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The Brown-York mass of black holes in Warped Anti-de Sitter space
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We give a direct computation of the mass of black holes in Warped Anti-de Sitter space (WAdS)
in terms of the Brown-York stress-tensor at the boundary. This permits to explore to what extent
the holographic renormalization techniques can be applied to such type of deformation of AdS. We
show that, despite some components of the boundary stress-tensor diverge and resist to be regu-
larized by the introduction of local counterterms, the precise combination that gives the quasilocal
energy density yields a finite integral. The result turns out to be in agreement with previous com-
putations of the black hole mass obtained with different approaches. This is seen to happen both
in the case of Topologically Massive Gravity and of the so-called New Massive Gravity. Here, we
focus our attention on the latter. We observe that, despite other conserved charges diverge in the
near boundary limit, the finite part in the large radius expansion captures the physically relevant
contribution. We compute the black hole angular momentum in this way and we obtain a result
that is in perfect agreement with previous calculations.

PACS numbers: 11.25.Tq, 11.10.Kk

I. INTRODUCTION

The idea of extending AdS/CFT correspondence to
Warped AdS spaces (WAdS) has been originally pro-
posed in Ref. [1], and it was further studied in Refs.
[2–11]. This represents one of the most appealing at-
tempts to generalize holography to non-AdS spaces, and
this is because WAdS spaces appear in several contexts.
For instance, WAdS spaces provide gravity duals for
condensed matter systems with Schrödinger symmetry
[12, 13], they are closely related to the geometry of ro-
tating black holes [14, 15], and they also appear in rela-
tion to many other interesting subjects [16–18]. Asymp-
totically WAdS3 spaces turn out to be exact solutions of
String Theory [19, 20] as well as of other models of three-
dimensional gravity, including Higher-Spin Gravity [21],
Topologically Massive Gravity (TMG) [22, 23], and New
Massive Gravity (NMG) [24]. Here, we will be concerned
with the latter: We will consider asymptotically WAdS3
black holes in NMG. For such solutions, we will give a
direct computation of the mass in terms of the Brown-
York stress-tensor [25] in the boundary of the space. We
do this to explore to what extent the holographic renor-
malization techniques can be applied to such a defor-
mation of AdS. Whether or not the Brown-York tensor
can be defined at the boundary of WAdS3 space is a
question that has been raised, for instance, in Ref. [5].
Here, we will show that, despite some components of the
Brown-York stress-tensor diverge in the near boundary
limit and resist to be regularized by the introduction of
local counterterms, the integral of the precise combina-
tion that gives the definition of the quasilocal energy as
a conserved charge yields a finite integral. The result we
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obtain happens to be in agreement with computations
of the black hole mass obtained by different methods
[22, 27, 28]. Finiteness of the conserved charge computed
in this way follows from cancellations that occur near the
boundary. In contrast to the mass, in the case of the an-
gular momentum the charge associated to it can not be
regularized by the introduction of local boundary coun-
terterms. However, the finite part in the near boundary
expansion happens to capture the physically relevant in-
formation, and it is shown to exactly reproduce the black
hole angular momentum.
The paper is organized as follows: In Section II, we

briefly review the theory of New Massive Gravity intro-
duced in Ref. [29]. In Section III, we discuss the geome-
try of Warped Anti-de Sitter space and black holes that
asymptote to it. In Section IV, we study boundary terms
and the Brown-York stress-tensor they induce. We con-
sider the near boundary limit of this stress-tensor and use
it in Section V to calculate the mass of the Warped Anti-
de Sitter black holes. That is, we compute the Brown-
York quasilocal energy in the limit that the boundary
tends to spatial infinity. The result we obtain is in agree-
ment with previous computations. We also discuss the
analogous computation in the case of the gravitational
Chern-Simons term being added.

