.11 to compute liftings.

6 | LIFTINGS OF NICHOLS ALGEBRAS

We describe all liftings for Nichols algebras of Yetter-Drinfeld modules of types ag, ¥4, &g, €9, and
¢4. Even when the braided vector space is of diagonal type (i.e., when x acts trivially), we cannot
invoke [16] since the Yetter-Drinfeld realizations considered here are not principal. Nevertheless,
we will perform an adaptation of the strategy developed in [5, 16].

We study the lowest rank type a, first, with a double purpose. On the one hand, we will only
show all the details in this case, with explicit formulas for the defining relations. On the other
hand, it will be the starting point to prove the general case, in which we will conclude that all
liftings are cocycle deformations of the associated graded Hopf algebras.

Recall that a lifting of M over G is a finite-dimensional Hopf algebra H with coradical kG and
infinitesimal braiding M. Hence, gr H ~ #(M)#kG by Theorem 4.1.

The family of liftings of M over G will be indexed by a set R,,; C kX of deformation parameters,
where K is the number of suitable chosen Yetter-Drinfeld submodules of the subspace spanned
by a minimal set G of generators for the ideal defining Z(M).

Foreach A € R;; and i € Iy, we define A0, 20D g ) K by

Ay, = Ay = € Ig. 6.1

The aforementioned strategy starts by choosing a good stratification G = G, L G, LI --- LI §;, mean-
ing that the vector space spanned by G, is a Yetter-Drinfeld submodule of (M) and the elements
of G, are primitive in the braided Hopfalgebra %, :=T(M)/ <u§;lg 2>k € 41, with one possible
exception: we do not require primitiveness for the last step.
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POINTED HOPF ALGEBRAS OVER NONABELIAN GROUPS 41

6.1 | Liftings of type «,

Let M € ‘SYD of type a,. Let R, be the set of tuples 4 = (u;, 4y, A1, A3, A2, 12, ],) € K that

satisfy the constraints
M = Oifeither)(i2 ;éaorgi2 =1,i €y,
A; =0ifeither y; # cor g> =, i €1,
A =0if yq, #¢, (6.2)
p1p = Oif either ¥, %, # € or (g19,)° = 1,
u,, = 0if either x, ¥, # € or (¢, 9,)* = «.

The definition of y; and y; j was given in (5.43) and (5.44). This subsection is devoted to prove the
following.

Theorem 6.1. Let M € tgyv be of type a,. Foreach A € R, let L(A) be the quotient of T(M)#kG

by the following set of relations:

27— (1= g?), z: — 4,1 = i),
z5 + 1(0)z15 — A1,(1 = 919),
23, + A1 = g7 g5 — X, O (1 — gD)g3x — py,(1 = g7 g5%),

[leaziz]c +2(1 + X X2 o (1 — 912)922 — LAy (x — 912)922 - M;z(l - 912922),

where we changed the labels (x;, X;);c I of the generators of T(M) to (z;, Zf)ielz' Then:

(a) L(A) =~ L(AQA), B(M)#KkG).
(b) L(A) is a lifting of M over kG.
(c) L(A)is a cocycle deformation of B(M)#kG.

Conversely, if L is lifting of M over kG, then there exist A € R, such that L ~ L(A).

Fix a Yetter-Drinfeld module M over G of type a,. As xl.z, x?, X X5+ )(2(912)35{2 and x5 +
Xx1()x,, are primitive in T(M) and
A(x,) = x1; ® 1+ x1705 ® x5 — 11 ())x]03% ® X5 + 91 5% ® X1,
A[x12, X7, ]0) = [x12, x5, ] ® 1= 277 (99)%,795% ® x5 + x1(99)x7 95 ® X5
+ X1 (0DX25 ® X2+ 1 (0295 ® X3 + X717 ® X2 + 9793 ® [x1, X,

we may choose the following stratification:
Go =1{x7, xf x:ho G ={x5+ X2 y Xz + 11(0x1) Gy ={x],, [x12, X3, 1}

The Yetter-Drinfeld structure for each stratum is given in Remark 5.9.
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42 | ANGIONO ET AL.

Let H, := %, #kG. Next, we introduce a family of cleft objects of H; parametrized by the set
Ry Given A € Ry, define £y(1) = B, = T(M), &, (1) = %,, but we change the labels of the gen-
erators to (y;, y;);e, in order to differentiate with generators (x;, X;);¢,, of the pre-Nichols algebras
‘%k‘ Let

&1A) = &@W/(¥E = 2 — sy — A 1€,
&EQA) = 51(/1)/<y1§ + xz(gf)yiz =2 ¥3 + X1(y1, — /112>’

&QA) = 52@)/()’%2 — M12» [y12’yI2]c - #£2>-

Each &;(4) is a kG-module algebra since the ideal is stable under the G-action by (6.2). Thus,
we may introduce A;(4) : = &(A)#kG.

Lemma 6.2. Let k € 5. Then &.(4) # 0 and each A (1) is an H;-cleft object. There exists an H,-
colinear section y : Hy — Ay that restricts to an algebra map (y)) ¢ € Alg(kG, Ay).

Proof. Fix A € R,;; to simplify the notation, we suppress 4 and put &, = &£,(1), A, = A, (1). We
prove the claim recursively on k.

For k = 1, we notice that & # 0 (and a fortiori .A; # 0) by [5, Lemma 5.16]. Notice that gj(yi2 -
,ul-)gj_1 = y? — A; ifi # j,soin A;, we have

(yiz—ﬂi’ylrz—#i ri=1,2) =y — g 1 i=1,2).

We may refine the stratification and proceed in four steps, quotient out first by xf, then by xg, now
by x,7, and finally by x 5. At each step, we consider the subalgebra Y’ generated by the relation
r in the corresponding pre-Nichols algebra, note that Y’ is isomorphic to a polynomial ring in
one variable since r € P(T(M)) ; — 0, and for this g, we have g - r =r. Consider Y = S(Y"). As
Y is a polynomial algebra generated by rg~!, there exists an algebra map ¢ : Y — A such that
¢(rg~) =rg=! — g1, 1 € k, which is H-colinear. Applying repeatedly [30, Theorem 8] asin [5,
Proposition 5.19], A, is a H;-cleft object and the existence of the desired section y; follows by [5,
Proposition 5.8].

