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1 INTRODUCTION

Let us consider the equation
u��(x) = g(x, u) + A(x), (1)

with radiation boundary conditions

u�(0) = a0u(0), u�(1) = a1u(1), with a0, a1 > 0, (2)

where A ∈ L2(0, 1) and g : [0, 1] × R → R continuous and superlinear, that is:

lim
|u|→+∞

g(x, u)
u

= +∞

uniformly in x. We shall study existence, uniqueness and multiplicity of solutions using variational methods.
A particular case of interest is g(x, u) = 1

2u3 + (a + bx)u for a, b, A, a0 and a1 some specific constants.
This Painlevé II model in two-ion electrodiffusion was derived independently by Grafov and Chernenko in
[4] and Bass in [2]. In [3], Bracken et al investigated novel flux quantization aspects associated with the
iteration of the Bäcklund transformations. Due to that connection, the previous Robin-type boundary value
conditions were derived for the Painlevé II equation.

The following results will be established:

Theorem 1 Problem (1)-(2) admits at least one classical solution.

Theorem 2 Let G(x, u) =
� u
0 g(x, s)ds and define Φ as the unique solution of the linear problem

�
−Φ��(x) + 2 ∂g

∂u(x, 0)Φ(x) = 0
a0Φ(0) = Φ�(0) = a0.

(3)

Assume that

1. Φ�(1) < a1Φ(1),

2. g(x, 0) = 0 and ∂g
∂u(x, 0) < 0, for all x ∈ (0, 1),

3. G(x, u) ≥ 0, for all u ∈ R and x ∈ (0, 1),

4. ∃θ ∈ (0, 1
2) and u0 > 0 such that G(x, u) ≤ θug(x, u) for all |u| > u0 and x ∈ (0, 1).

Then, there exists Ã > 0 such that if �A�L2 < Ã, problem (1)-(2) has at least two classical solutions.

Note 1 In the special case g(x, u) = 1
2u3 + (a + bx)u, mentioned in the introduction, it can be proven that

condition 1. holds if and only if b > 0.
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2 VARIATIONAL SETTING

Let us introduce a variational formulation for the boundary problem (1)-(2). Let J : H1(0, 1) → R by

J(u) =
� 1

0

�
1
2
(u�)2 + G(x, u) + A(x)u

�
dx +

a0

2
u(0)2 − a1

2
u(1)2.

It is readily shown that J ∈ C1(H1(0, 1), R), with

DJ(u)(v) =
� 1

0

�
u�v� + g(x, u)v + Av

�
dx + a0u(0)v(0)− a1u(1)v(1).

Moreover, u ∈ H1(0, 1) is a critical point of J if and only if u is a classical solution of (1)-(2). Indeed,
let u be a critical point of J . As DJ(u)(v) = 0 for all v ∈ C1

0 (0, 1), we deduce that u is a weak solution of
(1). From the embedding H1(0, 1) �→ C1([0, 1]) we conclude that u has a continuous second order weak
derivative and hence it is a classical solution. It remains to prove that u verifies the boundary condition. For
arbitrary v ∈ H1(0, 1), integrate by parts equality DJ(u)(v) = 0 to obtain:

u�(1)v(1)− u�(0)v(0) = a1u(1)v(1)− a0u(0)v(0).

Take v ∈ H1(0, 1) such that 0 = v(0) �= v(1), then u�(1) = a1u(1); in the same way, taking 0 = v(1) �=
v(0), we deduce that u�(0) = a0u(0). The converse is trivial.

3 PROOF OF THEOREM 1
We shall prove that J achieves a global minimum in H1(0, 1), which is a critical point of J and hence, a
classical solution to our problem. By standard results (see, e. g. [5]), J is weakly lower semi-continuous, so
it suffices to prove that J is coercive. By contradiction, suppose (J(un))n∈N is bounded for some un such
that �un�H1 → +∞ as n → +∞. A simple computation shows that

J(u) ≥ �un�2L2

�� 1

0

�
(u�n)2

2�un�2L2

+
G(x, un)
�un�2L2

+
Aun

�un�2L2

�
dx− a1u(1)2

2�un�2L2

�
. (4)

Moreover, for given u ∈ H1(0, 1), fix x0 ∈ [0, 1] such that |u(x0)| = minx∈[0,1] |u(x)|, then

u(1) = u(x0) +
� 1

x0

u�(x)dx,

|u(1)| ≤ |u(x0)| +
� 1

0

��u�(x)
�� dx ≤ �u�L2 + �u��L2 ,

and thus, for arbitrary δ > 0,

u(1)2 ≤
�

1 +
1
δ

�
�u�2L2 + (1 + δ)�u��2L2 . (5)

On the other hand, since g is superlinear, for each M > 0 there exists R0 > 0 such that

g(x, u)
|u| > 2M,

for all x and all u such that |u| > R0. Hence

G(x, u) > Mu2 + K (6)

for some constant K. Suppose firstly that �u�n�L2 is bounded, then �un�L2 → +∞. Replacing (6) in (4),
we get

J(u) ≥ �un�2L2

�� 1

0

�
(u�n)2

2�un�2L2

+
Mu2

n

�un�2L2

+
K

�un�2L2

+
Aun

�un�2L2

�
dx− a1un(1)2

�un�2L2

�
.
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As
a1un(1)2

�un�2L2

≤
�

1 +
1
δ

�
a1 + (1 + δ)

�u�n�2L2

�un�2L2

−→
�

1 +
1
δ

�
a1,

taking M large enough we deduce that J(un) −→ +∞, a contradiction. So, we may assume that �u�n�2L2 →
+∞.