II. NEW MASSIVE GRAVITY

Let us begin by reviewing New Massive Gravity theory
[29]. The action of the theory consists of the sum of three
different contributions, namely

S = SEH + SNMG + SB, (1)

where the first term is the Einstein-Hilbert action with
cosmological constant,

SEH =
1

16πG

∫

Σ

d3x
√
−g (R− 2Λ) , (2)
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and the second term contains contributions of higher or-
der,

SNMG =
1

16πG

∫

Σ

d3x
√
−g (fµνGµν−

1

4
m2(fµνf

µν − f2)), (3)

where Gµν is the Einstein tensor Gµν = Rµν − 1
2Rgµν ,

and field fµν is a rank-two auxiliary field which, after
being integrated, gives

fµν =
2

m2

(

Rµν − 1

4
Rgµν

)

. (4)

The third term in (1), SB, is a boundary action needed
for the variational principle to be defined in a specific
way. We will discuss the boundary terms later.
By reinserting (4) back in (3) the higher-curvature

terms take the form

SNMG =
1

16πGm2

∫

Σ

d3x
√
−g

(

RµνR
µν − 3

8
R2

)

, (5)

which is the form of the action presented in [29].
The equations of motion derived from action (1) read

16πG
δS

δgµν
= Gµν + Λgµν +

1

2m2
Kµν = 0. (6)

which, apart from the Einstein tensor Gµν , involve the
tensor

Kµν = 2�Rµν − 1

2
∇µ∇νR− 1

2
�Rgµν + 4RµανβR

αβ −
3

2
RRµν −RαβR

αβgµν +
3

8
R2gµν . (7)

The precise combination of the square-curvature terms
in (5), gµνKµν = RµνR

µν − (3/8)R2, is such that the
trace of the equations of motion (6) does not involve the
mode �R. This is one of the reasons why NMG is free
of ghosts – for instance – about flat space.
Equations of motion (6) are solved by all solutions of

General Relativity, provided an adequate renormaliza-
tion of the effective cosmological constant. The theory
also admits solutions that are not Einstein spaces; these
have Kµν 6= 0. Probably the simplest solutions of this
sort are WAdS3 spaces.

III. WARPED ANTI-DE SITTER

A. WAdS3 space

WAdS3 spaces are squashed or stretched deformations
of AdS3 [14]. Such a deformation is obtained by first
writing AdS3 as a Hopf fibration of R over AdS2 and then
multiplying the fiber by constant warp factor K. More

precisely, one first considers the metric of AdS3 written
in coordinates

ds2 =
l2

4

(

− cosh2 x dτ2 + dx2 + (dy + sinhx dτ )2
)

(8)

and then deforms it as follows

ds2 =
l2K
4

(

− cosh2 x dτ2 + dx2 +K(dy + sinhx dτ )2
)

,

(9)
where x, y, τ ∈ R, and K ∈ R. It is usual to parameterize
the deformation by a positive constant ν defined by K =
4ν2/(ν2+3), such that ν = 1 corresponds to undeformed
–unwarped– AdS3. Through the deformation, the AdS3
radius l gets also rescaled as l2 → l2K = 4l2/(ν2 + 3).
Spaces (9) with ν2 > 1 describe stretched AdS3 spaces,
while those with ν2 < 1 describe squashed deformations
of it. Through a double Wick rotation x, τ → ix, iτ one
goes from the spacelike WAdS3 metric (9) to a timelike
analog of it. Here we will be involved with spacelike
stretched WAdS3 spaces.

B. WAdS3/CFT2

The warping deformation breaks the SL(2,R) ×
SL(2,R) isometry group of AdS3 space down to
SL(2,R) × U(1). As a consequence, also the asymp-
totic isometry group, which in the case of AdS3 coincides
with the two-dimensional local conformal group, gets al-
tered. It has been recently understood that the asymp-
totic group of WAdS3 turns out to be generated by the
semi-direct product of one copy of Virasoro algebra and
an affine extension of u(1) algebra with non-vanishing
central extension; see [2–4, 8, 9]. That is, the asymptotic
isometry group in WAdS3 spaces certainly differs from
the two-dimensional conformal group; nevertheless, it has
been shown in [11] that, under certain circumstances, the
symmetry results powerful enough to constrain the dual
theory and extract relevant information from it. The
holographic description of WAdS3 black hole thermody-
namics carried out in [11] is a notable realization of this
idea.

