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a b s t r a c t

The Social Force Model presents some limitations when describing the experimental data
of pedestrian flows in normal conditions — in particular the specific flow rates for different
door widths and the fundamental diagram.
In the present work we propose a modification of this model that consists of a self-

stopping mechanism to prevent a simulated pedestrian from continuously pushing over
other pedestrians.
With this simple change, themodifiedmodel is able to reproduce the specific flow rates

and fundamental diagram of pedestrian flows for normal conditions, as reported in the
literature.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Pedestrian dynamics characterization

Pedestrian dynamics exhibit, in a first approximation, two distinct behavioral states:

- Normal (cooperative, no pushing, stop before enter in physical contact)
- Competitive or Panic (pushing, with disregard for contacting or hurting other people)

While the competitive state is difficult to characterize empirically under controlled conditions (due to the risk of hurting
people), the normal behavior of a crowd can be studied via macroscopic measurement. In this work, we will focus on the
normal state.
In this state, the main macroscopic observables that characterize pedestrian dynamics are: (a) the specific flow rate

(number of persons crossing an opening per unit of time and width) and (b) the fundamental diagram that indicates the
relationship between local density and velocity.
Most legal regulations accept that the specific flow rate (p/m/s) exhibited by a system of evacuating people in normal

conditions remains constant if the door width changes. Some regulations adopt a specific flow rate of around 1.33 p/m/s
(see Table 1).
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Table 1
Some mean and design values of specific flow rate reported in the literature.

Specific flow rate (p/m/s) Bibliographic source

1.33 [1]
1.37 [2]
1.82 [3]
1.48–1.92 [4]
1.25–1.4 [5]
1.77 [6]
1.33 [7]
1.9 [8]
1.97 [9]

However, experimental results from the literature report different values for this magnitude, ranging from 1.25 to 2.0
p/m/s, as shown in Table 1, depending on the particular set-up conditions, age and perhaps culture of the population. In
hurry situations, specific flow rates greater than 4 p/m/s were observed.
Regarding the fundamental diagram (i.e. mean velocity versus local density plot) there exist a variety of experimental

data reported in the literature [9–19] considering experiments and field observations in different situations and cultures.
There are some differences between these fundamental diagrams; nevertheless all of them show a monotonically

decreasing velocity as the density increases.

1.2. Pedestrian dynamics modeling

Although many mathematical models (continuous and cellular automata) have been developed in the last decades,
validation of macroscopic observables with empirical data is seldom found.
As a conceptual frame for modeling pedestrian movements, we will refer to the hierarchical view introduced by

Hoogendoorn [20] that assumes that there are different levels of complexity involved in pedestrian navigation: Operational
(basic walking behavior), Tactical (server selection, route choice) and Strategical (general planning).
Our goal is to find a model, simple enough to be limited to the Operational level, but that can reproduce the main

observables of pedestrian dynamics in normal conditions.
The Social Force Model (SFM) of Helbing, et al. [21,22] is a famous continuous model for describing pedestrian dynamics

that qualitatively reproducesmany self-organizing phenomena like lane formation, clogging or ‘‘faster is slower’’. Thismodel
may be appropriate for describing the low level mechanism of navigation (Operational level), if it is able to reproduce the
basic physicalmovements and themain physicalmacroscopic observables formany persons in relatively simple geometries.
We propose that more complexmechanisms like realistic (moving or fixed) obstacle avoidance, wayfinding and decision

making should be resolved in higher levels of modeling (Tactical and Strategical levels).
The SFM, as formulated in Ref. [22], states that the dynamics of Np pedestrians (particles) is governed by three forces: the

Desire Force (self-propulsion of the particles), the Social Force (repulsive interaction with infinite range) and the Granular
Force (physical contact interactions). A primary parameter of the SFM is the desired velocity, vd, that is related to the
propulsive force of each particle.
In the paper [22], the parameters of themodel were chosen in order to reproduce the flow through bottlenecksmeasured

in Ref. [10]. Specifically, it reproduces the specific flow rate of 0.73 p/m/s for a 1 m door width and desired velocity
vd = 0.8 m/s.
For our implementation (presented in Sections 3.1 and 3.2) with desired velocities corresponding to pedestrians in

normal conditions, neither the values of a constant specific flow rate at exits of different widths, nor the observed
relationship between pedestrian density and velocity can be reproduced, as will be shown in Section 3.
The explanation for this is that the Social Force Model is a competitive model for all values of the desire velocities.
At first view, the desired velocity, vd, can be interpreted as a parameter that allows tuning between cooperative and