For k = 2, it is enough to show that A, # 0. Indeed, in that case, [30, Theorem 8] assures
that A, is an H,-cleft object. Now [5, Proposition 5.8] provides a section y, such that (y,),c €
Alg(kG, A,). As in [16, Lemma 3.4], nonvanishing of A, would follow from

52(/1(5)) = 931/()’15 + )(2(912))’12 — A2, Y53 + 1)y — /112> # 0.

Indeed, if @, : A,;(A®)) = H, » &(A®)#kG is the canonical projection, then the composition
of the (restriction to & of the) coaction & — A; ® H;, which is an algebra map, with id ®w,
factors through &, = &,(1).

To check that 82(3.(5)) # 0, we use that (H,), is the bosonization of a pre-Nichols algebra
of diagonal type by G, and that the (1, g, g,x)- and (1, g, g,)-primitive elements y,5 + )(z(gf)yiz
and y35 + x;(x)y;, span the same subspace as x5 and x;3,, see the proof of Proposition 5.4. The
quotient (M), /(x5 — 412, X7, — 415) is not zero by [4], and

(H1)o /(x5 = Aigs X9, = Aip) = FU<A2(11(5))),
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POINTED HOPF ALGEBRAS OVER NONABELIAN GROUPS 43

which implies .4,(1)) # 0. Notice that

0 (V5 + X205, — 42) 97" = = 110002090 (¥ + x10)y12 — Ars),

soin A,,
O+ Xz(gf)YIz — A ¥y + 0100y — A1) = (3 + X1 (Y12 — A1)

Finally, as H, = @(M Y#HKG, Hy = B(M)#kG, we have H;O ™ = Z(M), a skew-polynomial
algebra in variables xfz, [¥125¥7,]. by Proposition 5.6. Hence, [30, Theorem 4] applies and A,
is H;-cleft. The claim about y; follows from [5, Proposition 5.8]. O

Proof of Theorem 6.1. Now follows by the same procedure as in [19, Theorem 5.6], using
Theorem 5.11. Indeed, if we define £y(1) = H,,

L£,(4) = £o(/1)/<zi2 - 11— giz)’zi; - 41 - giZK»,
L£,(4) = LA/ {z5 + x100z1, — A,(1 = g19,)),

and £4(4) = £(4), we can prove recursively that £;(4) ~ L(A;(4), H;). O

6.2 | The general case

Let M € tgyD of type o, ¥g, Og, €9 OF 4. Recall the characters y; and y;; defined in (5.43)

and (5.44). The set R,, of deformation parameters contains tuples 4 satisfying the following
constraints:

p; = Oif either y7 # eor g> =1, i € lg;

A; = 0ifeither y; #cor g} =x, i € ly;

A =0ifi<j<g?, a;;=-1 x;; #¢&
=Oifi<j<f,aij=0,)(ij;é£;

A, =0ifi<j<?, a;;=0, x;; #¢

Ay =A5ifi<j< 7, a;=0,G%#GY;
4;=0ifi<?<j,a;=0,x; #¢
Aije=0ifi < j<k,a;=a; =-1, Yj)(ikgés;
A =0ifi < j, aj= =2, 1ix] # &

Mg = Oifeitherfﬁ #eor gg =1(B eAK—{cxi});

,u% = 0 if either fﬁ #eor gé =x(B e AK —{oy}, dim Mg = 2). (6.3)
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44 | ANGIONO ET AL.

In this subsection, we prove our last main result:

Theorem 6.3. Let M € tgyD of type &g, Yg, g, €9, OF ¢,. For each 1 € R, see (6.3), let L(A) be

the quotient of T(M)#kG, where we change the labels of the generators to (zi)iae# by the following
relations:

z;—w(-g), i€l

z; =41 —glx), i€l

z5 + 200z — 451 = g,9)), i<j<t,a;=-1;

zjj — A1 — gigj);zij —ﬂ.i’j(l - 6;9;%), i<j<?, a;=0

zij =41 —gg), i<f<j,a;=0;

(ad. 2))Zjk = D)y, (g oA (L = gf)gigkk + A (1 = 97) ;9 — Aiji(1 = 9197 %),
i<j<k,a;=aj =-1

Zé —zg—ug(1— gé), B e Al —{a};

[zﬁ,zE]c —z5— ,u’ﬁ(l - ggx), Be A:\_/[ — {o;}, dim M, = 2,

where z, z;g € T(M)#kG are defined recursively on § € AM —{a;} such that zé —2gis (gé, 1)-

primitive and [zﬁ,zE]C -7

5 is (géx,l)—primitive in the quotient of T(M)#kG by the previous

relations. Then:

(a) L(A) ~ L(AQL), BIM)#KG),
(b) L(A) is a lifting of M over kG,
(c) L(A)is a cocycle deformation of B(M)#kG.

Conversely, if L is lifting of M over kG, then there exist A € Ry, such that L ~ Ls(A).

LetM e gzgyD of type g, ¥g, O, €g, OF ¢,4. We choose first a stratification G = u‘i‘zogi on the set

of defining relations found in Theorem 5.7
Go ={xf, X2, xzli €1,V {x]li > £
G =105+ 2 (9% x5+ 200Xl < j < €, a5 = —1};

gz ={xij, xij, x;j, x5|l < ] < f, al'j = O}U{XU,

x;jli <C<j,a;=0%
93 ={rl'jk = (adcx]')xijk, FIJk = (adcx])xzjkll <J < k, aji = ajk = _1}
U {(adc xj)xlﬁ|alj = _2},

Gy = 13216 € AY —fa}} Ulxg, x51.16 € A — fa}, dim Mg = 23,
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POINTED HOPF ALGEBRAS OVER NONABELIAN GROUPS 45

This stratification is good since

A(rij) =rijr ®1— Xj(gigkk)sz-gigkx x5 — Xj(gizglf)sz-gigkk ® X3,

+ X569 ® Xy + X (91 9kK)X5X 9 9 @ X + gigfgkk ®Tijk
Alriji) =rijp ®1— Xj(gigkk)sz-gigk ® X7 — Xj(gizglz)sz'gigk ® X

+ XjX59; 9% @ X3 + )(j(gigkk)xj-xjgigkk ®x;+ gigfgk ®Tjk-

Set H), := %, #kG. The Yetter-Drinfeld structure of each stratum is given in Remark 5.9.
Let4 € R);. Define £(4) = %, = T(M), but we change the labels of the generators to (y;, y;);g
to differentiate from the generators (x;, x;);¢, of the pre-Nichols algebras %. Let

&) = 50(/1)/<yi2 - /«ti,ylf —HpY;— At E ﬂ@>,

&) 1= 81(/1)/<yl.j +)(j(9i2)J’;j —4ijs Vi + 2y —Ali<j< a5 = _1>’

/ / ; : — 0
yij _/lij’ yij_/lij’ y;j _/11']" yi_j_/lij’ 1<J < Z, aij =0;

1

&@) 1= &)/ <

. (ad. y)yiji — Aiji (ad, yj))’;jk — Aiji> @j; = aj = —1,
£40) 1= &)/ . e :
(@dey))y; = 4ji> @iy = —

J’é—#ﬁ, BeAl —{a}, >

E(A) 1= &)/ .
> ¢ [yﬁ,yg]c - /"é’ B e Ay —{a}, dim Mg =2
Each &;(4) is a kG-module algebra since each defining ideal above is stable under the G-action
by (6.3). Thus, we may introduce A;(4) := & A)#kG.