Motivated by the similarities between asymptotically
WAdS3 and asymptotically AdS3 spaces, the authors of
[1] proposed the idea of extending AdS/CFT to the for-
mer case. The conjecture is that quantum gravity in
asymptotically WAdS3 space would be dual to a two-
dimensional theory which exhibits partial conformal sym-
metry, it being symmetric under right – but not left –
dilations. The main motivation we have to study the
holographic renormalization techniques in this context
comes from trying to determine to what extent what we
know about holography can be applied with no major
modification to WAdS spaces as well.



3

C. WAdS3 black holes

One of the most attractive properties of WAdS space
is that it admits black holes that asymptote to it and,
on the other hand, are given by discrete quotients of
WAdS3 itself. This is analogous to what happens with
the Bañados-Teiltelboim-Zanelli (BTZ) black hole [30],
which is locally equivalent to AdS3. The existence of
WAdS3 black holes is very interesting since, if thought of
within the context of a WAdS3/CFT2 correspondence, it
gives raise the hope to investigate black hole physics in
a totally new setup.
The metric of WAdS3 black holes is given by

ds2 = dt2 +
(

2νr −
√

(ν2 + 3)r+r−

)

dtdϕ+

l2
(

(ν2 + 3)(r − r+)(r − r−)
)−1

dr2 +
r

4

(

3(ν2 − 1)r + (ν2 + 3)(r+ + r−) −

4ν
√

r+r−(ν2 + 3))dϕ2, (10)

where t ∈ R, the angular coordinate ϕ ∈ [0, 2π), it being
identified as ϕ ∼ ϕ+2π, and r ∈ R≥0. r+ and r− are two
integration constants that, for r+ ≥ r− ≥ 0, represent the
location of the outer and inner horizons of the black hole.
Solutions (10) asymptote spacelike stretched WAdS3 at
large r. Metric (10) can also be written in the ADM like
form

ds2 = −N2
t dt

2 + ρ2 (dϕ+Nϕdt)
2
+

l2dr2

4ρ2N2
t

, (11)

with

ρ2 =
r

4
(3(ν2 − 1)r + (ν2 + 3)(r+ + r−)−

4ν
√

r+r−(ν2 + 3)), (12)

N2
t =

(ν2 + 3)(r − r+)(r − r−)

4ρ2
, (13)

Nϕ =
2νr −

√

(ν2 + 3)r+r−
2ρ2

. (14)

As mentioned, WAdS3 black holes are specific identi-
fications of the WAdS3 space [1]. That is, black hole
geometry (10) is constructed as a quotient of WAdS3
space by a discrete subgroup of SL(2,R) × U(1), iden-
tifying points of the original manifold along a direc-
tion ∂ϕ = πl(J2/βL − J̄2/βR), with J2 ∈ SL(2,R) and
J̄2 ∈ U(1), and βL,R ∈ R. This allows to define the left-
and right-temperature as the inverse of the periods βR,L;
namely

TL = β−1
L =

(ν2 + 3)

8πl2
(r+ + r− − 1

ν

√

(ν2 + 3)r+r−),

TR = β−1
R =

(ν2 + 3)

8πl2
(r+ − r−).

Because of being locally equivalent to WAdS3 space
(9), and despite having a richer causal structure, the lo-
cal geometry of black holes (10) is remarkably simple.
In particular, the curvature scalars result to be indepen-
dent of the integration constants r±. Moreover, all the
curvature invariants turn out to be constant, given only
in terms of parameters ν and l; for instance,

R = − 6

l2
, RµνR

µν =
6

l4
(3 − 2ν2 + ν4),

RµνR
ν
ρR

ρµ = − 6

l6
(9− 9ν2 + 3ν4 + ν6).

