SUFFICIENT CONDITIONS FOR OSCILLATIONS OF A FIRST-ORDER SYSTEM WITH DELAY.

Alberto Déboli[†], Pablo Amster[‡] and Paula Kuna^{†‡}

[†]Universidad Nacional de General Sarmiento. Instituto de Ciencias. Área Matemática Aplicada, afdeboli@ungs.edu.ar

[‡]Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Departamento de Matemática Ciudad Universitaria, Pabellón I, 1428 Buenos Aires, Argentina. IMAS-CONICET pamster@dm.uba.ar mpkuna@dm.uba.ar

Abstract: In this work, we consider a system of first order differential equations with delays which appears in many population biological models ([3] [1]). More specifically we prove, using the topological degree theory, existence of periodic solutions of following system

$$u'_{i}(t) = a_{i}u_{i}(t) + b_{i}u_{i}(t-\tau_{i}) + g_{i}(u_{1}(t-\tau_{1}), u_{2}(t-\tau_{2})) + p_{i}(t), \quad i = 1, 2.$$

$$(1)$$

1 INTRODUCTION

Let us consider the system of delay differential equations (1) where $a_i, b_i \in \mathbb{R}, \tau_i > 0$ and $g_i : \mathbb{R}^2 \to \mathbb{R}$ are continuous and bounded for i = 1, 2. We shall assume that

$$|a_1| < |b_1|, \tag{2}$$

and $p_i \in C(\mathbb{R}, \mathbb{R})$ are $T := 2\pi/\omega$ -periodic functions with $\omega := \sqrt{b_1^2 - a_1^2}$. For convenience, we shall denote $u = (u_1, u_2)$, $g = (g_1, g_2)$ and $p = (p_1, p_2)$ and write the problem as a functional equation in the following way.

Consider

$$C_T := \{ u \in C(\mathbb{R}, \mathbb{R}^2) : u(t) = u(t+T) \}, \ C_T^1 := C_T \cap C^1(\mathbb{R}, \mathbb{R}^2) \}$$

with $L:C^1_T\to C(\mathbb{R},\mathbb{R}^2)$ given by

$$L(u_1, u_2)(t) = (L_1(u_1)(t), L_2(u_2)(t))$$

where

$$L_i(u_i)(t) = u'_i(t) - a_i u_i(t) - b_i u_i(t - \tau_i), \ i = 1, 2$$

and

$$N : C_T \to C(\mathbb{R}, \mathbb{R}^2)$$
$$N(u)(t) := g(u_1(t - \tau_1), u_2(t - \tau_2)) + p(t).$$

Then (1) is equivalent to the problem

 $Lu = Nu, \ u \in C_T^1.$

We are interested in the *resonant* case, that is, when the operator L has nontrivial kernel. Specifically, we shall assume that the resonance is produced in the first equation. In more precise terms, consider the characteristic equation of $L_1(u_i)(t) = 0$ given by

$$h(\lambda) = \lambda - a_1 - b_1 e^{-\lambda \tau_1} = 0.$$

Let

$$z = \lambda \tau_1, \ \ \alpha_1 = a_1 \tau_1 \ \ \text{and} \ \ \beta_1 = b_1 \tau_1$$

and the function $F(z, \alpha_1, \beta_1) := z - \alpha_1 - \beta_1 e^{-z}$, whose zeros are related to the roots of h via the previous change or variables. We know (see [3]) that z = iy, y > 0, is a purely imaginary root of F if there we take τ_1 such that $(\alpha_1, \beta_1) \in C_k$, where

$$C_k = \left\{ \left(\alpha(y), \beta(y) \right) / \alpha(y) := \frac{y \cos y}{\sin y}, \beta(y) := \frac{-y}{\sin y}, y \in (k\pi, (k+1)\pi) \right\},$$

for some $k \in \mathbb{N}$. In this case, $\lambda = i\omega$ is a root of h. Next, consider τ_2 , such that $(\alpha_2, \beta_2) \notin C_k$, for any $k \in \mathbb{N}$. It is easy to see that, in this situation, that

$$\operatorname{Ker}(L) = \operatorname{span}\{\cos\left(\omega t\right), \sin\left(\omega t\right)\} \times \{0\}.$$