Lemma 6.4. Let k € I5. Then £ (A) # 0 and each A, (A) is an H -cleft object. There exists an H,-
colinear section yy : Hy — Ay that restricts to an algebra map (v, € AlgkG, Ay).

Proof. Fix A € R,,; again, we simplify the notation and write & = &.(4), A, = A, (4). The proof
is analogous to that of Lemma 6.2, recursively on k.

When k < 5, the key step is to prove that & # 0, which implies that .4, # 0: if so, then [30,
Theorem 8] applies again to conclude that A4, is H, -cleft; hence, there exists a section y; asin the
statement by [5, Proposition 5.8].

To show that &, # 0, it is enough to verify nonvanishing when we deform just one submodule
of relations; that is, to consider the case 4 = A® for each i and then proceed as in [7, Lemma 3.4].
Indeed, ifw), : A (A7) = H,_, » &.(AV)#KkG is the canonical projection, then the composition
of the algebra map &,_; - A;_; ® H;_, (given by the coaction) with (id ®w, ) factors through

To verify that Ek(/‘t(i)) # 0 when the submodule of relations to be deformed is neither
{(ad, x;)x; ., (ad, xj)x-ijk}, where aj; = aj; = —1, nor {(ad, xj)xzﬁ} with a;; = —2, we may use

Lemma 6.2. For these two exceptions, we adapt the argument given in Lemma 6.2 for relations
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Y3+ )(2(912))’{2 and y;5 + x1(x)y1,, and then use the cocycle o to reduce to deformations of
Nichols algebras of diagonal type, so the result follows by [4, Proposition 4.2].

Finally, for k = 5, we have that Hzo ™ = Z(M) is a skew-polynomial algebra in variables x2,

[xﬁ, xE] . by Proposition 5.6; thus, [30, Theorem 4] assures that .45 is Hs-cleft. The section y; can
be chosen so that (), € Alg(kG, Ay) by [5, Proposition 5.8]. O

We are ready to prove the main theorem of this section.

Proof of Theorem 6.3. We proceed as in [19, Theorem 5.6], using correspondingly Theorem 5.11 and
Lemma 6.4. Indeed, starting with £,(1) = H,,, we define successive quotients £;(4), i € 15, where
L, is the quotient by all the relations of £L(4) except the last two sets (parametrized by g € A ).
Each £;(4), k < 5, is a Hopf algebra since one if obtained from the previous one by recursively
quotient by skew-primitive elements. Working as in [4, Theorem 1.6], £,(1) =~ L(A4(1), H,), and
there exist z; € £4(4) and z",), € L£,4(A) as stated below; moreover, £L(4) =~ L(As(4), Hs). The proof
that these are all the liftings follows exactly as in [19, Theorem 5.6] O

6.3 | Foldings of liftings

The folding construction in [42, Part 1] was formulated in the following general setting: Let H be
a Hopf algebraand H,, o € 3 a group of biGalois objects with coherent choice of isomorphisms
;7 - Hyp 2 H[JH,. By [42, Theorem 1.6], the direct sum of algebras

HI:@ZHU

oes

0,7

can be endowed with the structure of a Hopf algebra with coproduct P, ; ¢, .-

Conversely by [42, Theorem 3.6], any Hopf algebra H with X a central subgroup is a folding
of H = H/Z*H by Z. The biGalois objects are quotients of H associated to a central character
on X. The folding data in Section 3 were formulated specifically for the situation H = Z(M)#kI’
and for biGalois objects arising from 2-cocycles o on the group T, trivially extended to H, and
twisted Yetter—-Drinfeld isomorphisms u : Z(M), — (M), extended by the identity on G to H.
In Theorem 3.6, we have stated the folding solely in terms of o, u, while in Theorem 3.7, we have
stated the folding with these specific choices of biGalois objects as above.

We now discuss the following alternative systematic way to understand the liftings of folded
Nichols algebras, which we constructed in the previous section: Let H' be a lifting of H =
PB(M)#KT for a diagonal Nichols algebra, which are classified in [4, 16]. Let again (H é )oes be
a group of biGalois objects over the lifting, then we have a folding H’, whose graded algebra is
the folding H = %(M)#kG of H. One source for such biGalois objects could be again folding data
(0,u) where in addition u is compatible with the lifting H’, and more precisely, leaves a lifting
cocycle invariant. But there are also other possibilities, namely, the 2-cocycle o over I' could be
nontrivially extended to Z(M)#kT, which would cause a folding of H that is a lifting of H with
values in the new center.

Conversely, we obtain in this way all liftings of H where  is central, acting trivially on M. We
have already shown for each Nichols algebra in Theorem 3.18, that this trivial action can always
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POINTED HOPF ALGEBRAS OVER NONABELIAN GROUPS | 47

be achieved by a Doi twist; however, it is not a-priori clear that these Doi twists carry over to the
lifting. We will now use this tool to analyze the smallest example:

Example 6.5 (Case 2A§). We consider the Nichols algebra of a module of type a, defined in Sec-
tion 2.3.1 over a group G generated by ¢;, g, with ¢, ¢, = k¢, ¢; and «x central of order two, which
is a central extension of the abelian group I" generated by g;, g,. We computed all its liftings in
Section 6.1. We can conveniently take the group action from Remark 5.9 and the braiding from
Section 2.3.1 to replace z;; again by the braided commutator. For example, the first three relations
depending on the parameters y;, 4;, 4, read

Ziz = (1 - giz)’ z;z; + x;i(0)z;z; = 4,(1 — gizk),
Z725 — )(z(Kglz)Zzzf + x1(0)z2125 — x1(0)z52, = A15,(1 — g1 95)-

Note that acting with a group element on a relation may produce more relations, as we explained
in the proof of Lemma 6.2 for the cleft objects. For example, acting with g; on the first relation
produces the relation z2 = (1 — ¢?).