As we will see, this geometric simplicity of WAdS3
black holes is, paradoxically, one of the aspects that make
difficult to deal with them.

D. NMG WAdS3 black holes

It has been shown in [24] that WAdS3 black holes (10)
solve the equations of motion of NMG if the parameters
satisfy the relations

m2 = − (20ν2 − 3)

2l2
, Λ = −m2(9− 48ν2 + 4ν2)

(9− 120ν2 + 400ν4)
. (15)

The same type of solution for the case of NMG theory
coupled to TMG was studied in Ref. [27].
Entropy ofWAdS3 black hole in NMG can be evaluated

by means of Wald formula [31], yielding

S =
8πν3

(20ν2 − 3)G
(r+ − 1

2ν

√

(ν2 + 3)r+r−). (16)

Remarkably, the entropy results proportional to TL +
TR, which means that it admits to be written in the
Cardy like form

S =
π2l

3
c(TL + TR) (17)

with c being independent of r±. Then, one may identify
the central charge of the dual theory to be

c =
96ν3l

(20ν4 + 57ν2 − 9)G
. (18)

Notice that, in the limit ν → 1, central charge (18)
tends to its AdS3 value c = 24l/(17G); recall that in
NMG the Brown-Henneaux central charge 3l/(2G) gets
multiplied by a factor 1+1/(2m2l2), and, according (15),
ν = 1 corresponds to m2l2 = −17/2.

IV. BROWN-YORK STRESS-TENSOR

A. ADM decomposition

Now, let us analyze the definition of the Brown-York
tensor in NMG. This has been originally studied in Ref.
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[32]. To define the stress-tensor, it is convenient to write
the metric in its ADM decomposition for the radial co-
ordinate, r, namely

ds2 = N2dr2 + γij(dx
i +N idr)(dxj +N jdr), (19)

where N2 is the radial lapse function, and γij is the
two-dimensional metric on the constant-r surfaces. The
Latin indices i, j = 0, 1, refer to the coordinates on the
constant-r surfaces, while the Greek indices are µ, ν =
0, 1, 2, and include the radial direction r as well. In
the case of asymptotically AdS3 spaces, one knows how
to restrict the r-dependence of γij as it comes from
the Fefferman-Graham expansion [33], which in three-
dimensions results consistent with the Brown-Henneaux
asymptotic boundary conditions [34]. For WAdS3 the
asymptotic boundary conditions were studied in Refs. [2–
4, 8, 9] for the case of TMG; in particular, it has been
shown in [4] that the theory admits more than one set of
consistent boundary conditions, all of them being defined
in a way that WAdS3 black hole solutions (10) are gath-
ered. We assume such kind of asymptotic behavior. More
precisely, we consider perturbation of the r+ = r− = 0
configuration (10) of the form

ds2 = dt2 + 2νrdtdϕ +
l2dr2

r2(ν2 + 3)
+

3r

4
(ν2 − 1)dϕ2 + hµνdx

µdxν , (20)

gathering metrics with falling-off conditions

hrr ≃ O(r−3), hϕϕ ≃ O(r),

htϕ ≃ O(1), htt ≃ O(r−3).

B. Boundary terms

Boundary terms SB are introduced in (1) for the vari-
ational principle to be defined in such a way that both
the metric gµν and the auxiliary field fµν are fixed on
the boundary ∂Σ. With this prescription, the boundary
action SB reads

SB = − 1

8πG

∫

∂Σ

d2x
√
−γ

(

K +
1

2
f̂ ij(Kij − γijK)

)

.

(21)
Here, γij is the metric induced on ∂Σ and Kij is the ex-

trinsic curvature, with K = γijKij . On the other hand,

f̂ ij in (21) comes from decomposing the contravariant
field fµν as

fµν =

(

f ij hj

hi s

)

and defining

f̂ ij ≡ f ij + 2h(iN j) + sN iN j , f̂ ≡ γij f̂
ij .

