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Abstract: The Wheldon model (1975) of a Chronic Myelogenous Leukemia (CML) dynamics is revisited in the
light of recent discovery that this model has a major drawback. To reanimate the Wheldon model, we used late
Wheldon’s remarks and M. C. Mackey ideas to introduce a new mechanism. To further enrich the model, we in-
troduced time-varying microenvironment and time-dependent drug efficacies. The resulting model is a special class
of nonautonomous nonlinear system of differential equations with delays. The global existence and positiveness of
the solutions of the Wheldon model are examined. Furthermore, via topological methods, the existence of positive
periodic solutions is proved.
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1 WHELDON MODEL OF CML REVISITED

1.1 BACKGROUND

In 1974 T.E. Wheldon in the paper [14] introduced the following model of granulopoiesis (granulocyte
production) (see also [13])

dM

dt
=

α

1 + βMn(t− τ)
− λM(t)

1 + µBm(t)
dB

dt
= −ωB(t) +

λM(t)

1 + µBm(t)
,

(1)

where all parameters are positive constants. In model (1), M(t) is the number of cells in the marrow; B(t)
is the number of white blood cells; β is the coupling constant for cell production loop; α is the maximum
rate of cell production; λ is the maximum rate of release of mature cells from marrow; µ is the coupling
constant for release loop; ω is the constant rate for loss of granulocytes from blood to tissue; τ represents
the mean time for stem cell maturity; n controls gain of cell production loop; m controls gain of release
loop.
This model creates a time-delay loop triggering stem cell production and a fast loop regulating release of
mature cells in the blood. Studies of the model imply that the oscillatory pattern in leukemia may be bring
forth in two principal ways, either by an increased cell production rate or by an increased maturation time.
The Wheldon model assumes that there is a direct negative feedback from mature (differentiated cells) to
the precursors of those cells.
However this model has a major drawback, i.e., it describes a wrong mechanism. At the (unique) nontrivial
equilibrium point (M∗, B∗) of system (1), we have:

ωB∗ =
α

1 + βMn∗
. (2)

Thus, the B-population in the Wheldon model is an inversely proportional to the M -population; the latter
does not have any biological explanation.
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1.2 NEW MODEL

To reanimate the Wheldon model, we used Wheldon’s remarks in [13] p.294 and M. C. Mackey ideas to
introduce a new mechanism:

dM

dt
=

αM(t)

1 + βMn(t− τ1)
− λM(t)

1 + µBm(t− τ2)
dB

dt
= −ωB(t) +

λM(t)

1 + µ(t)Bm(t− τ2)
,

(3)

The first term in (1) is a decreasing function of M

α

1 + βMn
,

whereas in model (3)
αM

1 + βMn

is a one-hump function, resulting in more realistic than in (2) relationship between stem cells and white
blood cells

ωB∗ =
αM∗

1 + βMn∗
. (4)

Exposure to chemoradiation therapy will kill many of the rapidly dividing cells of the bone marrow (B−
cells), and will therefore suppress immune system [2], [3], [7], [9], [10], [11] and [12]. Existing data indi-
cates that the oscillations in CML may exhibit chaos unless controlled by therapy. If we assume the drug
combination is administered with a periodicity, then p(t) and q(t) can be expressed as exponential decaying
functions in t during each period.
It is well recognized that tumor microenvironment changes with time and in response to treatment. These
fluctuations can modulate tumor progression and acquired treatment resistance. Latest clinical studies on
periodic hematological diseases suggest oscillations of some blood elements e.g., leukocytes, platelets, retic-
ulocytes (see, for example, [7], [8] and [10]). Henceforth, to model changes that develop in the tumor mi-
croenvironment over time, we assume model parameters are time-varying functions.
Thus to enrich the model we incorporate time-dependent parameters

dM

dt
=

α(t)M(t)

1 + β(t)Mn(t− τ1)
− λ(t)M(t)

1 + µBm(t− τ2)
− δp(t)M(t)

dB

dt
= −ω(t)B(t) +

λ(t)M(t)

1 + µ(t)Bm(t− τ2)
− δq(t)B(t),

(5)

where p(t) = p(c) and q(t) = q(c) are the varying effectiveness of the drug, and c = c(t) is the drug
concentration at time t. Traditionally, this pharmokinetic is modeled by linear functions, i.e., p(c) = αc(t)
and g(c) = βc(t) where α and β are the appropriate drug sensitivity parameters. Clearly α = β if the drugs
are cycle-non-specific, i.e., it will be equally toxic to all types of cells. Some types of chemotherapy can be
modeled based on a non-monotone one-humped functions- p(c) = αc(t)e−ac(t) and q(c) = βc(t)e−bc(t).
Throughout the paper, it shall be assumed that α(t), β(t),ω(t),λ(t), µ(t), p(t) and q(t) are continuous,
positive and T -periodic functions and τ1,2 > 0 are fixed delays. The parameter δ is assumed to be 1 or 0
according the presence or absence of pharmacokinetics. By ‘positive T -periodic solution’ we mean a pair
(M,B) of C1 functions satisfying

