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Abstract

We review the physical meaning of modular invariance for unitary conformal quantum
field theories in d = 2. For QFT models, while T invariance is necessary for locality, S
invariance is not mandatory. S invariance is a form of completeness of the theory that
has a precise meaning as Haag duality for arbitrary multi-interval regions. We present
a mathematical proof as well as derive this result from a physical standpoint using Renyi
entropies and the replica trick. For rational CFT’s, the failure of modular invariance or Haag
duality can be measured by an index, related to the quantum dimensions of the model. We
show how to compute this index from the modular transformation matrices. The index
also appears in a limit of the Renyi mutual informations. Cases of infinite index are briefly
discussed. Part of the argument can be extended to higher dimensions, where the lack
of completeness can also be diagnosed using the CFT data through the thermal partition
function and measured by an index.
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1 Introduction

Generalized symmetries (GS) describe certain general patterns that QFT may display and which
are very useful for classification purposes or in the analysis of the phase structure of the theory.
They are usually described through ideas connected with the path integral formulation in non
trivial manifolds. In their manifestations on the local physics, and in a model independent, real
time formulation, generalized symmetries can be more precisely described as violations of Haag
duality (HDV) [1]. In concrete, let A(R) be the algebra of operators generated by local field
operators in some topologically non trivial causal region R. Let R′ be the set of points spatially
separated from R, the “causal complement” of R. By locality A(R) and A(R′) commute with
each other. More formally,

A(R) ⊆ (A(R′))′ , (1.1)

where A′ is the commutant of the algebra A, i.e. the full set of operators that commute with A.
When the two algebras in (1.1) coincide, it is said there is Haag duality for R. A violation of this
property implies there are operators that commute with the local operators in the complement
of R but cannot be generated by field operators in R itself. These operators are then “non-local”
in R, but still commute with local field operators in the complement. Several structural features
are transparent in this formulation. For example, when there are non local operators for R,
there must exist dual non local operators for R′ too.

In this light, Haag duality for general regions (related to the absence of generalized symme-
tries) is seen as a completeness property, implying that the algebras generated by local operators
are the maximal ones compatible with causality [2]. When the theory is not complete in this
sense, there are non local operators and HDV. However, note that the notion of non local op-
erator is relative to a certain causal region R.1 A non local operator in R is in general locally
generated by field operators in topologically trivial regions such as balls.2

This brings us to the question we want to address in this paper. If non local operators are
ultimately locally generated in balls, then the description of a theory in terms of field operator
data does not need new input in presence of GS/HDV. In particular, for a CFT, the usual
bootstrap data and constraints must still mark the consistency requirement for the construction
of a valid model. In this vein, it is natural to ask: What is the imprint left by GS/HDV
on the bootstrap data? This important question is rather non trivial because it implies the
understanding of non-local operators in terms of local ones.

A simple example will clarify the difficulties of the problem. Suppose we have a consistent
CFT in d > 2 determined by the set of spins and scaling dimensions of the list of primaries
(∆i, si), and the OPE coefficients fijk. This theory may have a global internal symmetry given
by a group G. This should be simple to check, since the primaries must come in representations
of this symmetry and fijk must satisfy selection rules. However, if we consider only the CFT
data for the neutral primary fields, we discover that this data is also perfectly consistent within
this restricted set of primaries. Unitarity bounds and crossing relations will be satisfied in the
neutral part of the algebra. Then the question is the converse of the above one: how to discover
if certain consistent data is the neutral part of a larger one? Equivalently, how to understand
if the CFT data can be extended in consistent manner? The neutral theory is a perfectly

1A causal region is the domain of dependence of a d− 1-dimensional spatial region. Then a ball here is meant
as the double cone determined by a d− 1-dimensional spatial ball. In the following we use the same terminology
of referring to R by a spatial surface.

2In other words, this is the case if there is Haag duality for topological trivial regions such as balls. This
fails for theories with spontaneously broken global symmetries [3], though it can be repaired by taking charged
operators in the algebra. Dilatation invariant theories are not spontaneously broken [4].
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consistent unitary theory, but it is not complete in the above sense. The theory contains non
local operators for regions formed by two disconnected balls. The non local operators are charge-
anticharge pairs, with each charged operator having support in one of the two balls. This clearly
commutes with fields outside of the two balls, but cannot be generated by neutral operators
in each of the balls themselves. In the complementary region of the two balls (which has the
topology of a spherical shell in general dimensions) the non local operators correspond to twists
implementing the symmetry on one of the two balls only [1, 5]. This HDV exactly signals the
lack of completeness. However, it still remains a challenge to express this idea in terms of the
CFT data.