The associated Nichols algebra and its liftings are foldings if and only if « is a central element
in the Hopf algebra, that is, y;(x) = x,(x) = 1 (which we saw that it is true up to Doi twist). In
this case, we saw in Remark 3.14 that the braiding diagonalizes in the basis

Xi =z + qijZlT, X{ =z — qUZ;

The elements x;, X; are not G-homogeneous, but I'-homogeneous with degrees g;, i € [,. On the
other hand, they are G-eigenvectors with g;, g; acting on x; with eigenvalues —1, —q;; and on x;
with eigenvalues —1, g;;. The diagonal braiding matrix is of type 4, X A,

-1 —q -1 qp
9 -1 gy -1
-1 —q -1 qp
=9 -1 gy -1

and a twisted symmetry switching the two copies. In the folding construction, z;, z; arise as
eigenvalues of this symmetry.

We now rewrite the relations in this basis, starting with those involving just one orbit x;, X;,
which is a diagonal Nichols algebra of type A; X A;:

-2
1 2 _ 2 i 2 _ 2
& +x9)7 = w1 =g, - (& —x)" = w1 = g7),

By + 1) — 1)+ G = 5+ 59) = 241 — g2

These relations rewrite to
xl.2 =1+ ql.zj)/,tl-(l - gl.z) +q;;4,(1 - gizk), X %7 + %7%; = 2(1 — ql.zj)/,tl-(l - gl.z) =0,

lez =1+ qizj)#i(l - !Jl-z) —q;;A4(1 - gl-zk), %(Xlz - lez) = q;;4(1 - !JiZK),

d ‘0 ‘Xir209rT

10177541y wouy

5B SUOWWOD dAIERID 3|qeal(dde au Ag peusenoB e sajoilie YO ‘9sn JO S3jnJ 10 Aeiq 1 auluO AB|IM UO (SUOIPUOD-PUR-SWBIAL0Y"AB | 1M Areig Ut UO//:SA1IY) SUORIPUOD pue SWS | 841 38S *[£202/60/20] UO Aeiqiauliuo A|im eunuebiyeuelyoo) Ag 65521 swd/ZTTT 0T/I0pwod B (1mAReiqipullL



48 | ANGIONO ET AL.

where we have to take into account that Section 6.1 states that y; # 0, respectively, 4; # 0, only if
qu.i =1, so the anticommutator vanishes.
This is consistent with the possible liftings of diagonal A; X A;:

* The anticommutator relation admits a nontrivial lifting if x;x; =¢, but in our case
xi(g)x:(g;)) = -1

* The truncation relations admit nontrivial liftings if )(iz = ¢, which is the case if and only if qj2.i =
1. If the respective lifting parameters are equal, then this lifting datum is compatible with a
folding using the group 2-cocycle. This produces the symmetric lifting depending on y;.

* On the other hand, the antisymmetric lifting depending on A; requires a lifting cocycle that is
nontrivially extended to the Nichols algebra. The corresponding nontrivial biGalois object is
determined by plugging the nontrivial central character x — —1.

We now turn to the relation involving 4,,:

9, 9 1 9,
Ao = g197) = (% —xp)3-(x, —x3) — ar 5 (% + x7)SH (%) — x7)
+ i +x)ix, +x5) — E(X —%5)2(x; + x2)
21 /M2 T 2 V2 2/ 1

1 1
= S (X1%5 — qa%5%)) + 5 (X7%; + 41%X0x)A1(1 — 91.9,%)

q q
—%(XIXE — Q1%5%) + f(xsz + q12%,%7).

Section 6.1 with y,, in (5.44) applied to g* and g, g, states that A,, # 0 only if 1 = ql.zl.ql.zj and 1 =
41193, * 4229;,» Which is again equivalent to ql.zj = q°, = 1. Possibly reversing 1,2, we may assume
that we are in the case q;, = 1, g,; = —1, and then adding and subtracting the previous relations
returns:

1 —1
XXy + XXy = 2&12<1 - glgz%>, XXy — X% = 2/112(1 - 91927(7)-

On the other hand, the diagonal Nichols algebra A, X A, has such liftings of

* X7X, — qji¥,X7 if Y7x, = €, which is the case for q;, = 1,¢,; = —1.
* X1X5 + q;j%3%; if 1 x5 = €, which is the case for q;, = —1,¢,, = 1.

Altogether, there is no u-symmetric lifting of this type, and the solution we find starts with a lifting

H'’ for one of these relation, again visible at the central character x — 1, and the other of these

relations appears in the biGalois object that is nontrivially extended from the group 2-cocycle.
We refrain from discussing the last two relations in a similar manner.

7 | FUTURE DIRECTIONS
We conclude by some outlook questions that naturally arise from our work.

Question 1. Is there a modified folding construction that produces the remaining Nichols
algebras in Heckenberger-Vendramin classification?
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Question 2. Several folded Nichols algebras in [43] do not appear in [37] because their support
is too small. More precisely, these are the cases 2D, and 3D, and ZAf familiar from Lie theory,
as well as unfamiliar cases 24, at a third root of unity and several cases involving other diagonal
Nichols algebras. We expect that our methods can be applied in these cases.

Question 3. Which modular tensor categories can be constructed from the new pointed Hopf
algebras described here?

From the categorical perspective, there is a rather unique Z-graded extensions of tensor cate-
gories with a Z-crossed braiding [24]. Since the operations of Z-graded extension and taking Hopf
algebra representations commute, this extension could be computed by taking a X-symmetric
Nichols algebra over an abelian group, which can then be folded to Nichols algebra over the known
Z-extension of the abelian group. To get a braiding, this would require a nontrivial associator (an
effect familiar for quantum group of even order root of unity), and for X = Z, conjecturally involve
a Tambara-Yamigami category.

Question 4. The Logarithmic Kazhdan-Lusztig Correspondence, see, for example, [25, 44] con-
jectures the existence of a vertex algebra, realized as subalgebra of a free field algebra, whose
tensor category of representations is equivalent to representations of a small quantum group. The
folding construction and the previous problem suggests an extension of this construction, where
the free field algebra is replaced by an orbifold model.

