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Abstract: We study persistence in the context of systems of delay differential equations and employ guiding functions
in order to deduce uniform persistence under appropriate conditions. Moreover, different assumptions allow us to
guarantee the existence of T -periodic solutions. These results are part of the paper [2].
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1 INTRODUCTION

With population models in mind [7], we consider the delayed differential system

x′(t) = f(t, x(t), x(t− τ)) (1)

where f : [0,+∞) × [0,+∞)2N → RN is continuous and τ > 0 is the delay. An initial condition for (1)
can be expressed in the following way

x0 = ϕ, (2)

where ϕ : [−τ, 0] → [0,+∞)N is continuous and xt ∈ C([−τ, 0],RN ) is defined by xt(s) = x(t + s). If
the solutions are defined over [0,+∞) and lie in [0,+∞)N then the semi-flow associated to the system:

Φ : [0,+∞)× C([−τ, 0], [0,+∞)N )→ C([−τ, 0], [0,+∞)N ) (3)

given by
Φ(t, ϕ) = xt

induces a semi-dynamical system.
Under appropriate conditions, we shall prove that 0 is a uniform repeller of the system. This will imply

that all trajectories of the system with positive initial data lie outside a closed ball centered at the origin of
RN for sufficiently large values of t.

We will employ topological degree methods to find closed orbits of (3). Notice that since the space of
initial values is infinite dimensional, the Brouwer degree cannot be applied: we shall use instead Leray-
Schauder degree techniques.

2 UNIFORM PERSISTENCE

We say that a semi-flow is uniformly persistent if there exists ε > 0 such that

lim inf
t→+∞

||Φ(t, ϕ)||∞ > ε ∀ϕ ∈ C([−τ, 0], (0,+∞)N ).

In order to study the persistence of the solutions of (1), we shall consider a C1 Lyapunov-like mapping

V : (0,+∞)N → (0,+∞)

such that
lim
|x|→0

V (x) = 0.

MACI Vol. 8 (2021) M.L. Schuverdt, N.L. Kudraszow, R.P. Vignau, M.D. Sánchez (Eds.)

745



The obvious example is V (x) := |x|2, where | · | denotes the Euclidean norm of RN , although many other
choices of V could be used in applications. The point is that, in contrast with Lyapunov functions, we shall
require that V̇ > 0 for x close to the origin where, as usual,

V̇ (t) =
dV ◦ x
dt

.

In this sense, V can be considered as a guiding function (see e.g. [3], [4]) but, unlike the guiding functions,
our conditions shall involve sets of the form {V (x) < r} instead of {|x| ≥ r}.

In order to obtain uniform persistence, we will show the existence of an accurate value of µ > 0 such
that the set V µ := V −1(0, µ) is a repeller. Indeed, we will prove that V µ shall contain a set of the form
{x ∈ C : 0 < |x| < ξ} for some positive ξ.

The conditions to ensure that the semi-flow stays away from the origin are:

(H1) fj(t, x, y) > 0 for all x, y such that xj = 0 and y 6= 0.

(H2) there exist t0, r0 > 0 such that

〈∇V (x), f(t, x, y)〉 > 0 for t > t0 and V (x), V (y) < r0.

(H3) 〈∇V (x), f(t, x, y)〉 ≥ 〈∇V (x), f(t, x, x)〉, if V (x) ≤ V (y).

We can now proceed to state our first result:

Theorem 1 Assume that (H1), (H2), (H3) hold, then the system is uniformly persistent. More precisely, all
solutions of (1)-(2) with ϕj(t) ≥ 0 for all j and t ∈ [−τ, 0] satisfy

lim inf
t→+∞

V (x(t)) ≥ r0,

that is, x(t) /∈ V r0 for t sufficiently large.

Proof. Let us set v(t) := V (x(t)) and suppose that x(t) is a positive solution of the system such that

lim inf
t→+∞

v(t) = i ∈ (0, r0).