Let us consider $\mathcal{P}: C^1_T \to \operatorname{Ker} L$ the orthogonal projection, given by

$$\mathcal{P}(u) = (\alpha_{u_1} \cos (\omega t) + \beta_{u_1} \sin (\omega t), 0)$$

where α_v and β_v are the Fourier coefficients given bt

$$\alpha_v := \frac{2}{T} \int_0^T \cos\left(\omega t\right) v(t) dt$$

and

$$\beta_v := \frac{2}{T} \int_0^T \sin\left(\omega t\right) v(t) dt$$

A straightforward computation shows that the adjoint operator of L^1 is given by

$$L_1^*v(t) = -v'(t) - a_1v(t) - b_1v(t+\tau_1),$$

where $v \in C^1$. Hence, the characteristic equation of $L_1^*v(t) = 0$ reads $h^*(\lambda) = \lambda + a_1 + b_1 e^{\lambda \tau_1} = 0$. Observe that $\lambda = i\omega$ is a solution of $h(\lambda) = 0$ if and only if $\overline{\lambda}$ is a solution of $h^*(\lambda) = 0$; thus, $\operatorname{Ker} L_1 = \operatorname{Ker} L_1^*$. It follows that $R(L) = (\operatorname{Ker} L^*)^{\perp} = (\operatorname{Ker} L_1)^{\perp} \times C$, where

$$(\mathrm{Ker}L_1)^{\perp} = \left\{ \varphi \in L^2([0,T],\mathbb{R}) : \int_0^T \cos\left(\omega t\right) \varphi(t) dt = \int_0^T \sin\left(\omega t\right) \varphi(t) dt = 0 \right\}.$$

Then we may define a right inverse $\mathcal{K} : R(L) \to C_T^1$ of the operator L, given by $\mathcal{K}\psi = u$, where u is the unique solution of the problem

$$\begin{cases} Lu = \psi \\ \mathcal{P}(u) = 0 \end{cases}$$

Moreover, due to the Open Mapping Theorem, the following standard estimate is obtained

$$||u - \mathcal{P}u||_{H^1} \le c||Lu||_{L^2}, \ u \in C^1_T.$$

Hence, from the compactness of the embedding $H^1(0,T) \hookrightarrow C_T$, we conclude that \mathcal{K} is compact.

2 MAIN RESULT

In the sequel, we shall assume that the limits

$$g_1^{inf}(-\infty) := \liminf_{v \to -\infty} g_1(v, u_2)$$

and

$$g_1^{sup}(+\infty) := \limsup_{v \to +\infty} g_1(v, u_2),$$

exist uniformly for $u_2 \in B_r(0)$, where $r := c(||g||_{\infty} + ||p||_{\infty})$.

Theorem 2.1 Fix τ_1 as before such that $(\alpha_1, \beta_1) \in C_k$ for some k and assume that (2) and one of the following conditions

$$\frac{4}{T}\left(g_1^{inf}(-\infty) - g_1^{sup}(+\infty)\right) > \sqrt{\alpha_{p_1}^2 + \beta_{p_1}^2} \tag{3}$$

or

$$\frac{4}{T}\left(g_1^{inf}(+\infty) - g_1^{sup}(-\infty)\right) > \sqrt{\alpha_{p_1}^2 + \beta_{p_1}^2} \tag{4}$$

hold. Then, for almost all $\tau_2 > 0$, system (1) has at least one nontrivial T-periodic solution.

Proof. Choose τ_2 such that $(\alpha_2, \beta_2) \notin C_k$ for any $k \in \mathbb{N}$. For each $\lambda \in [0, 1]$, define the Fredholm operator $F_{\lambda} : C_T \to C_T$ given by $F_{\lambda}u = u - T_{\lambda}u$, where the operator T_{λ} is defined by

$$T_{\lambda}u(t) = \mathcal{P}u + \mathcal{P}(Nu) + \lambda \mathcal{K}(Nu - \mathcal{P}(Nu)).$$

We claim that, for $\lambda \in (0, 1]$, $F_{\lambda}u = 0$ if and only if $u \in C_T^1$ and $Lu = \lambda Nu$.

Indeed, if u is a zero of F_{λ} , then $u = T_{\lambda}u \in C_T^1$, since $\mathcal{K} : R(L) \to C_T^1$. Apply \mathcal{P} at both sides, then $\mathcal{P}(Nu) = 0$. So, we have that $u = \mathcal{P}u + \lambda \mathcal{K}(Nu)$. Since $L\mathcal{P} \equiv 0$ it is deduced that $Lu = \lambda(Nu)$. Conversely, if $Lu = \lambda(Nu)$ and $u \in C_T^1$, then $Nu \in R(L)$, hence $\mathcal{P}(Nu) = 0$ and $\lambda \mathcal{K}(Nu) = u - \mathcal{P}u$.