competitive behavior. This concept is not totally true. Indeed, this parameter indicates the movement capacity of the
pedestrian, which is not necessarily related to a particular degree of competitiveness or hurry.
During an egress process, a high vd may be interpreted as a high level of competitiveness. However, a pedestrian moving

with a low vd does not indicate cooperative behavior necessarily, because this low velocity may be the maximum velocity
attainable for this pedestrian.
Consider, for example, an aged person or a little child or a handicapped person trying to flee from a danger. His/her

velocity may be low, but this does not mean that he/she is not in panic.
This counterexample is sufficient to demonstrate that a pedestrian with a low vd does not implies always a cooperative

behavior.
Furthermore, in spite of this lower velocity, the pedestrian must be considered in a competitive state if he/she does not

stop pushing other pedestrians interfering in his/her way. A pedestrian in a normal state would try to stop before making
physical contact.
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Pedestrians in the SFM model lack of any self-slowing mechanism. Therefore they always push with disregard of
contacting other simulated people. Consequently, by definition of competitive behavior, it can be asseverated that thismodel
describes competitive pedestrians for all vd.
It must be noted that for low vd, the social force can prevent contact. But the absence of contact does not implies the

absence of push, which is exerted via the social force.
There are several other implementations of the SFM [21,23–26], with variations in the social force term. None of these

implementations includes a self-stopping mechanism. Furthermore, it is known that the qualitative phenomena described
by this model do not change when the functional form of the social repulsive term changes [26].
Thus, if this model is intended to be used in the description of pedestrian flows in normal conditions, it must modified

to account for some self-slowing, as highlighted above. It is natural to include a newmechanism into the model that allows
simulated pedestrians to decelerate under certain situations.

1.3. Other modifications to the Social Force Model

Previous works have made important contributions to improve different aspects of the SFM:

- Lakoba et al. [27] have proposedmodifications to include realistic parameters in the SFM, eliminate non-realistic behavior
for few simulated pedestrians and, at the same time, conserve its ability to simulate observed behavior for systems with
a large number of pedestrians.
They modified the SFM with several new mechanisms (e.g. memory effects and density effects) in the social repulsion
force.
The complexity of these mechanisms corresponds to higher levels of modeling. The ideal way to include them would be
through new models for the Tactical and Strategical layer. This would allow maintaining a simple model for the lowest
(Operational) level.
- Seyfried et al. [15,19] have made an important contribution by studying the 1-D fundamental diagram (a single line of
persons in a close loop). The authors conducted experiments and proposed a modification to the SFM that can reproduce
the experimental data.
Their modifications differ from the one proposed in the present work, and they will be discussed in Section 2.

1.4. Organization of the paper

The present work is organized as follows: In Section 2 the Modified Social Force Model is presented. Section 3 shows
the results of the introduced model when simulating two systems: (a) the egress from a square room and (b) a circular
racetrack. The specific flow rate for different door widths and the fundamental diagram are calculated. Comparison between
the original and modified model is shown. Finally in Section 4 the conclusions are presented.

2. The modified Social Force Model

In the Social Force Model proposed by Helbing et al. [22], the dynamics of each pedestrian (pi) are driven by three forces
with different properties. They are the Desire Force, FDi, the Social Force, FSi, and the Granular Force, FGi. The corresponding
expressions are:

FDi = mi
(vdiei − vi)

τi
(1)

wheremi is the particle mass, vi is the actual velocity, vdi is the magnitude of desired velocity, ei is the unit vector pointing
to the desired target, and τi is a time constant related to the relaxation time of the particle to achieve vdi.

FSi =
Np∑

j=1,j6=i

A exp
(
−εij

B

)
enij (2)

where Np is total number of pedestrians in the system, A and B are constants that determine the strength and range of the
social interaction, enij is the unit vector pointing from particle pj to pi, i.e. the normal direction between two particles, and

εij = rij −
(
Ri + Rj

)
(3)

where rij is the distance between the centers of pi and pj, and R is the particle radius.

FGi =
Np∑

j=1,j6=i

[(
−εijkn

)
enij +

(
vtijεijkt

)
etij
]
g(εij). (4)
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Particle j

Particle i

Particle k

ei

Ci

DRi

Ri RF

Respect
Area

Fig. 1. Geometry of the Respect Area for the particle i. Particle j is inside the respect area of particle i and particle k is not. While the area is entered, the
respect mechanism sets vdi = 0.