Then three different situations may be considered: If v(t) ≥ i for all t � 0, we may choose a sequence
tn → +∞ such that limn→+∞ v(tn) = i, v′(tn) ≤ 0 and v(tn − τ) ≥ v(tn). Therefore, a contradiction
yields under (H2)-(H3). If v(t) → i−, then also v(t − τ) → i−. It follows that there exists c0 such that
v′(t) > c0 for t � 0, which cannot happen. Thus, we deduce there exists a sequence sn → +∞ such that
v(sn) > i and v(sn)→ i+. Take tn ∈ [s1, sn] such that v(tn) = mint∈[s1,sn] v(t), so v(tn)→ i and, for n
large, v′(tn) ≤ 0 and v(tn) ≤ v(tn − τ). Hence, we are in the first case and the contradiction follows. �

3 PERIODIC ORBITS

In order to prove the existence of periodic orbits, inspired by [5], we shall work on the positive cone X
of CT , the Banach space of continuous T -periodic functions and define an appropriate fixed point operator
K : U ⊂ X → CT . Thus, if f is T -periodic in the first coordinate, then the fixed points of K determine
T -periodic positive orbits of system (3).

Let us recall the Leray-Schauder degree is defined as follows [1]: Let U ⊆ CT be open and bounded,
and let K : U → CT be compact with Kx 6= x for x ∈ ∂U . Set ε = infx∈∂U ||x−Kx||. Then define

degL−S(I −K,U, 0) = degB((I −Kε)|Vε , U ∩ Vε, 0),

where Kε is an ε-approximation of K with Im(Kε) ⊆ Vε and dim(Vε) <∞.

We will show that the Leray-Schauder degree of the operator I −K is non-zero on an appropriate subset
U ⊂ X and therefore the set of fixed points of the compact operator K is non-empty.
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Theorem 2 If f is T -periodic in the first coordinate, (H1), (H2), (H3) hold and

(H4) there exists R > r0 such that

〈∇V (x), f(t, x, y)〉 < 0 for r0 ≤ V (y) ≤ V (x) = R, with r0 from (H2).

Then there exists at least one T -periodic positive solution of (1)-(2) in Ω = {x ∈ [0,+∞)N : V (x) ∈
(r0, R)} provided that the Euler characteristic of Ω is non-zero.

The proof of the theorem shall be based on the following crucial result (see e.g. [6]):

Theorem 3 (Hopf Theorem) If ν is the outward normal on a compact, oriented manifold M , then the
degree of ν equals the Euler characteristic of M .

Proof. [Theorem 2] For convenience, a little of extra notation shall be introduced. For a function x ∈ CT ,
let us write

Ix(t) :=

∫ t

0
x(s) ds, x :=

1

T
Ix(T ).

Moreover, denote by N the Nemitskii operator associated to the problem, namely

Nx(t) := f(t, x(t), x(t− τ)).

Let us consider the open bounded sets Ω = {x ∈ [0,+∞)N : V (x) ∈ (r0, R)} ⊆ RN , U = {x ∈ CT :
x(t) ∈ Ω for all t > 0} ⊆ CT and define the compact operator K : CT → CT by

Kx(t) := x− tNx+ INx(t)− INx.
Via the Lyapunov-Schmidt reduction, if x ∈ CT is a fixed point of K then x is a solution of the equation.

Let K0x := x− T
2 Nx and consider for s ∈ [0, 1], the homotopy Ks := sK + (1− s)K0. We claim that

Ks has no fixed points on ∂U . As mentioned, for s > 0 it is clear that x ∈ U is a fixed point of Ks if and
only if x′(t) = sNx(t), that is:

x′(t) = sf(t, x(t), x(t− τ)).

Observe that, if we identify RN with the set of constant functions of CT then U ∩ RN = Ω. Thus the
image of K0 is contained in RN , whence the Leray-Schauder degree of I − K0 can be computed as the
Brouwer degree of its restriction to Ω.

We apply another homotopy,

H(s, x) = sK0(x)− (1− s)ν(x), for (s, x) ∈ [0, 1]× Ω,

where ν is the outward normal extended to the interior, which does not have fixed points on ∂Ω.
By the homotopy invariance of the degree and Hopf theorem, we conclude that

degLS(I −K,U, 0) = degB(I −K0,Ω, 0) = degB(−ν,Ω, 0) = (−1)Nχ(Ω) 6= 0.
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