In order to verify that F_1 has a zero, we shall firstly prove the existence of $R \gg 0$ such that $F_{\lambda}u \neq 0$ for $u \in \partial B_R(0)$. Next, by the homotopy invariance of the Leray-Schauder degree, it will suffice to verify that $deg_{LS}(F_0, B_R(0), 0) \neq 0$.

To this end, suppose firstly there exists a sequence $(u^n)_{n\in\mathbb{N}}\subset C_T^1$ and $\lambda_n\in(0,1]$ such that $F_{\lambda_n}u^n=0$ and $||u^n||_{\infty}\to\infty$. Then

$$(u_i^n)'(t) = a_i u_i^n(t) + b_i u_i^n(t - \tau_i) + \lambda_n (g_i (u_1^n(t - \tau_1), u_2^n(t - \tau_2)) + p_i(t))$$

which, in turn, implies that $\mathcal{P}(Nu^n) = 0$ for all $n \in \mathbb{N}$ and $||u^n - \mathcal{P}u^n||_{\infty} \leq c(||g||_{\infty} + ||p||_{\infty})$. Hence, $||\mathcal{P}u^n||_{\infty} \to +\infty$. Let us write $\mathcal{P}u^n = (\rho_n \cos(\omega t - \theta_n), 0)$, where $\rho_n \to \infty$, $\theta_n \in [0, 2\pi]$ and

$$u^{n}(t) = \mathcal{P}u^{n}(t) + u^{n}(t) - \mathcal{P}u^{n}(t) = (\rho_{n}\cos(\omega t - \theta_{n}) + \tilde{u}_{1}^{n}(t), u_{2}^{n}(t))$$

where \tilde{u}_1^n is bounded. Passing to a subsequence if needed, we may assume that θ_n converges to some $\theta \in [0, 2\pi]$. Since $\mathcal{P}(Nu) = 0$, by substitution we obtain:

$$-\mathcal{P}(p_{1}) = \frac{2}{T} \int_{0}^{T} g_{1}(\rho_{n} \cos(\omega(t-\tau_{1})-\theta_{n}) + \tilde{u}_{1}^{n}(t-\tau_{1}), u_{2}^{n}(t-\tau_{2}))e^{i\omega t}dt =$$

$$= \frac{2}{T} e^{i(\theta_{n}+\omega\tau_{1})} \int_{0}^{T} g_{1}(\rho_{n} \cos\omega s + \tilde{u}_{1}(s-\frac{\theta_{n}}{\omega}), u_{2}(s+\tau_{1}+\frac{\theta_{n}}{\omega}-\tau_{2})e^{i\omega s}ds.$$
(5)

Let us consider the sets $I^+ = \{t \in [0,T] : \cos \omega t > 0\}$ and $I^- = \{t \in [0,T] : \cos \omega t < 0\}$, then by the Dominated Convergence Theorem and the fact that $\int_{I^+} \sin \omega s ds = \int_{I^-} \sin \omega s ds = 0$, we deduce

$$\int_{I^+} g_1(\rho_n \cos \omega s + u_1(s - \frac{\theta_n}{\omega}), u_2(s + \tau_1 + \frac{\theta_n}{\omega} - \tau_2))e^{i\omega s} ds$$
$$\rightarrow g_1^{sup}(+\infty) \int_{I^+} \cos \omega s ds = 2g_1^{sup}(+\infty)$$

and

$$\begin{split} \int_{I^{-}} g_1(\rho_n \cos \omega s + u_1(s - \frac{\theta_n}{\omega}), u_2(s + \tau_1 + \frac{\theta_n}{\omega} - \tau_2)) e^{i\omega s} ds \\ \to g_1^{inf}(-\infty) \int_{I^{-}} \cos \omega s ds &= -2g_1^{inf}(-\infty) \end{split}$$

as $n \to +\infty$. From (5), we conclude that

$$\sqrt{\alpha_{p_1}^2 + \beta_{p_1}^2} = \frac{4}{T} \left(g_1^{inf}(-\infty) - g_1^{sup}(+\infty) \right),$$

which contradicts condition (3).