The first term in (21) corresponds to the Gibbons-
Hawking term. The other two terms come from the
higher-curvature terms of NMG. Notice that in (21) the

field f̂ ij couples to the Israel tensor Kij − γijK in the
same manner as the field fµν couples to the Einstein ten-
sor in the bulk action (3).
Then, the Brown-York stress-tensor can be obtained by

varying action (1) with respect to the metric γij ; namely

Tij =
2√−γ

δS

δγij
|r=const

. (22)

This yields two distinct contributions, T ij = T ij
EH +

T ij
NMG. First, we have the Israel term

T ij
EH =

1

8πG
(Kij −Kγij),

and, secondly, we have the contribution coming from the
higher-curvature terms [32]

T ij
NMG = − 1

8πG

(

1

2
f̂Kij +∇(iĥj) − 1

2
∇r f̂

ij +K
(i
k f̂

j)k −

1

2
ŝKij − γij(∇kĥ

k − 1

2
ŝK +

1

2
f̂K − 1

2
∇r f̂)

)

,

where ĥi = N(hi + sN iN j), ŝ = N2s, and where the
covariant r-derivative ∇r is defined as follows

∇r f̂
ij =

1

N

(

∂r f̂
ij −Nk∂kf̂

ij + 2f̂k(i∂kN
j)
)

,

∇rf̂ =
1

N

(

∂r f̂ −Nk∂kf̂
)

.

C. Counterterms

The next step towards the definition of the boundary
stress-tensor is adding counterterms to regularize (22) in
the limit r → ∞. In asymptotically AdS3 space this
is achieved by the holographic renormalization recipe,
which amounts to add boundary terms that only involve
intrinsic boundary quantities. Here, such terms would be
of the form

SC =
1

8πG

∫

∂Σ

d2x
√
−γ(a0+a1 f̂+a2 f̂

2+b2 f̂ij f̂
ij+ ...)

(23)
The ellipses stand for higher-order intrinsic terms. From
the boundary viewpoint these terms are thought of as
counterterms in the dual theory; meaning that the renor-
malized boundary stress-tensor is defined by taking the
r → ∞ limit of the improved stress-tensor

Tij → T ∗
ij = Tij +

2√−γ

δSC

δγij
. (24)

The choice of counterterms (23), namely the choice of
coefficients ai, bi, is partially determined by demanding
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the action to be finite. Regarding this point, it is worth-
while mentioning a peculiarity of WAdS3 space, which
is the fact that WAdS3 space does not admit a real Eu-
clidean section. Therefore, one has to specify precisely
what does requiring finiteness in the action actually mean
in this context. We will circumvent the problem by say-
ing that here we are dealing with stationary solutions,
so we will demand the Lorentzian action integrated over
a finite time interval to be finite. This is achieved by
choosing

a0 = −8ν2
√
ν2 + 3

(20ν2 − 3)l
. (25)

Nevertheless, one may ask whether (25) is the only
possible choice. It turns out that the answer is in the
affirmative: In contrast to what happens with other so-
lutions of massive gravity, like the ones found in Refs.
[35] and [36], whose boundary stress-tensors can be regu-
larized by introducing additional counterterms, here the
geometrical simplicity of the WAdS3 spaces happens to
play against us: For WAdS3 we have

f̂ = − 2ν2

m2l2
, f̂ij f̂

ij =
2

m4l4
(9− 18ν2 + 10ν4),

f̂ij f̂
j
k f̂

ki = − 2ν2

m6l6
(27− 54ν2 + 28ν4), ...