APPENDIX: PROOF OF THEOREM 3.18

Here, we complete the proof of Theorem 3.18, which states that Nichols algebras of Yetter-Drinfeld
modules of types ag, ¥g, 8y, €5, and ¢, become of diagonal type when an appropriate twist is
performed. The cases that remain unsolved are «,, a3, 3, ¥4, 94, and ¢,, which will be dealt with
in Proposition 3.15. The other cases are diagonal by Lemma 2.7.

A.1 | Group cohomology tools

We start by collecting some useful group extensions and group cohomology statements for later

use, following [42, Chapter 7]. Recall the definition of Z,, ,, , in (2.27).

Definition A.1. Let Z be an abelian group and t a generator of Z. For each w € Z, r € N, we
consider the abelian group

Z({/w) :=2x Z/{(w, 7).

We shall identify ¢ € Z, t, k € N, with their images (g, e), (e, tk) in Z({/E). The defining relation
becomes w = t". We think of Z({/E) as the set {gt¥|g € Z,0 < k < r} with product

. htitk, ifj+k<r,
gt - hth = g . J g,heZ 0o jk<r.
ghwtithk=r ifj+k>r,

Remark A.2. Fix Z an abelian group, u, v, w, x € Z, where x*=e,r €N.

(i) The inclusion Z & Z({/E) extends to an injective map

Zu,v,x < Z(\r/;)u,v,x'
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(ii) Fix also z € Z, s € N. There is a canonical isomorphism Z({/E)({/E) = Z(\S/E)({/E), which,
in turn, induces an isomorphism

ZR/ W)/ Dy = 2/ 2)E W)y

Proposition A.3. Let Z be an abelian group, u,v,w,x € Z, where x*=e, reN. Given o €
H2(Z,, > k™), consider f := f 1 Z — k* given by

Then o lifts to a 2-cocycle & € H*(Z( {/E)u’u,,(, k*) if and only if there exists £ € Z:U\K suchthatf" =
f, £(w) = 1. In this case,
(g, )3 (%, 9) = £(g), forall g € 7. (A1)

Ifw =1, thenany o € H*(Z,,, ., k) lifts to & € HX(Z({/w),, . K.

Proof. SetZ :=2Z,,,,G = Z({/E)u’v,,{. We can write G as the following central extension:
1->(wt™)>Zx(t)>G -1

As kX is divisible, the map H((t),k*) - H'((wt™"),kX) is surjective and H?*((t),kX) =

H?((wt™"),k*) = 1. Hence, the exact sequence in [39, §1] associated to the central extension

below is

1— HY(G,K*) » HYZ X (t),k*) - H' (wt "), k) —

- H2(G,K*) » H(Z X (£), k) — Pair(Z X (t), (wt™")).

Using the results above, the Kiinneth formula for the cohomologies of the direct product, and
decomposing the pairings, we get

1 — H*(G,kX) — H*(Z,K*) X Pair(Z, (t)) 2, Pair(Z, (wt™")) X Pair({t), (wt ")),

where @ is defined as follows:

« for 0 € H*(Z,k*X), we have ®(0) = (B,, 1), where 1 € Pair((t), (wt™")) is the trivial pairing,
and B, € Pair(Z, (wt™")) is given by

By(g,wt™") = a(g,w)a~ ' (w, g), g€eZ,
+ for P € Pair(Z, (t)), we have ®(P) = (F}, F},), where
F'(g,wt™) =P(g,t)", g €Z; F'(t,wt™) = P(w, t).

Hence, (o, P) € ker @ if and only if o(g, w)o~}(w, g) = P(g,t)" for all g € Z and P(w,t) = 1. If
o lifts to a 2-cocycle & € H 2(Z({/E)u’v,,c, k*), then set £ as in (A.1). Reciprocally, if there exists
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such £, we define P € Pair(Z, (t)), by P(g,t) = £(g), and get (o, P) € ker ®. By exactness of the
sequence, ker @ is the image of the injective map H*(G,k*) — H?(Z, k) X Pair(Z, (t)); thus,
o lifts to a 2-cocycle G € H 2(Z({/w)u,w, kX). Moreover, P describes the values on the additional
generator. The last statement is clear. O

Corollary A.4. Let Z be an abelian group, u,v,w,z,x € Z, where x> = e, r,s €N. Then o €
H(Zy W) lifts to & € HXZ({/W)(Y/2) 0, K¥) if and only if there exists £,g € Z,,, . such that
f'=f=g f(w)=1=gw).

Proof. Use the isomorphism in Remark A.2 and Proposition A.3. O

Next we assume that Z splits as Z = A @ Q, where u € A, v, x € Q. Recall the extension Z <
Zyyx > Zy X Zy =(x,y) from (2.27). Consider

* A the subgroup of Z, , , generated by A and x,
* Q the subgroup of Z,, , , generated by Q and y.

Hence, Z,, ,,,, ~ A X Q, where x acts on Q by
X-y=xy, x-h=h, heq.
Let H %(Zy - &) denote the kernel of the restriction map
H?(Zy 0 K) = HA(A,K).
By [52, Theorem 2 (I)], we have that
H*(Zy 0, K) = HA (A K) @ H*(Z,, 0 k).
By [52, Theorem 2 (IT)], there exists an exact sequence

0 — H! (A, Q) s B2 (Zy o W) 2 HA(Q, KL (A2)

The image of the first map is the subspace of H*(Z, ., k*) of 2-cocycles that are cohomologi-
cally trivial on A and Q. Next, we will characterize H'(A, @) and describe the shape of 2-cocycles
coming from this group.

Proposition A.5. Let T denote the set of triples (P, x,1) € Pair(A, Q) X A X Q such that

POPK) = xw); Plg,0)=1, x(9)*=P(g,v), P(W)’ =P, h), forallge€ AheQ.

(a) Themap H'(A,Q) — T, ¢ = (Py, x4, $(x) ), where

Py(g,h) = ¢(g)(h), X6(9) = ¢(9)»), geENhe, (A.3)

is bijective.
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(b) Theimageo € ﬁZ(Zu,U’K, k) C Hz(Zu’U,K, k*) of a triple (P, x,¥) € T (viewed as an element of
H(A, Q)) under the map 0 in (A.2) satisfies

a(g,h) a(g,y) o(x,h)
= P(gq,h), = , =1(h),
) (g,h) ) x(9) o(h.x) P(h)
forall g € A, h € Q. In particular, we have that
a(g, ) =1forall g € Z, a(x,y) = x(x), (x,%) = P(x).
o(x, g) o(y,x) o(x, x)

Proof.