Finally, if $F_0(u) = 0$, then $u = \mathcal{P}(u)$ and a similar argument with $\tilde{u}_1 = u_2 = 0$ shows that $u \notin \partial B_R(0)$ when R is large enough.

This implies that the Leray-Schauder degree of F_{λ} at 0 is well defined on $B_R(0)$ and that $deg_{LS}(F_1, B_R(0), 0) = deg_{LS}(F_0, B_R(0), 0)$. Moreover, by definition of the degree and the fact that

$$F_0 u = u - \mathcal{P}(u + Nu),$$

we conclude that $deg_{LS}(F_0, B_R(0), 0) = deg_B(F_0|_{\text{Ker}L}, B_R(0) \cap \text{Ker}L, 0)$. Notice that if $u \in \text{Ker}L$, then $F_0u = -\mathcal{P}(Nu)$; thus, by the product property of the Brouwer degree,

$$deg_B(F_0|_{\text{Ker}L}, B_R(0) \cap \text{Ker}L, 0) = \\ = deg_B(\pi_1(-\mathcal{P}Nu), \pi_1(B_R(0)) \cap \text{Ker}L_1, 0) \ deg_B(\pi_2(-\mathcal{P}(Nu)), \pi_2(B_R(0)) \cap \text{Ker}L_2, 0) = \\ = deg_B(\pi_1(-\mathcal{P}(Nu)), \pi_1(B_R(0)) \cap \text{Ker}L_1, 0)$$

where $\pi_i : \mathbb{R} \to \mathbb{R}, \pi_i(x_1, x_2) = x_i$. Hence, the proof is reduced to see that $deg_B(\pi_1(-\mathcal{P}(Nu)), \pi_1(B_R(0))) \cap \text{Ker}L_1, 0) \neq 0$.

Let $u \in B_R(0) \cap \text{Ker}L$, then $u(t) = (\rho \cos(\omega t - \theta), 0)$, with $\theta \in [0, 2\pi]$ and $|\rho| \leq R$ for $R \gg 0$. Via substitution and due to the periodicity of u, we have that

$$\pi_1(\mathcal{P}(Nu)) = \frac{2}{T} \int_0^T g_1(\rho \cos(\omega(t-\tau_1)-\theta), 0) e^{i\omega t} dt + \alpha_{p_1} + i\beta_{p_1} = e^{i\theta} \left(\frac{2}{T} e^{i\omega\tau_1} \int_0^T g_1(\rho \cos\omega s, 0) e^{i\omega s} ds\right) + \alpha_{p_1} + i\beta_{p_1}.$$

Therefore, the degree of the function $F_0 u|_{\text{Ker}L}$ coincides with the index of the curve $\gamma : [0, 2\pi] \to \mathbb{C}$ defined by

$$\gamma(t) = e^{it} \left(\frac{2}{T} e^{i\omega\tau_1} \int_0^T g_1(\rho\cos\omega s, 0) e^{i\omega s} ds \right)$$

around the poing $z_0 := -(\alpha_{p_1} + i\beta_{p_1})$.

Via Dominated Convergence Theorem and taking I^+ and I^- as before, it is seen that

$$\int_0^T g_1(\rho \cos \omega s, 0) e^{i\omega s} ds \to_{\rho \to +\infty} 2\left(g_1^{sup}(+\infty) - g_1^{inf}(-\infty)\right).$$

Hence, for ρ large enough, $|\gamma(t)| \ge \frac{4}{T} \left(g_1^{sup}(+\infty) - g_1^{inf}(-\infty) \right) > \sqrt{\alpha_{p_1}^2 + \beta_{p_1}^2}$, by condition (3). We conclude that

we conclude that

$$deg_{LS}(F_1, B_R(0), 0) = I(\gamma, z_0) = \pm 1,$$

for R large enough, which proves the existence of a T-periodic solution of problem (1).

ACKNOWLEDGEMENT

This work was partially supported by project CONICET PIO 144-20140100027-CO and UBACyT 20020120100029BA.

REFERENCES

- [1] R.D. Driver. Ordinary and Delay Differential Equations. Springer-Verlang. New York. 1977.
- [2] J. Mawhin and R. Gaines. Coincidence Degree, and Nonlinear Differential Equations. Springer-Verlang. New York. 1977.
- [3] H. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences, Springer-Verlag, New York, 2011.