Here the tangential unit vector etij indicates the perpendicular direction to e
n
ij, knand kt are the normal and tangential elastic

restorative constants, vnij is the normal projection of the relative velocity seen from pj(vij = vi − vj), vtij is the tangential
projection of the relative velocity, and the function g(εij) is 1 if εij < 0 and 0 otherwise.
The interaction of particles with walls and corners is computed using the social and granular forces in an analogous way.
As it will be shown in Sections 3.1 and 3.2, the SFM is not able to reproduce experimental data of pedestrians in normal

conditions. Therefore a ‘‘respect’’ mechanism is introduced.
Let us define the respect factor, RF , to be a positive real number. The respect distance, DR for the particle i is the product of

the respect factor times its radius:

DRi = RFRi. (5)

Now consider a point Ci that lies on the direction of ei (the direction of the desired velocity) and is located at a distance DRi
from the center of the particle i.
The respect area for pedestrian i is given by the circle with center at Ci and radius DRi as shown in Fig. 1.
If any other particle touches the respect area (as particle j does in Fig. 1), the magnitude of the desired velocity of particle

i, vdi, is set to 0 until the respect area is free again. Only then does pedestrian i recover vdi > 0 and so become self-propelled
again.
The step functional form was chosen because it is the simplest self-stopping mechanism that reproduces the known

experimental data, as shown in the next section.
In a real system, this self-stopping mechanism represents a last resource action when, due to the failure of higher-level

avoidance mechanisms, another pedestrian gets too close.
When the respect area is entered, only vdiis set to 0. The model states that the instantaneous velocity vi, continues to be

integrated normally, allowing the particle i to continue its movement (vi may be non-zero). Artificial stops do not occur for
particles that are close in cases of low densities or in face-to-face encounters. Indeed, the proposed modified model is able
to reproduce ‘‘lane formation’’ for counter flow in a narrow corridor.
It must be noted that the respect mechanism belongs to the microscopic domain, in the sense that it is a basic rule

acting at the agent level, from which emerges a collective behavior of the crowd. Furthermore, this rule does not have any
information about the macroscopic observables that the model is expected to reproduce.
As stated in Section 1, a different modification to the SFMwas proposed by Seyfried et al. [19] studying the fundamental

diagram in a 1-D system [15]. The main differences with the present model, are:

(a) The social force term was different to Eq. (2).
(b) The ‘‘required length of a pedestrian to move’’, in some ways equivalent to the respect distance, DR, was considered
variable as a function of the velocity. This functionality was obtained via macroscopic measurements of real systems.

(c) When the slowing-down condition is reached, the velocity of the pedestrian is set to zero (vi = 0). In our model, the
magnitude of the instantaneous velocity can be non-zero (vi 6= 0) while the magnitude of the desired velocity is set to
zero (vdi = 0). This produces a continuous slowing down instead of a sudden stop.
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3. Simulations

The model described in Section 2 was implemented in the pedestrian simulation platform developed by Urbix
Technologies.
The system of Np ordinary coupled differential equations determining the dynamics of the particles are solved using the

Verlet Algorithm [28] with a fixed time step of 1e-4 s.
The time required to simulate one realization of the egress of 600 people is 4 h on a 1.80 GHz Intel Dual Core Processor.

3.1. Specific flow rate

To examine the specific flow rate exhibited by the modified model, simulations of pedestrians leaving a 20 m × 20 m
square room with one exit were conducted. All the walls delimiting the room have no thickness, i.e. each wall is simulated
only by one line.
The pedestrians’ parameters mass,m, shoulder width, d, and desired velocity, vd, were uniformly distributed within the

following ranges:
m ∈ [70 kg, 90 kg]
d ∈ [0.50 m, 0.58 m]
vd ∈ [0.9 m/s, 1.5 m/s].

The social force model parameters used were:
kn = 1.2e5 N/m;
kt = 2.4e5 kg/m/s;
A = 2e3 N;
B = 0.08 m;
τ = 0.5 s.

Particles inside the room have their targets located at the nearest position within the limits of the exit door.
The initial positions of pedestrians were uniformly distributed inside the room in such away that εij > 0 (i.e. pedestrians

are not in contact) for all pairs ij. The initial velocities were set to zero for all particles.
Exit widths, L, of 1.2 m, 2.7 m and 3.2 m were considered, in the room containing 200, 500 and 600 pedestrians,

respectively. Increasing door width with increasing number of pedestrians is used because in real systems, wider exits are
required to evacuate more populated facilities. These values were chosen in accordance with the method of determining
egress capacity stated in Chapter 7 of the ‘‘NFPA 101 Life Safety Code (2000 Edition)’’ that indicates a minimum capacity
factor of 0.5 cm per person.
The respect factor, RF , was varied to investigate its impact on the specific flow rate of the system. The values considered

were RF = 0; 0.25; 0.50; 0.75; 0.85 and 1.00.
The results of the simulations are shown in Fig. 2. Themean specific flow rate (measured as Total Number of pedestrians/