(a) As A acts trivially on Q, each crossed morphism ¢ € H1(A, Q) restricts on A to a homomor-
phism, and hence to a pairing A X Q — k*, which we think as a pair (P, y) € Pair(A, Q) X ®
as in (A.3) such that y(g)* = P(g,v) for all g € A (because y* = v). We set y, := $(x)q :
Q — k. As x acts trivially on Q, y is a group homomorphism. Hence, we have an injective
map

H! (é@) = {(P, x,¥) € Pair(A, Q) x Ax Q | x(9)* = P(g,v), forall g € A}.

If§ 1= ¢(x)(y) € k, then §2 = ¢(x)(v) = x(v) and
¢(9x)(hy!) = P(g, Y(gY x(W)'EY,  ge A heQ,i,je{0,1} (A4)

Reciprocally, given a triple (P, x, ) as above, set ¢ : A — Q asin A.4. Then ¢ is a crossed
homomorphism if and only ifforall g € A, h € Q,

$(gx)(hy) = $(xg)(hy) = $(x)(hy)(x - $(g9)(hy)) = P(g, xh)p(g)x(h)§,
¢()(h) = p(x*)(h) = () (R)(x - pCx)(R)) = x(h)?,

Pu)(hy) = $(x*)(hy) = $(x)(hy)(x - $(x)(hy)) = x(h)*E* ¥ (x).
This means P(g,x) = 1 for all ¢ € A, y(h)?> = P(u, h) and P(u, h)}(u) = P(u, h)x(v) x(x) for
allh € Q.

(b) This follows by explicit computation of the coboundary map 9, see, for example, the proof of
[52, Theorem 2 (II)]. O

The next result will allow us to reduce the question about the existence of a 2-cocycle just for
groups of order a power of 2.

Proposition A.6. LetZ = Z, X Z,44, Where |Z,| = 2" forsomen € N, and |Z, 44| isodd. Letu = u,u,
U = U,V, With u,, v, € Zy, 0,V € Z,44. Then

Zu,v,x = (Zz)uz,vz,x X Zodd’ Hz(zu,v,x’ kx) = Hz((zz)uz,%’ kx) X Hz(zodd’ kx)'
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Proof. Letm,n € Nybesuch that [u| =2m + 1, |[v| = 2n + 1. We write X, y for the extra generators
of (Z and keep x, y for those in Z,, ,, ,.. Then

Z)uz,vz,K

Zu,U,K - (Zz)uz,vz,k X Zodd’
928Xy > gDV DR g, 9> € 25,8 € Zoga» 1, j €{0,1},
is a group isomorphism. The isomorphism between cohomology groups follows by Kiinneth’s
formula. Ol

A.2 | Nonabelian groups and 2-cocycles

Next, we discuss how to apply Propositions A.3 and A.5 to the main classes of groups Z that

will appear in the proof below in order to obtain the desired 2-cocycles.

u,v,x

A.2.1 | Quotient group Z = 7,
IfZ = 7, = (k), then Z ; y, Z;  x» Zy ; x are isomorphic to the dihedral group of order 8.

(a) We apply Proposition A5 to Z;y, with A=1, Q=7Z, P=1, y =1, (k) = —1; then
H*(Z, 31, K*) = Z, = (o), where

o(x, kK)o Mk, x) = -1, o(y, kK)o Mk, y) = 1.

(b) We apply Proposition A.3 to Z; ., where f(x) = —1, f(y) = 1. If either w = 1 or 2 } r, then
o can be lifted to Z( \’/5); but when w =k, 2 | r, the lift does not exist. As a smallest example,
Z( \Z/E) is the almost extraspecial group 23*!, which has cohomology Z%: all 2-cocycles are lifts
of the trivial 2-cocycle on Z;  , with f = 1and f = +1.

(c) More generally, if there exists a surjective map 7 : Z — Z, such that 7(u) =1, 7(v) =k =
7(x), then the pullback of o from (Z,); ;i to Z,, ,, , can be lifted to Z( {/E) either when 77(w) =
lor24r. For m(w) = x, 2 | r, it can also be lifted if there is a character f : Z — k* such that

f(u) € G,, 2 tr/ord(£(u)), f(v) € G;/z, f(x) = 1.

A2.2 | QuotientgroupZ =27,x7,

LetZ = Z, X Z, = (u) X (k). Reordering generators, the nontrivial possibilities for Z,, ,, , are Z,,;
and Z, y ., which are groups of order 16 with Gap Id 3,4 and Hall-Senior number #,¢9, #4510, see
[42, Chapter 7].

(a) We apply Proposition A.5to Z ; , with A = (u), Q = (k), P =1, P(u) = y(k) = —1: we geta

2-cocycle o such that

o(x,k) 1 o(x,u) 1 a(y,k) 1 oy,w) _
ok, x) o(wx) oky) o(w,y)

s

for the nontrivial choice P(u, k) = —1 there is no suitable 1.

¥ On the other hand, Zy x x is the quaternion group, which has trivial cohomology.
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For the decomposition A = 1, Q = Z, we have the nontrivial choice P =1, =1, y(u) =
x(k) = —1. We obtain a 2-cocycle ¢’ such that

o'k _ o'xw _ o'(y,k) 1 o'(y,u) 1

ok x) o(u,x) o(k,y) o'(u,y)

Accordingly, it is known that H?(#,49,k*) = Z, X Z,.

(b) We apply Proposition A.3 to Z, ;  and the 2-cocycle o constructed above, where w = kul,
fG) = (=%, f(») = (=1)',s,t €{0,1}.

(c) Assume that there exists a surjective map 7 : Z - Z, X Z, such that 7(u) = u, 7(v) =1,
7(x) = k. The pullback of o from (Z, X Z,),;x to Z,,, can be lifted to Z(W) if either
w(w) =1or2¢tr. If 7(w) = x, 2 | r, then the 2-cocycle can be lifted to Z,, , , if there exists
f € Z such that f (¥) =1 and

Gy, 24 r/ord(§), ifs=1(resp.t=1),

/ 3 — —
Gr/z’ if s = 0(resp.t = 0).

f(u)(resp. f(v)) =& € {

A23 | Quotient group Z = 7, X Z; with 4

Fixt € N.Setk = 4t,Z = 7, x Z; with generators u, v,and consider k := v*.ThegroupZ, , , has
order 4k2, center Z, and is presented by generators x,y and relations x%k = ka =1,[x,y] = yk,
where u = x%, v = y%, k = yk.

