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1 INTRODUCTION

Let us consider the equation

u'(z) = g(a,u) + A(), (1)
with radiation boundary conditions
u'(0) = apu(0), v'(1) = aju(l), withag,a; > 0, 2)
where A € L?(0,1) and g : [0,1] x R — R continuous and superlinear, that is:
Jim S = o

uniformly in x. We shall study existence, uniqueness and multiplicity of solutions using variational methods.
A particular case of interest is g(z,u) = %US + (a + bzx)u for a,b, A, ap and a; some specific constants.
This Painlevé II model in two-ion electrodiffusion was derived independently by Grafov and Chernenko in
[4] and Bass in [2]. In [3], Bracken et al investigated novel flux quantization aspects associated with the
iteration of the Bécklund transformations. Due to that connection, the previous Robin-type boundary value
conditions were derived for the Painlevé II equation.

The following results will be established:

Theorem 1 Problem (1)-(2) admits at least one classical solution.

Theorem 2 Let G(x,u) fo s)ds and define ® as the unique solution of the linear problem
— 0" (z) +2%2(2,0)(2) = 0 3
aoq)(O) (I)/(O) = ap.

Assume that
1. (1) < a1®(1),
2. g(x,0) = 0and ag 9(x,0) <0, forall z € (0,1),
3. G(xz,u) >0, forallu € Rand x € (0,1),
4. 30 € (0,%) and ug > 0 such that G(z,u) < Qug(z, u) for all |u| > ug and x € (0,1).
Then, there exists A > 0 such that if | Al 2 < A, problem (1)-(2) has at least two classical solutions.

Note 1 In the special case g(x,u) = 2u + (a + bx)u, mentioned in the introduction, it can be proven that
condition 1. holds if and only if b > 0.
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2 VARIATIONAL SETTING
Let us introduce a variational formulation for the boundary problem (1)-(2). Let J : H 1 (0,1) —» R by

1 a

1 a
J(u) = /0 (2(1/)2 + G(x,u) + A(m)u) dx + EOU(O)2 — Eu(l)Q.

It is readily shown that J € C1(H'(0,1),R), with
1
DJ(u)(v) = / (v + g(z, w)v + Av) dz + apu(0)v(0) — agu(l)v(1).
0

Moreover, u € H 1(O, 1) is a critical point of J if and only if w is a classical solution of (1)-(2). Indeed,
let u be a critical point of .J. As DJ(u)(v) = 0 for all v € C}(0, 1), we deduce that u is a weak solution of
(1). From the embedding H'(0,1) — C ([0, 1]) we conclude that u has a continuous second order weak
derivative and hence it is a classical solution. It remains to prove that u verifies the boundary condition. For
arbitrary v € H'(0, 1), integrate by parts equality D.J(u)(v) = 0 to obtain:

v (1)v(1) — 4/ (0)v(0) = aju(1)v(1) — agu(0)v(0).

Take v € H'(0,1) such that 0 = v(0) # v(1), then v/(1) = aju(1); in the same way, taking 0 = v(1) #
v(0), we deduce that u/(0) = agu(0). The converse is trivial.

3 PROOF OF THEOREM 1

We shall prove that .J achieves a global minimum in H'(0, 1), which is a critical point of .J and hence, a
classical solution to our problem. By standard results (see, e. g. [5]), J is weakly lower semi-continuous, so
it suffices to prove that J is coercive. By contradiction, suppose (.J(uy)),,cy is bounded for some u,, such
that ||uy|| g1 — +00 as n — +o0. A simple computation shows that

1 /2 2
U G(z,u Au aju(l
30 2 ol ([ (G + SEd o A Y atCEY
o \2lunllzs  lunlze  llunllze 2[|unl[72
Moreover, for given u € H'(0,1), fix zg € [0, 1] such that [u(zo)| = min,e 1) [u(z)], then
1
u(1) = u(xo) —I—/ o' (z)dw,
Z0
1
[u(1)] < fu(zo)] +/0 /()| dz < lull g2 + [ 22,
and thus, for arbitrary § > 0,
1
WP < (14 5 ) Il + (04 6) )
On the other hand, since ¢ is superlinear, for each M > 0 there exists Ry > 0 such that
o)
|ul
for all  and all u such that |u| > Ry. Hence
G(x,u) > Mu® + K (6)

for some constant K. Suppose firstly that ||« || ;2 is bounded, then ||u,| 2 — +00. Replacing (6) in (4),

we get
1 1\2 2 2
U Mu K Au a1y (1
76) 2 lunlls ([ (G + o+ o+ o ) do = Sl
o \2lunlzz  lunllzz ~ lualze  llunll7 |72
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1)2 1 ul |2 1
% < <1+) a1+(1+5)H Hf — <1+) a,
||un||L2 0 HunHL2 0
taking M large enough we deduce that J (u,) — 00, a contradiction. So, we may assume that ||u},[|2, —

—+o00.
Moreover, observe that

1 L 7Gx, un, Au, aruy, (1)?
J(up) > [Jul |72 <2+/0 < (/ 2)+ g >dm—1,(2)>. (7

lupllze lunllza [ 172

As

If ||wy, || 1,2 is bounded, then from (7) we deduce again that J (u,,) — +00, a contradiction. Then, we may
suppose that ||uy|| 2 — +oc. Due to (5),

) > it (=04 + ot ([ (6o + Awas = (14 ) ) ).

