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Abstract: In this work, we consider a system of first order differential equations with delays which appears in many
population biological models ([3] [1]). More specifically we prove, using the topological degree theory, existence of
periodic solutions of following system

u;(t) = aluz(t) + bzul(t — Ti) —l—gz(ul(t — Tl),UQ(t — ’7'2)) +pl(t), 1= 1,2 (1)

1 INTRODUCTION

Let us consider the system of delay differential equations (1) where a;,b; € R, 7; > 0 and g; : R> - R
are continuous and bounded for ¢ = 1, 2. We shall assume that

ja1] < |ba] 2)

and p; € C(R,R) are T := 27 /w-periodic functions with w := \/b? — a?. For convenience, we shall

denote u = (u1,u2), g = (91,92) and p = (p1, p2) and write the problem as a functional equation in the
following way.
Consider
Cr:={ueCR,R? ult)=ult+T)}, C;:=CrnC (R,R?)

with L : C}. — C(R, R?) given by
L(u1, u2)(t) = (L1 (u1)(t), La(uz)(t))

where
Lz(uz)(t) = u;(t) — aiui(t) — biui(t — Ti)7 1= 1, 2
and
N :Cr — C(R,R?)
N(u)(t) == g(ur(t — 1), uz(t — 72)) + p(t).
Then (1) is equivalent to the problem
Lu= Nu, ue Ch.

We are interested in the resonant case, that is, when the operator L has nontrivial kernel. Specifically,
we shall assume that the resonance is produced in the first equation. In more precise terms, consider the
characteristic equation of Lq(u;)(t) = 0 given by

h(A) =X —ay —be ™ =0.
Let
z = )\Tl, a1 = Q171 and Bl = blTl

and the function F'(z, a1, £1) := z — a1 — 1€~ %, whose zeros are related to the roots of A via the previous
change or variables. We know (see [3]) that z = ¢y, y > 0, is a purely imaginary root of I if there we take
71 such that (o, 1) € Ck, where

Cp = {(a<y>,ﬁ<y>>/ aly) = YY 5y = Y e (ko (k4 1>w>} ,

siny ’ sin ¥
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for some k£ € N. In this case, A = iw is a root of h. Next, consider 75, such that (ce, f2) ¢ CY, for any
k € N. It is easy to see that, in this situation, that

Ker(L) = span{cos (wt), sin (wt)} x {0}.
Let us consider P : C1. — KerL the orthogonal projection, given by
P(u) = (au,cos (wt) + By, sin (wt),0)

where o, and (3, are the Fourier coefficients given bt

2 T
o / cos (wt)u(t)dt
T Jo

and

A straightforward computation shows that the adjoint operator of L' is given by
o) = =0 (t) — apv(t) — bio(t + 1),

where v € C'. Hence, the characteristic equation of L’l‘v(t)iz 0 reads h*(A\) = A+ a1 + bier = 0.
Observe that A = iw is a solution of h(A) = 0 if and only if X is a solution of A*(\) = 0; thus, KerL; =
KerL3. Tt follows that R(L) = (KerL*)* = (KerL;)* x C, where

T T
(KerL)t = {go € L*([0,T],R) : /0 cos (wt)p(t)dt = /0 sin (wt)p(t)dt = 0} .

Then we may define a right inverse K : R(L) — C# of the operator L, given by K¢ = u, where u is the
unique solution of the problem

{r 2o

Moreover, due to the Open Mapping Theorem, the following standard estimate is obtained
|u — Pul| g < ¢||Lul| 2, ue Ch.

Hence, from the compactness of the embedding H*(0, T') — C7, we conclude that K is compact.

2 MAIN RESULT
In the sequel, we shall assume that the limits

g1 (—o0) = I;m_lnf g1 (v, u2)
and

97" (+00) := limsup g1 (v, uz),
v——+00

exist uniformly for us € B,(0), where r := ¢(||g]|oo + [|P]|o0)-

Theorem 2.1 Fix 71 as before such that (a1, 31) € Cy for some k and assume that (2) and one of the
following conditions

4 n su

7 (6 (mo0) =g (+o0)) > (a2, + 3, G)
or 4 4

7 (90 (ro0) = 97" (-00)) > \Jad, + @

hold. Then, for almost all 75 > 0, system (1) has at least one nontrivial T'-periodic solution.
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Proof. Choose 72 such that (ag, f2) ¢ Cj, for any k € N. For each A € [0, 1], define the Fredholm operator
F\ : Cpr — Cp given by Fh\u = u — Thu, where the operator T}, is defined by

T\u(t) = Pu+ P(Nu) + MC(Nu — P(Nu)).

We claim that, for A € (0, 1], Fyu = 0 if and only if u € C. and Lu = ANu.