Moreover, (y) =~ Z,, isanormal subgroup, (x) ~ Zy and Z,, , y =~ Z,; X Z,, withactionx -y =
yk+1 (notice that x2 - y = y).

(a) We apply Proposition A.5to Z, ;; with A = (u), Q = (v). Fix { € Gy.
* The pairings P : A X Q such that P(u,k) = 1 are given by

P(u,v) = &% for some i € [,,.

* x € A satisfies y(u)?> = P(u,v) if and only if y(u) = p, & for some p; € {+1}. Analogously,
¥ € Qis given by $(v) = p,&’, p, € {=1}.
* As y(k) = (—1)}, the condition {(v)i(k) = x(u) always holds when i is even, and for i odd,
there are two choices since we need p;p, = —1.
Altogether, when i is even, we obtain 4t different 2-cocycles Tip,p, with y(k) =1, and for i
odd, we have 2t different 2-cocycles o;,, ,, with y(x) = —1.Seto 1= 0, _.
(b) We apply Proposition A.3to Z, , ,, o as constructed above and w = u’v’: here, f(x) = P(v') =
(—=§) and f(y) = x(u*) = &
(c) More generally, fix a surjective map 7 : Z — Z;, X Z, u,v,x € Z such that 7(u) = u, 7(v) =
v, m(x) =k, w = u'v', 5,t € Iy, and r € N. The pullback of o from (Z;, X Z} ), , x t0 Z,, ,, , can
be lifted to Z({/E) if there exists T € Z such that £(x)" = (=&)!, £(y)" = & and £(x) = 1.

A3 | Proof of Proposition 3.15

We proceed case-by-case. We use the representations M(g, y) coming from the Yetter-Drinfeld
structure for each group in order to get a triple as in Proposition A.5, which, in turn, gives a 2-
cocycle, then use Proposition A.3 when we need to extend the group accordingly. For each M (g, y),
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we choose a basis given by centralizer coset representatives and give the corresponding matrices:
When the matrix is a multiple of the identity, we just write the corresponding scalar.

A31 | Typea,

Here M = M(gy, x;) ® M(g,, x,), see §5.1.1. The four possibilities for the parity vector
P = (x1(x), x,(x)) fall into two orbits under the Weyl groupoid action, namely, (1,1) and
{(-1,1),(-1,-1),(-1,1)}. As the first one corresponds to trivial action of x, we just need
to study (=1,1). Set a := x,(¢9{) = —x,(9;)~", k = orda. We compute M(gy, 1), M(g,, x2)
M(g192, X1X2)-

K g 2 g =u g=v

-1 0 0—a!

e o (20) )0
0a -1 0

N U (2 T G N

0Oa 0 1 _
M(g18, x122) | —1 <1 O) <—a_1 0) a —-a™!

From the actions above, we can read off the group G™™ explicitly:

G = <91y92,7f | 91,921 =%, [91,%] = [g2, %] = (glzk)k = (922)k =1’ =1,

if 2 | k we add (g7%)"/? = 7<>.

By Proposition A.6, we reduce to 2-groups, so we have three cases:

« k =1, thatisa = 1. Then x> = 1,¥? = x and the group G™" is the dihedral group of order 8,
see §A.2.1 (a).

* k =2,thatis,a = —1. Here x> = u has order 2, y> = v = 1, (xy)? = xu. Then G™" is the group
#,69 and such 2-cocycle exists, see §A.2.2 (a).

« k=2", n3>2. In this case, x>" = y" =1 and y*"~ = x. Then |G™"| = 22+2"_ the center is
Zyn X Zyn, and moreover, GMM o Z 41 X Zyne1 as in A.2.3 (a), so there exists such 2-cocycle.

A32 | Typea,

Here M = M (g1, x1) ® M(g,, x2) ® M(g3, x3), see §5.1.2. As y;(x) = y;(x), there are four choices
of P = (x;(x));e1,, which fall into two orbits under the Weyl groupoid action, namely,

{(1,1,1)} and {(-1,1,-1),(-1,-1,-1),(1, -1, 1)}.

Thus, we just need to study P = (—1,1,—1). We compute the representations M(g;, x;), which
contains the previous case A,. Set

a =090 =-x()™" b= x3(0) = x1(g) 7" c=x(q195H).
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Hence, the action of G on M is given by:

x 81 8> 83

— — T T
Mgy, x1) | -1 (01 (1)> <(1) 3) <b0 _S—l)
P XA I
(a1 _
w1 03 05 ()

Using that ¢,9, = X9,91, 939, = X9293» 9195 = G39;, ¥ is central and x? = 1, cf. §5.1.2, the
subgroup Z generated by

u = g2, v = gix, t = g39y 'x, x,
is contained in Z(G™"), and G™" /Z has four elements: Z, ¢;Z, g,Z, 9 g,Z. From here, we check
that G™" ~ Z,, .., where x = g,y = g.

Let Z be the subgroup generated by u, v, x. Set N; = lcm(ord a, ord b?), N, = Icm(ord a, ord ¢?),
N; = lem(ord b, ord ¢). As t"s = id, we can define

r 1= min{s € ly,|t* € Z}

=min{s € Iy, [Im E Iy ,n €y, : " =p?"t 2"y =1,a" =c'}.

We have that Z ~ Z(W) for w = t". The action of u, v, t on M, M,, M, is given, respectively, by
the following scalars:

(1,a,b7?), (@', 1,a7'c™?), (bl b™).
We also set k; = ord a, k, = ordb, k; = ord c. Then,
Z =~ <1c, wolxt=1uM =10 =1x= (uiv)kl/2 if 2 | kl,bZi = c_k1>.

As k{|N;, N,, there exists a surjective map Z - Z’, where Z’ is an abelian group as in §A.3.1, so

there exists a 2-cocycle o’ for Z’ such that U:(QZ’K) =1, U:(yl”‘) =-1= U:(‘%’K). Let o be the pullback
a’(x,97) a’(x,91) a’(x,93)

of ¢’ on Z: we look for a lift on G™iP ~ Z({/E)u,v’x, sowe look for a character f as in Proposition A.3.
By Proposition A.6, it is enough to solve the case in which the three k; are powers of 2. We split
in three cases as in §A.3.1.