M(t+ T ) = M(t) > 0, B(t+ T ) = B(t) > 0

for all t ∈ R.
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1.3 EXISTENCE OF GLOBAL SOLUTIONS AND EQUILIBRIUM POINTS

In first place, It is easy to prove that solutions of (3) with prescribed positive initial data are globally
defined and remain positive for all t. Indeed, setting R(t) = lnM(t), the system becomes

R�(t) =
α(t)

1 + β(t)enR(t−τ1)
− λ(t)

1 + µ(t)Bm(t− τ2)
− δp(t)

B�(t) = −ω(t)B(t) +
λ(t)eR(t)

1 + µ(t)Bm(t− τ2)
− δq(t)B(t).

(6)

Suppose that M(t) and B(t) are defined and positive for t < t0, then the inequalities −λ(t) − δp(t) <
R�(t) < α(t) it is clear that R(t) is defined up to t0. Moreover, B�(t) < λeR(t) and hence B(t) is defined
on t0. Finally, if B(t0) = 0 then B�(t0) > 0, a contradiction.

To prove the existence of a nontrivial equilibrium, assume that all parameters in the previous system are
constant and set

α
1+βenR = λ

1+µBm + δp

(ω + δq)B = λeR

1+µBm .
(7)

Let

c(B) :=
B(1 + µBm)(ω + δq)

λ
,

then system (7) has at least a positive solution if and only if the function ϕ : [0,+∞) → R given by

ϕ(B) :=
α

1 + βc(B)n
− λ

1 + µBm
− δp

has at least a positive root. If δ = 1, then direct computation shows that ϕ vanishes when α > λ and
n > m

m+1 . If δ = 1, then ϕ(0) = α− λ− p and limy→+∞ ϕ(y) = −p, it follows that the system admits at
least one positive equilibrium, provided that

α > λ+ p.

2 EXISTENCE OF PERIODIC SOLUTIONS

2.1 CASE 1: NO PHARMOKINETIC

Theorem 1 Assume that α(t),β(t),λ(t), µ(t) and ω(t) are continuous, positive and T -periodic. Further-
more, assume that:

1. n > m
m+1 .

2. α(t) > λ(t) > ω(t) for all t.

Then system (3) with δ = 0 admits at least one positive T -periodic solution.

Proof. (Sketch of the proof:)
Set u(t) = lnM(t) and v(t) = lnB(t), then (3) with δ = 0 reads

u�(t) =
α(t)

1 + β(t)enu(t−τ1)
− λ(t)

1 + µ(t)emv(t−τ2)

v�(t) = −ω(t) +
λ(t)eu(t)−v(t)

1 + µ(t)emv(t−τ2)

In order to prove the existence of T -periodic solutions of this system, we shall apply the continuation
method. For simplicity, we divide the proof in two steps.

First step
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Consider the function F : R2 → R2 given by

F (u, v) :=
1

T

� T

0

�
α(t)

1 + β(t)enu
− λ(t)

1 + µ(t)emv
,

λ(t)eu−v

1 + µ(t)emv
− Ω(t)

�
dt.

Let Ω0 := (−R,R) × (−R, cR) ⊂ R2, where c is a fixed constant such that 1
m+1 < c < n

m . Taking
R > 0 large enough, it is seen that F is homotopic to −Id, and hence deg(F,Ω0, 0) = (−1)2 = 1, where
‘deg’ denotes the Brouwer degree.

Second step
Let CT be the set of continuous and T -periodic real functions and let

Ω := {(u(t), v(t)) ∈ CT × CT : �u�∞ < R,−R < v(t) < cR}.
We prove that if R is large enough then the T -periodic solutions of the system

u�(t) = σ

�
α(t)

1 + β(t)enu(t−τ1)
− λ(t)

1 + µ(t)emv(t−τ2)

�

v�(t) = σ

�
−ω(t) +

λ(t)eu(t)−v(t)

1 + µ(t)emv(t−τ2)

�

with 0 < σ ≤ 1 do not belong to ∂Ω. Thus, by the standard continuation method we deduce the existence
of a solution (u, v) ∈ Ω.

�

2.2 CASE 2: WITH PHARMOKINETIC

Theorem 2 Assume that α(t), β(t),λ(t), µ(t),ω(t), p(t) and q(t) are positive and T -periodic. Further-
more, assume that:

α(t)− p(t) > λ(t) > ω(t) + q(t)

for all t. Then system (3) with δ = 1 admits at least one positive T -periodic solution.

Proof. The proof follows the general outline of the previous one. �
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