Moreover, observe that

J(un) ≥ �u�n�2L2

�
1
2

+
� 1

0

�
G(x, un)
�u�n�2L2

+
Aun

�u�n�2L2

�
dx− a1un(1)2

�u�n�2L2

�
. (7)

If �un�L2 is bounded, then from (7) we deduce again that J(un) → +∞, a contradiction. Then, we may
suppose that �un�L2 → +∞. Due to (5),

J(un) ≥ �u�n�2L2

�
1
2
− a1(1 + δ) +

1
�u�n�2L2

�� 1

0
(G(x, un) + Aun) dx− a1

�
1 +

1
δ

�
�un�2L2

��
.

From (6), � 1

0
G(x, un)dx ≥ M�un�2L2 + K,

and, since �un�L2 → +∞, we can assume that �un�L2 ≥ 1, then

� 1

0
Aundx ≥ −�A�L2�un�L2 ≥ −�A�L2�un�2L2 .

So we have

J(un) ≥ �u�n�2L2

�
1
2
− (1 + δ)a1 +

K

�u�n�2L2

+
�

M − �A�L2 − a1

�
1 +

1
δ

�� �un�2L2

�u�n�2L2

�
. (8)

If lim inf �un�L2

�u�
n�L2

> 0, taking limit in (8) with M large enough we get J(un) → +∞, a contradiction.

Otherwise, passing to a subsequence we may assume that �un�L2

�u�
n�L2

→ 0. Let vn := un
�u�

n�L2
. As �v�n�L2 = 1,

then taking a subsequence we may assume that vn → 0 uniformly and the contradiction J(un) → +∞ is
now deduced directly from (7).

This completes the proof of the coerciveness of J and, hence, the existence of a solution is proven.

4 SKETCH OF THE PROOF OF THEOREM 2
From Theorem 1 we know that J achieves a global minimum at some u1 ∈ H1(0, 1), hence, the next

linking theorem by Rabinowitz will provide another solution u0 ∈ H1(0, 1). Firstly, let us recall that if X is
a Banach space and J ∈ C1(X, R), a sequence (un) ⊂ X is called a Palais-Smale sequence if |J(un)| ≤ c
for some constant c and DJ(un) → 0; and J is said to satisfy condition (PS) if any Palais-Smale sequence
has a convergent subsequence in X .

Theorem 3 (Rabinowitz) Let X be a Banach space and J ∈ C1(X, R). Assume X = X1 ⊕ X2, with
dim(X1) < ∞, and

max
u∈X1:�u�X=r

J(u) < ρ := inf
u∈X2

J(u) (9)

for some r > 0 and J satisfy (PS). Then J has at least one critical point u0 such that J(u0) = ρ.
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Solutions u0, u1 are such that J(u0) ≥ ρ > J(u1), hence, they are different.
In our case, we consider X = H1(0, 1) and the sets X1 = span{Φ}, where Φ is the solution of (3), and

X2 =
�
u ∈ H1(0, 1) : u(1) = 0

�
.

Firstly, let us prove that X = X1 ⊕ X2. As ∂g
∂u(x, 0) > 0, Φ is strictly increasing; thus Φ(1) > 0 and

X1 ∩X2 = {0}. Moreover, u ∈ X can be written u = aΦ + u− aΦ, where a = u(1)
Φ(1) .

To prove (9), we find a suitable r > 0 such that

max
u∈X1,�u�=r

J(u) ≤ C�A�L2 ,

where C is a negative constant only depending on g and Φ.
For the right-hand side of the inequality, a simple computation shows that

inf
u∈X2

J(u) ≥ −�A�2L2

�
1
2

+
1

2a0

�
.

Thus, (9) is true, provided that �A�L2 < −2Ca0
a0+1 .

To conclude the proof, let us verify that J satisfies the (PS) condition. Let (un)n∈N ⊂ H1(0, 1) such
that |J(un)| ≤ c y DJ(un) → 0. If there exists K > 0 such that �un�H1 ≤ K for all n ∈ N then, taking
a subsequence, we may assume that there exists u ∈ H1(0, 1) such that un → u weakly in H1(0, 1) and
uniformly. Since J ∈ C1 and DJ(un)(u) → 0, we deduce

0 = DJ(u)(u) =
� 1

0

�
(u�)2 + g(x, u)u + Au

�
dx + a0u(0)2 − a1u(1)2.

As DJ(un)(un) → 0, it is seen that �un�L2 → �u�L2 , then un → u strongly.
If �un�H1 → +∞, let vn = un

�un�H1
. Since DJ(un)(vn) → 0, we can prove that

����DJ(rvn)(φ)−
� 1

0
Aφdx

���� −→ 0,

for all φ, that is: DJ(rvn) → A. Since vn is bounded in H1(0, 1), we may assume that taking a sub-
sequence, vn converges weakly in H1(0, 1) and uniformly to some v. As DJ(rvn)(φ) → DJ(rv)(φ)
for all φ, it follows that DJ(rv)(φ) =

� 1
0 A(x)φ(x)dx. Let us consider the functional given by J̃(u) =

J(u) −
� 1
0 Au. Then J̃(rvn) → 0 and it is easy to verify that J̃(rvn) is bounded. Thus, (rvn)n∈N is

a bounded Palais-Smale sequence for J̃ , and we deduce that it has a convergent subsequence as before.
Hence, we may assume that rvn → rv strongly and in particular �v�H1 = 1. Moreover, rv is a solution of
(1)-(2) with A = 0. As g is superlinear and r is arbitrary, it follows that v = 0, a contradiction.

Then the linking theorem holds and the proof is complete.
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