Total Evacuation Time/L) is displayed as a function of RF for the room studied with different door widths.
For low values of RF the specific flow rate is not constant, but varies for the different door widths. The highest variations

are observed for the case RF = 0 (which corresponds to the original SFM).
The SFM shows that the wider the door is and – more importantly – the more populated the room is, the higher the

specific flow rate. This effect is explained by two factors.
First, as discussed in Section 1, the SFM is a competitive model for all vd, so pedestrians continually push via contact

and/or social forces (because the social force is a force with infinite range).
Second, in the high density set of pedestrians near the door, their desire forces (Eq. (1)) became balanced by the social

forces (Eq. (2)). These forces are propagated in a cumulative way through the crowd, producing a social force pressure near
the door proportional to the number of pedestrians in the crowd inside the room.
To demonstrate the influence of the social pressure (generated by the number of pedestrian) in the specific flow rate, the

following simulations were made considering the original SFM (RF = 0):
(a) Changing the door width for fixed number of pedestrians (Np = 400).
(b) Changing Np for fixed door width (L = 2.7 m).

Fig. 3 shows the results.
It can be seen that the specific flow rate increasesmonotonically as the population (Np) increases (Fig. 3(a)). On the other

hand, if Np is fixed, the increasing of the door width does not lead to anymonotonic tendency of the specific flow rate (Fig. 3
(b)). From where it can be concluded that, for the original SFM, the increment in the number of pedestrians in the room is
responsible for the increment in the specific flow rate.
Now, going back to Fig. 2, when increasing the value of RF the curves for different door widths start to converge because

the respect mechanism reduces the influence of social interaction by increasing the mean interpersonal distance.
Choosing RF ≈ 0.7 leads to a range of specific flow rates between 1.2 and 2 p/m/s, that correspond to egress under normal

conditions, as listed in Table 1.
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Fig. 2. Variation of the mean specific flow rate with the Respect Factor for different door sizes and number of occupants (1.2 m – 200 p; 2.7 m – 500 p and
3.2 m–600 p). Error bars indicate two standard deviations.

Fig. 3. (a) Variation of the mean specific flow rate with the number of pedestrians (Np) leaving L = 2.7 m fixed; (b) Variation of the mean specific flow
rate with the door width (L) leaving Np = 400 p fixed. These curves were calculated with RF=0. The point marked by a circle indicates the only point that
is also present in Fig. 2.

3.2. Fundamental diagram

In this section, the ability of the proposed model to reproduce the observed fundamental diagram is studied.
The geometry of the simulated system is a racetrack, as shown in Fig. 4.
The pedestrians’ characteristics and parameters were the same as in Section 3.1, except that the desired velocity, vd, was

uniformly distributed between 1.1 and 1.5 m/s.
Using the result obtained in Section 3.1 (see Fig. 2), the respect factor chosen for these simulations was RF = 0.7.
The number of pedestrians in the racetrack circuit was varied to study the dynamics for different densities. Simulations

with Np = 5; 20; 80; 140; 200; 260; 320; 380 and 400 pedestrians were performed.
Pedestrians were initialized outside the racetrack in an adjacent corridor designated in Fig. 4 as ‘‘Pedestrian Access’’. The

density in the corridor was set similarly to the final density in the racetrack.
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Fig. 4. Geometry of the simulated system for the measurement of the fundamental diagram with around 200 pedestrians.

Fig. 5. Fit of the simulations performed of the modified model and comparison with the original one, experimental data given by Weidmann [10] and
Mori et al. [11] and design data [16]. Error bars represent two standard deviations.

At t = 0, pedestrians begin to enter the racetrack. First they choose a random point, every time step, inside location ‘‘L1’’.
Then the simulated pedestrians go to the nearest point in location ‘‘L2’’, ‘‘L3’’, and so on until they reach location ‘‘L10’’. After
that, they try to reach a random point in location ‘‘L1’’ and the loop continues until the simulation ends.
Each simulation ran for 500 s. The density was calculated in the area AR (3.5 m× 6.0 m) shown in Fig. 4, as the number

of persons in AR divided by the area AR. Finally, the velocity corresponding to that density was calculated by averaging the
instant velocities of all the pedestrian lying within area AR.
After a transitory regime of 60 s, the system reaches a stationary state where the density fluctuates around a constant

value. The positions and velocities of the particles in the system were recorded every 1 s in this stationary state.
This procedure generates a cloud of points in the fundamental diagram, that were fitted by means of a Generalized