and, therefore, there are no many options as all the terms
are constant. Thus, the frugal menu of counterterms we
have at hand has only one independent option, say (25).
This is precisely what we meant when we said that the
geometric simplicity of WAdS3 black holes is one of the
aspects that make difficult to deal with them.
Notice that counterterm (25) is consistent with the fact

that WAdS3 black holes reduce to BTZ black hole (in a
rotating frame) when ν = 1. For ν = 1 we have a0 =
−16/(17l), which is the expected value for the case in
which there is no warping and WAdS3 space reduces to
AdS3. Recall that m2 = −(20ν2 − 3)/(2l2), so that for
ν = 1 we have 2l2m2 = −17; on the other hand, in
NMG the counterterm needed to regularize the boundary
stress-tensor in AdS3 is a boundary cosmological term
with coefficient a0 = −(1+2m2l2)/(2m2l3) = −16/(17l).

V. CONSERVED CHARGES

A. Quasilocal energy

Once the stress-tensor has been improved by adding
to it the boundary contributions SC that render the La-
grangian finite, one can define the conserved charges as
follows [25]

Q[ξ] =

∫

ds uiT ∗
ijξ

j , (26)

where ds is the line element of the constant-t surfaces
at the boundary, u is a unit vector orthogonal to the

constant-t surfaces, and ξ is the Killing vector that gen-
erates the isometry in ∂Σ to which the charge is asso-
ciated. In the case of the mass, the components of this
vector are ξi = Ntu

i, where the lapse function N t
(r) in

(11). This defines the energy density; see [25, 37] for dis-
cussions. From (11) we see that the line element ds in
the case we are interested in is simply ds = ρdϕ.
However, before going further, let us express a concern

about the finiteness of (26). This is because the fact that
counterterm (23) achieves to make the action finite in the
way we discussed it, does not necessarily imply that the
stress-tensor is finite as well. In fact, it can be explic-
itly verified that the inclusion of counterterm (23) with
(25) in the case of WAdS3 black holes does not suffice to
make all the components of T ∗

ij finite. Nevertheless, it
turns out that, despite the divergences in the improved
stress-tensor, the charge (26) defined with ξ = Ntu at
the boundary r = ∞ results finite. It gives

M =
ν2(ν2 + 3)

2(20ν2 − 3)lG

(

r+ + r− − 1

ν

√

(ν2 + 3)r+r−

)

.

(27)
This agrees with the result obtained in [24, 27, 28] up

to a factor 1/2. The comparison with the mass computed
in [24] is discussed in Appendix C of Ref. [27]. Finiteness
of (27) follows from cancellations that take place in the
near boundary limit. This can be verified by the large r
expansion of the Tij components

Ttt ≃ t
(0)
tt + t

(−1)
tt r−1 + t

(−2)
tt r−2 +O(r−3),

Ttϕ ≃ t
(1)
tϕ r + t

(0)
tϕ + t

(−1)
tϕ r−1 +O(r−2),

where t
(n)
ij are constant coefficients, and the large r ex-

pansion of the unit vector components

ut ≃ ut
(0) + ut

(−1)r
−1 +O(r−2),

uϕ ≃ uϕ

(−1)r
−1 +O(r−2).

Coefficient ut
(−1) results proportional to (27).

As mentioned in Ref. [26] in a similar context, mass
formula (27) is cumbersome enough for not to doubt
about its calculation by means of (24)-(26) actually
makes sense. Nevertheless, to convince ourselves about
it, let us revise the same type of calculation for TMG
and see that it also works when the gravitational Chern-
Simons term is included.

