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Abstract: We prove the existence of at least one positive θ-periodic solution of a system of delay differential equations

for models with feedback arising on regulatory mechanisms in which self-regulation is relevant, e.g. in cell physiology
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1 INTRODUCTION

We study a model for the cycle of the Testosterone hormone (shown in Fig.1). We follow the notation

of [3] for the concentration of the Luteinising Hormone (LH) from Hypotalamus, Luteinising Hormone

Releasing Hormone (LHRH) from Pituitary gland and Testosterone Hormone (TH) from Testes in man.

In 1989, Murray studied a more simple system (based on a model by Smith from 1980) also mentioned in

[2] and [4]. For details, see [3].

Figure 1: Hormone Testosterone cycle

A general mathematical model describing the biochemical interaction of the hormones LH , LHRH and

TH in the male is presented. The model structure consists of a negative feedback system of three delay

differential equations.

In this paper we study existence of solutions in a more general model, namely the following system of delay

differential equations
dR

dt
= F (t, T (t− τ))− b1(R(t)),

dL

dt
= G(t, R(t− τ), T (t− τ))− b2(L(t)),

dT

dt
= H(t, L(t− τ))− b3(T (t))

(1)

where τ > 0 is a fixed delay.

The features of the model read as follows.

1. F,H : R× [0,+∞)→ [0,∞) and G : R× [0,+∞)2 → [0,∞) are continuous and θ-periodic in the

first coordinate.

2. bi : [0,+∞)→ [0,+∞) is an increasing, unbounded homeomorphism and bi(0) = 0 for i = 1, 2, 3
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3. F is nonincreasing in its second coordinate and F (t, x) > 0 for all x ≥ 0.

4. H is nondecreasing in its second coordinate and H(t, x) > 0 for all x > 0.

5. G is nondecreasing in its second coordinate and nonincreasing in its third coordinate, with G(t, x, y) >
0 for x > 0.

Remark. It is seen from the model that high levels of T affect the concentration of R and L.

It shall be seen that under conditions 1− 5 the system has at least one positive θ-periodic solution.

2 ABSTRACT SETTING

We shall write our equation as Lu = Nu, where u := (R,L, T ), L is the linear operator given by

Lu := u′ and N is defined as the right-hand side of system (1). We shall apply the continuation method in

the Banach space

Cθ = {u ∈ C(R,R3) : u(t) = u(t+ θ) for all t}
equipped with the standard uniform norm. Note that the nonlinear operator N is defined over the positive

cone K := {u ∈ Cθ : R, T, L ≥ 0}.
For convenience, the average of a function u shall be denoted by u, namely u := 1

θ

∫ θ
0 u(t) dt. Also,

identifying R3 with the subset of constant functions of Cθ we may define the function φ : [0,+∞)3 → R3

given by φ(x) = Nx.

The following continuation theorem can be easily deduced from the standard topological degree methods

(see e.g. [1]).

Theorem 1 Assume there exists Ω ⊂ K open and bounded such that:

a) The problem Lu = λNu has no solutions in ∂Ω for 0 < λ < 1.

b) φ(u) �= 0, u ∈ ∂Ω ∩ R3.

c) deg(φ,Ω ∩ R3, 0) �= 0, where ‘deg’ stands for the Brouwer degree.

Then (1) has at least one solution in Ω.

3 EXISTENCE OF SOLUTIONS

In this section, we shall prove the existence of at least one θ-periodic solution (R,L, T ) such that

R(t), L(t), T (t) > 0 for all t. More precisely,

Theorem 2 If conditions 1−5 are satisfied, then the system (1) has at least one positive θ-periodic solution.

Proof.
In order to apply Theorem 1 to our problem, let us assume that u = (R,L, T ) ∈ K is a solution of the

system Lu = λNu for some λ ∈ (0, 1). We shall obtain bounds that will allow an appropriate choice of the

subset Ω.

In the first place, suppose that R achieves its maximum R∗ at some value t∗, then R′(t∗) = 0 and hence

b1(R
∗) = F (t∗, T (t∗ − τ)) ≤ F (t∗, 0).

Thus, fixing a constant R > b−1
1 (F (t, 0)) for all t we conclude that R∗ < R. Next, observe that if L

achieves its maximum L∗ at some t∗, then

b2(L
∗) = G(t∗, R(t∗ − τ), T (t∗ − τ)) ≤ G(t∗, R∗, 0) ≤ G(t∗,R, 0).

Thus, we may fix a constant L > b−1
2 (G(t,R, 0)) for all t and it is deduced that L∗ < L. In the same way,

the maximum T ∗ of the function T satisfies T ∗ < T for any arbitrary constant T > b−1
3 (F (t,L)) for all t.
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In order to obtain lower bounds, assume firstly that R achieves its minimum R∗ at some t∗, then

b1(R∗) = F (t∗, T (t∗ − τ)) ≥ F (t∗, T
∗) ≥ F (t∗, T ) > 0

so we may fix a positive constant r < b−1
1 (F (t, T )) for all t and deduce that R∗ > r. In the same way, it is

seen that if l > 0 is such that l < b−2
1 (minG(t, r, T )) for all t then L∗ > l. Finally, fix a positive constant t

such t < b−1
3 (H(t, l)) for all t, then it is verified that T∗ > t.

In other words, if

Ω := {(R,L, T ) ∈ Cθ : r < R(t) < R, l < L(t) < L, t < T (t) < T for all t},

then the first condition of the continuation theorem is satisfied.

Moreover, observe that Ω ∩ R3 is a parallelepiped, namely

Q := Ω ∩ R3 = (r,R)× (l,L)× (t, T ).

It is clear, from our choice of the bounds, that φ does not vanish on the boundary of Q, so the second

condition of Theorem 1 is also fulfilled.

It remains to prove that deg(φ,Q, 0) �= 0. With this aim, consider the homotopy ϑ : Q × [0, 1] → R3

given by

ϑ(x, λ) = (1− λ)(p− x) + λφ(x)

where p is the center of Q, that is

p =

(R+ r

2
,
L+ l

2
,
T + t

2

)
.

Since

φ(x1, x2, x3) =
1

θ

∫ θ

0

(
F (t, x3), G(t, x1, x3), H(t, x2)

)
dt− (b1(x1), b2(x2), b3(x3)),

it is readily seen that ϑ does not vanish for x ∈ ∂Q. By the homotopy invariance of the Brouwer degree, we

conclude that

deg(φ,Q, 0) = deg(p− Id,Q, 0) = −1
and the proof is complete. �
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