Indeed, if u is a zero of F, then u = Thu € Ck, since K : R(L) — Ck. Apply P at both sides,
then P(Nu) = 0. So, we have that u = Pu + MC(Nu). Since LP = 0it is deduced that Lu = A(Nu).
Conversely, if Lu = A\(Nu) and u € C}, then Nu € R(L), hence P(Nu) = 0 and \K(Nu) = u — Pu.

In order to verify that F; has a zero, we shall firstly prove the existence of R >> 0 such that F\u # 0 for
u € 0BR(0). Next, by the homotopy invariance of the Leray-Schauder degree, it will suffice to verify that

degrs(Fo, Br(0),0) # 0.
To this end, suppose firstly there exists a sequence (u")neny C Ch and A, € (0, 1] such that Fy ,u™ = 0
and ||u"||cc — 00. Then

(uf')'(t) = aiuf (£) + b (t = 73) + An(gi(ut (t = 1), u5 (£ = 72)) + pi(t))

which, in turn, implies that P(Nu™) = 0 for all n € N and |[u™ — Pu"||oc < ¢(]|9]lco + ||P]loo)- Hence,
|Pu™||0c — +00. Let us write Pu™ = (pncos (wt — 6,,),0), where p,, — o0, 6, € [0, 27] and

u"(t) = Pu(t) + u"(t) — Pu"(t) = (pncos (wt — 0,,) + ' (t),us(t))

where ] is bounded. Passing to a subsequence if needed, we may assume that 6,, converges to some
0 € [0,2x]. Since P(Nu) = 0, by substitution we obtain:

2 T ~n n w
—P(p) = T/ g1(pncos (w(t — 71) = O) + A7 (t — 1), uh(t — 72))e™"dt =
0
_ z i(0n+w71)/T (pncos + 1 ( el) (s + _|_0l ) ws g )
= pe ; 91(pnC0s W8 + tn(s — —%), ug(s + 71 + 7 = Ty)eds.

Let us consider the sets [T = {t € [0,T] : coswt > 0} and I~ = {t € [0,T] : coswt < 0}, then by the
Dominated Convergence Theorem and the fact that | 1+ Sinwsds = I - sinwsds = 0, we deduce

0 0 A
/ 91(pncos wstui(s — ), ua(s + 11 + — — 7))e“ ds
I+ w w
— gfuP(-Foo)/ cos wsds = 2g;"? (+00)
I+
and
071 071« ws
91(pncos ws+uy (s — ;),ug(s + 7+ o T2))e"“*ds
— gi"f(—oo)/ cos wsds = —2¢'" (—o0)

as n — 4oo. From (5), we conclude that

which contradicts condition (3).
Finally, if F(u) = 0, then u = P(u) and a similar argument with @; = uy = 0 shows that u ¢ 0Bg(0)
when R is large enough.
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This implies that the Leray-Schauder degree of F)y at 0 is well defined on Br(0) and that degys(F1, Bg(0),0) =
degr.s(Fo, Br(0),0). Moreover, by definition of the degree and the fact that

Fou=u—P(u+ Nu),

we conclude that degr.s(Fo, Br(0),0) = degp(Folgers» Br(0) N KerL, 0). Notice that if u € KerL, then
Fyu = —P(Nu); thus, by the product property of the Brouwer degree,

degB(F0|KerLa Br(0) NKerL,0) =
= degB(m(—PNu), 7T1(BR(0)) N KerLq, 0) degB(ﬂg(—P(Nu)), WQ(BR(O)) N KerLs, O) =
= degp(mi(—P(Nu)), 71 (Br(0)) NKerLy,0)

where 7; : R — R, m;(21,22) = x;. Hence, the proof is reduced to see that degp (w1 (—P(Nw)), w1 (Br(0))N
KerL4,0) # 0.

Let u € Br(0) N KerL, then u(t) = (pcos (wt — 0),0), with § € [0,2x] and |p| < R for R > 0. Via
substitution and due to the periodicity of u, we have that

2 [T ;
m(POVW) = 7 [ arlpeos (wlt =) = 0).0)¢ "t + 0y, + iy, =
(2 . T ,
= e (Te“”l /0 g1(pcos ws, O)ewsds) +ap, + 1By,

Therefore, the degree of the function Fyu|ge,, coincides with the index of the curve v : [0,27] — C
defined by

(2 . T ,
y(t) = e <Te“”1 / g1(pcos ws, O)ewsds)
0

around the poing zp := —(ap, + 5, ).
Via Dominated Convergence Theorem and taking I+ and 1~ as before, it is seen that

T ,
/0 g1(pcos ws, 0)e™*ds — o0 2 (gf“p(+oo) — gi"f(—oo)> :

Hence, for p large enough, |v(t)| > £ (gf“p(—&—oo) — gli"f(—oo)) > /a2 + 32, by condition (3).
We conclude that
degLS(Fla BR(O)a 0) == I(’Ya ZO) = :l:17

for R large enough, which proves the existence of a T'-periodic solution of problem (1). O
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