* k=1, that is, a = 1. Either w =1 or else k, > k;, w = x and r = k,/2 > 1. In the second
case, we construct £ € Zin M(g;, x,)* ® M(gs, x,): thatis, f(u) = b* € G, f(v)=c?€ G;/z’
f(x) = 1. Then we apply §A.2.1(c).

* k =2,thatis,a = —1.Ifk, > ks, thenr =k, /2, w = x;ifk, < k5, thenr = k;/2, w = u; other-
wise, k, = ks, 7 = k,/2 and w = ux. In any case, we construct £ € Z in M(g,, x1)* ® M(g3, x;)
asin §A.2.2 (c), and there exists such a lift.

T We set the generators of Z according to generators for the symplectic root system n = 3, 7 = 1 in [43, Thm. 4.5].

d ‘0 ‘Xir209rT

10177541y wouy

5B SUOWWOD dAIERID 3|qeal(dde au Ag peusenoB e sajoilie YO ‘9sn JO S3jnJ 10 Aeiq 1 auluO AB|IM UO (SUOIPUOD-PUR-SWBIAL0Y"AB | 1M Areig Ut UO//:SA1IY) SUORIPUOD pue SWS | 841 38S *[£202/60/20] UO Aeiqiauliuo A|im eunuebiyeuelyoo) Ag 65521 swd/ZTTT 0T/I0pwod B (1mAReiqipullL



POINTED HOPF ALGEBRAS OVER NONABELIAN GROUPS | 57

* k=2",n> 2. Herer = max(k,/k,, k;/k,, 1), and we construct £ € A again in M(gy, x1)* ®
M(gs, x1):

f(x) =1, f(u) = b?, f(v) = ¢
This £ satisfies the conditions in §A.2.3 (c), and there exists such a lift.

A33 | Typed,

As y;(x) = x5(x) = y4(x), the choices of P = ( )(i(’f))ieu4 fall into two orbits under the Weyl
groupoid action, namely,

{1,1,1,1)} and {(-1,1,-1,-1),(-1,-1,-1,-1),(1,-1,1, 1)},

where the second entry denotes the center node in the Dynkin diagram. Now we study P =
(-1,1,—1,—1). We fix the central elements’ z = g, 9 Lz =g, 9 L. Then this case can be achieved
by combining the previous result of extending «, to a; by z and by z’, see Corollary A.4.

A34 | Typey,

Here M = M(gy, x,) ® M(95, x2) ® M(g3, x3), with g3 € Z(G), x5 € G. As x = [ g, g,], we have
that y;(x) = 1. The possible P = ( )(i(K))ieﬂ3 fall into two orbits under the Weyl groupoid action,
namely, {(1,1,1)} and {(-1,1,1),(-1,-1,1),(1,—-1,1)}. FixP = (—1,1,1) and set

ai= )(2(912) = —X1(gz_2), b= x3(9) = )(1(93_1), c:=x3(g) = _)(2(93_1)-

Now we compute the representations M(g;, x;):

-10 0 —a! i
Mg, x1) | -1 <0 1) <1 0> b

0a
M(gs, x3) | +1 b c -1

If u=g, v=yg3, t =g, then G™IM ~ Z({/w), ., for Z = (u,v,x) and appropriate w € Z,
r € N. Moreover, G™" is isomorphic to the one in §A.3.2; hence, there exists a 2-cocycle as in
Proposition 3.15.

A3.5 | Typey,

Here we have central elements z = g;g;° 1, z/ = g,, and this case is solved by combining the
previous result of extending A, to A; by z and by z’, see Corollary A.4.

 According to generators for the symplectic root system, n = 4, r = 2 in [43].
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A3.6 | Typeg,

Here M = M(g, x1) ® M(95, x2) ® M(g3, x3) © M(gy, x4), With g3, 94 € Z(G), x3, x4 € G, and
X3(x) = x4(x) = 1. The possible P = ( )(l-(K))ien4 fall into two orbits under the Weyl groupoid
action: {(1,1,1,1)} and {(-1,1,1,1),(-1,-1,1,1),(1,-1,1,1)}. FixP = (-1,1,1,1) and set

a:= )(2(912) = —)(1(92_2), b= x3(g) = )(1(93_1), c:=x3(p) = —)(2(93_1),

b= x(9) = X1(g4_1), ¢ 1= x4(g) = )(2(94_1), d = x4(g5) = —)(3(92_1)-

Now we compute the representations M; := M(g;, x;):

L4 81 82 83 84

-10 0-a! o 1

Mgy, x) | -1 (0 _1) <1 0> b b
0a -1 0 4 "

e |1 (0F) (30) -
Mgy, x3) | 1 b c -1 —d!
M(gs, xa) | 1 b’ ¢ d -1

Set u = gf, L= 922. We will construct a 2-cocycle o on G™™ by using appropriate 2-cocycles
from the previous cases:

* Set Gy, = (g1, 9»)» Z = (x,u,v); let G,,,Z,, C End(M; @ M,) be the subgroups obtained by
restriction. Then Z, Z,, are central subgroups, G,, = Z,, , ., Gy, = (Z12)y v x> With canonical pro-

jections G;, » G,,,Z - Z,,,and G,,, Z,, are as in §A.3.1. Hence, there exists a 2-cocycle as we
12016 _ 1 912(92K) _ 1

. 012(%.91) 7 o15(%.9,) T

* For j =3,4,wesetGy,; = (g1, gz,gj), lej = (x,u, v,gj). Then lej is a central subgroup of the

formZ,,; ~ Z( r’(/w_i) for appropriate r; € N, w; € Z: the proof for j = 3 is the same as in §A.3.4
since M; @ M, @ M, is of type C;, and for j = 4, we have the same structure (luckily). Using
the same argument as in §A.3.4, we check the existence of 2-cocycle oy,; on Gy,; such that
012j(91.%) 012j(92.6) _ 012j(gj:%)

-1 =1

5712}‘(7@!11) ’ 0121’(7{,!12) Ulzj(K,.f]j)

* Finally, G™" ~ 7( /W)Wy = ZO{/WH)Z( R/ W3)y - The existence of a 2-cocycle o on
G™ such that

need: the pullback o, on G, satisfies

a(gy,%) S a(g;,%) _ a(g3, %) _ (g4, %) _
o(x, g1) a(x, ;) o(x,93) o(x,g,)

>

follows from the 2-cocycles 0y,; on Gy,;, j = 3,4 and Corollary A.4.

This concludes the proof of Proposition 3.15. I
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