Regression Neural Networks (GRNN) [29,30]. Fig. 5 shows this fit and a comparison with the original SFM (RF = 0) and with
selected data reported by other authors.
The fundamental diagram produced by the modified model is similar to those reported in the literature for densities up

to 2.8 p/m2.
These reported values were taken under experimental conditions that were different to the closed-loop layout and

geometry simulated here.
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Also, as wasmentioned in Section 1, there does not exist a unique fundamental diagram, so an exact fit of the data curves
should not be expected and these curves should be considered as references.
The following comments can be made about the fundamental diagram, obtained from the modified model shown in

Fig. 5:
First, if the curve obtained with RF = 0.7 is compared with the one obtained from the original SFM (RF = 0), it can be

seen that the former decreases with higher densities and that it is near the data reported by other authors, while the curve
obtained from the original SFM does not.
In the range between 0 and 1 p/m2, themodifiedmodel shows an almost constant behavior around themean value of the

Weidmann data for that range. A possible explanation for this behavior is that, at low densities, the average interpersonal
distance is large, so the condition necessary to activate the respect mechanism is seldom fulfilled, and social repulsion is
low (see Eq. (2)). As a consequence, the system behaves as a non-interacting one. When the density surpasses 1 p/m2, the
respect criterion is fulfilled more frequently and, as a consequence, the mean velocity begins to decrease.
In the range between 1 and 2.3 p/m2, the proposed method is in good agreement with the data reported by Mori and

Tsukaguchi [11].
Between 2.3 and 2.8 p/m2 the curve approaches to the Weidman [10] data again.
At 2.8 p/m2, the boundary of validity is reached for the current model.
For densities slightly higher (around 3 p/m2), each particle lies inside the respect area of some other particle, so the

velocity of the crowd eventually becomes zero.
In general, experimental works report densities greater than 4 p/m2 (even up to 10 p/m2) at which the velocity becomes

zero. However for design purposes (as a lower boundary), reference [16] uses the value 3.7 p/m2, as can be seen in Fig. 5.
The stopping density around 3 p/m2 in the simulated system is partially caused by the geometry of a closed loop. If the

system were an open one, density waves would appear, avoiding the stable state in which all particles are not moving.
Another possible way to obtain greater densities before the velocity becomes zero is to use a normal distribution for the

respect factor instead of taking a constant value of RF for all particles. This would allow a few particles to have a negligible
respect area, so they will continuously push other particles, generating greater velocities for high densities.
Furthermore, the maximum reachable density in the simulated system is due, also, to geometric consideration of the

original SFM. The geometries of the simulated pedestrians are circular with diameters between 0.50 and 0.58 m (in our
implementation).
This diameter is in accordance with the maximum body width measured at the elbows level [31].
Possible ways to obtain greater densities would be to consider: (a) a smaller diameter, corresponding to shoulder width,

or even less, taking an ‘‘effective diameter’’ as an approximation for considering that the real human shape is not circular,
(b) including elliptical-shaped particles in the calculations.
Another effect of the introduced respect mechanism is to prevent particles from entering into contact. But even if this

mechanism were not present, the hardness of the particles given by the parameter kn, would not allow much compression.
In other words, the maximum density in the case of RF = 0 (original SFM) would be only slightly higher than that reported
here.
Beyond the limitations discussed above, which hold for bothmodels, the improvement of the proposedmodifiedmethod

with respect to the original one is remarkable.

4. Conclusions

In this paper, we introduced a modification to the social force model that makes it valid for the description of the main
observables of pedestrian dynamics in normal conditions.
The modification consists of a respect area parameterized by the respect factor, RF , that provides a simple self-stopping

mechanism to prevent a pedestrian from continuously pushing into other pedestrians in his/her way.
This proposed microscopic mechanism uses no direct information about any macroscopic observable such as the

fundamental diagram.
Simulations of the modified model show that RF ≈ 0.7 matches published experimental data for normal conditions.
In this case, the specific flow rate obtained lies between the experimental range for different doorwidths andpopulations.
As for the fundamental diagram, the proposed model satisfactorily reproduces the experimental data in normal

conditions for densities up to 2.8 p/m2.
The agreement of the proposed model with the experimental data is not expected to be perfect because there are

important variations among data collected by different authors under different layouts, situations, and cultures. However,
if the fundamental diagram obtained by the proposed model is compared with the one obtained by the original SFM, a
substantial improvement is clearly visible.
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