B. Gravitational Chern-Simons term

Certainly, WAdS3 spaces were first obtained as exact
solutions to the equations of motion of TMG [22, 23].
WAdS3 space and WAdS3 black holes are solutions to
TMG if the coupling of the Chern-Simons term,

SCS =
1

32πGµ

∫

Σ

d3xεµνρΓη
µα

(

∂νΓ
α
ρη +

2

3
Γα
νβΓ

β
ρη

)

,

(28)
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and the parameters ν, l satisfy the relation ν = µl/3.
For WAdS3 black holes of TMG, it had already been
observed in [26] that the computation of the mass using
the Brown-York tensor in the boundary yielded the result

M =
(ν2 + 3)

48lG

(

r+ + r− − 1

ν

√

(ν2 + 3)r+r−

)

, (29)

which, again, is in notable agreement with other calcu-
lations using different methods, cf. [1]. In the case of
TMG, the large r limit of Q[ξ] is regularized by intro-
ducing a boundary cosmological term with coefficient

a0 = −
√
ν2 + 3

2l
,

which also tends to the AdS3 value, −1/l, in the limit
ν = 1. Therefore, the computation of the WAdS3 black
hole mass in terms of the boundary stress-tensor is seen
to work in different scenarios.

C. Angular momentum

Now, let us go back to NMG. In contrast to the com-
putation of the mass M = Q[Ntu], charge Q[∂ϕ], which
is associated to the WAdS3 black hole angular momen-
tum, does not yield a finite result in the limit r → ∞. In
fact, boundary terms (23) do not suffice to regularize the
divergences appearing in the charge Q[∂ϕ] =

∫

dsuiT ∗
iϕ.

This is simply expressed by the fact that uϕ = 0. Never-
theless, the finite part of the large r expansion of Q[∂ϕ]
happens to capture the physically relevant information.
This can be seen by looking at the stress-tensor expan-
sion

Tϕϕ ≃ t(2)ϕϕr
2 + t(1)ϕϕr + t(0)ϕϕ +O(r−1),

which results in an expansion of the form

Q[∂ϕ] ≃ J(2)r
2 + J(1)r + J(0) +O(r−1),

where the coefficient J(2) depends only on ν, while coef-
ficient J(1) depends both on ν and r±; namely

J(2) =
9

8

ν(ν2 − 1)2

(20ν2 − 3)l
,

J(1) =
3

8

ν(ν2 − 1)2

(20ν2 − 3)l
((ν2 + 3)(r+ + r−)−

4ν
√

(ν2 + 3)r+r−).

From this expansion it is not hard to verify that, in
contrast to the case of the mass, for ν2 6= 1 the intro-
duction of only local counterterms (23) does not produce
contributions to cancel the divergences in Q[∂ϕ]. How-
ever, remarkably enough, the finite part J(0) gives the
correct result for the black hole angular momentum; that
is,

J(0) =
ν(ν2 + 3)

4(20ν2 − 3)Gl
((5ν2 + 3)r+r− −

2ν
√

(ν2 + 3)r+r−(r+ + r−)). (30)
To see that (30) actually reproduces the correct result

one may resort to the computation done in Ref. [24],
where the Abbott-Deser-Tekin [39, 40] method to com-
pute conserved charges was used to obtain the WAdS3
black hole angular momentum. The result obtained in
[24] reads

J̃ =
ζ3η2

4Gm2l2

(

(1 − η2)ω2 − ρ20
(1− η2)

)

, (31)

where ζ = 2ν, η = −
√
ν2 + 3/(2ν), ω = (r+ + r− +

2η
√
r+r−)/(2−2η2), and ρ20 = (r+−r−)

2/4. Then, after
translating (31) to our notation, one verifies that (30)

is proportional to (31), namely J̃ = J(0)ζ
2(1 − η2)/4,

and the proportionality factor is precisely the (square of
the) one that relates the angular coordinates φ used in
Ref. [24] and our angular coordinate ϕ; more precisely,

we have φ = ϕ
√

ζ2(1− η2)/2. This proportionality fac-

tor ζ2(1− η2)/4 is also explained in Appendix C of Ref.
[27]; see equation (C.15) therein. In conclusion, the fi-
nite part of charge Q[∂ϕ] captures the physically relevant
contribution and gives the correct value of the black hole
angular momentum (30). The question remains as to how
to understand the failure in regularizing Q[∂ϕ] as a con-
sequence of the abstruse asymptotic structure of WAdS3
spaces.
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