From (6),
1
/ G, un)dz > Mljun|2s + K,
0

and, since ||uy,||z2 — 400, we can assume that ||u,||z2 > 1, then

1
/0 Aupde > —||A]| gllunllzz > —[[All 2 ]fn] 2.

So we have

; TRE 1Y 2
(un) 2 llupllzz g 5 = L+ 8)ar + =5 T H M —|Allz — a1 {1+ 5 AN E ®)
nily2

If lim inf ”u7HL2 > 0, taking limit in (8) with M large enough we get J(u,) — 00, a contradiction.

. (%
Otherwise, passing to a subsequence we may assume that HUZLHLQ

— 0. Letv,, := 22—,
nllL2 [[urll L2
then taking a subsequence we may assume that v,, — 0 uniformly and the contradiction J(u,) — 400 is

now deduced directly from (7).

As flogllr2 =1,

This completes the proof of the coerciveness of J and, hence, the existence of a solution is proven.

4 SKETCH OF THE PROOF OF THEOREM 2

From Theorem 1 we know that .J achieves a global minimum at some u; € H'(0,1), hence, the next
linking theorem by Rabinowitz will provide another solution ug € H(0,1). Firstly, let us recall that if X is
a Banach space and J € C'(X,R), a sequence (u,,) C X is called a Palais-Smale sequence if |J(u,)| < c
for some constant ¢ and DJ(u,,) — 0; and J is said to satisfy condition (PS) if any Palais-Smale sequence
has a convergent subsequence in X.

Theorem 3 (Rabinowitz) Let X be a Banach space and J € C’l(X ,R). Assume X = X1 & Xo, with
dim(X1) < oo, and

max Ju) < p:= inf J(u 9
u€X1:||ul|x=r ( ) P uc Xz ( ) ©)

for some r > 0 and J satisfy (PS). Then J has at least one critical point ug such that J(ug) = p.
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Solutions ug, u; are such that J(ug) > p > J(u1), hence, they are different.

In our case, we consider X = H'(0,1) and the sets X1 = span{®}, where ® is the solution of (3), and
={ue H'(0,1) =0}.

Flrstly, let us prove that X =X & Xs. As g—Z(:c, 0) > 0, ® is strictly increasing; thus (1) > 0 and

X1 N Xy = {0}. Moreover, u € X can be written v = a® + v — a®, where a = %.

To prove (9), we find a suitable » > 0 such that
max J(u) < C|[A] e,
ueXt,l|ul|=r
where C'is a negative constant only depending on g and ®.
For the right-hand side of the inequality, a simple computation shows that
1 1
inf J(u) > —|| A% [ =+ — ).
PR CESITAEREN

—2Cag
ap+1 °

To conclude the proof, let us verify that J satisfies the (PS) condition. Let (uy,)neny C H 1(0, 1) such
that |J(uy)| < cy DJ(uy) — 0. If there exists X > 0 such that ||u,| g1 < K forall n € N then, taking
a subsequence, we may assume that there exists v € H'(0, 1) such that u,, — u weakly in H'(0, 1) and
uniformly. Since J € C! and DJ(uy,)(u) — 0, we deduce

Thus, (9) is true, provided that ||A||;2 <

1
0=DJ(u)(u) = /0 ((u')2 + g(z, u)u + Au) dz + agu(0)? — aju(1)?.

As DJ(uy)(un) — 0, it is seen that ||uy,||;2 — ||| 2, then u,, — w strongly.
If [|up || g1 — +o0, let v, = W Since DJ(uy,)(v,) — 0, we can prove that

_>07

‘DJ(rvn)(gb) — /01 Addx

for all ¢, that is: DJ(rv,) — A. Since v, is bounded in H'(0,1), we may assume that taking a sub-
sequence, v, converges weakly in H Lo, 1) and unlformly to some v. As DJ(rv,)(¢) — DJ(rv)(¢)
for all ¢, it follows that D.J(rv) fo x)dz. Let us consider the functional given by J (u) =
J(u) — fo Au. Then J(rv,) — 0 and it is easy to verify that .J(rv,) is bounded. Thus, (7v,)nen is
a bounded Palais-Smale sequence for J, and we deduce that it has a convergent subsequence as before.
Hence, we may assume that rv,, — rv strongly and in particular ||v||z1 = 1. Moreover, rv is a solution of
(1)-(2) with A = 0. As g is superlinear and r is arbitrary, it follows that v = 0, a contradiction.

Then the linking theorem holds and the proof is complete.
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