The primary objective of this article is to consider this problem in 2d. In this restricted
scenario, we will see that the problem of understanding HDV in terms of the bootstrap data can
be solved in fair completion. Indeed, the theory is modular invariant if and only if it is complete.
More precisely, it is invariant under the modular transformation S if and only if it is complete,
since invariance under the T transformation is implied by locality. Then, S modular invariance
is ultimately a form of completeness. As such, it is generalized to higher dimensions as Haag
duality for topologically non trivial regions [2].

We note that modular invariance is usually invoked as one of the defining properties of 2d
CFT’s. Indeed it is behind many important applications. However, it has been difficult to justify
on conceptual grounds, and some confusion still reigns around the subject. The S transformation
relates the partition function Z[a, b] → Z[b, a] on a rectangular torus with lengths a, b. This looks
like an evident geometrical symmetry for a path integral with a rotational invariant Lagrangian,
and this is the origin of this symmetry for many statistical models. As such, this idea must
also hold for massive theories. However, for the Euclidean description of a unitary QFT, this is
not necessarily justified. It actually fails for perfectly sound unitary CFT’s such as the Virasoro
net, the theory generated by the stress tensor without further primaries. The reason is that the
local fields integrated on the path integral may not be the actual physical fields of the theory,
and some twistings in the time direction have to be enforced to project to the physically allowed
states. Another common justification is that modular invariance acts as a discrete conformal
invariance on top of the usual group connected to the identity. However, discrete symmetries
are in general not implied by the continuous part of a group.

That the S symmetry is related to the absence of superselection sectors was first conjectured
by Rehren [6]. Equivalently, given the analysis in [7], this conjecture relates S symmetry to the
validity of Haag duality for general regions. This conjecture was later proved by Y. Kawahigashi
and R. Longo, and independently by M. Müger, but the proof remained unpublished, see [8]
for a short account. Our intention is then twofold. We first seek to present a mathematical
proof of this connection, and we will do so in section 4 for the case of rational 2d CFT models.
This proof relies ultimately on the algebraic theory of superselection sectors [9–12], to be briefly
reviewed below. On the other hand, we also want to clarify this idea from a more physical
point of view, in part with a view to possible generalizations to higher dimensions. In short,
the physical, not mathematically rigorous, argument, is the following. Haag duality violations
correspond to scenarios where the algebras A(R),A(R′) for complementary regions are not
commutants of one another. For a pure global state, Renyi entropies are equal for commutant
algebras, rather than for complementary regions. Then HDV should lead to vacuum Renyi
entropies for complementary regions that are not equal to each other. This way we will see how
to connect Renyi entropies, which are associated with replica partition functions, with the idea
of completeness. Quite insightfully, for the particular case of d = 2 CFT’s and Renyi entropies
of index n = 2, the entropy for two intervals can be written in terms of the torus partition
function [13–15]. It then follows that the absence of HDV sectors is reflected on the S invariance

3



of the partition function. It also follows we can relate HDV and completeness with aspects of
the partition function alone. These results will be covered in sections 2 and 3.

Before starting we want to make some remarks. Paralleling the situation with group and
subgroups, whenever we have an inclusion of algebras A ⊂ B, we have an associated index,
the “Jones index” [16–19]. This index measures the relative size of both algebras. It is well
defined even for type II and III algebras, e.g. the properly infinite cases. From the present QFT
perspective, this index can be applied to the inclusion 1.1, providing a rigorous measure of the
amount of HDV/GS. For 2d chiral nets, this index was studied in [7]. There it was directly
related to the category of DHR superselection sectors, equivalently the modular tensor category
associated with the chiral algebra. In this case, the index turns to be equal to the total quantum
dimension of the category. Below we will recover this result using more standard Renyi entropies,
in particular differences for Renyi entropies of complementary regions. These differences will
also relate to differences of certain limits of torus partition functions. For similar reasons, the
index also appears in the topological entanglement entropy associated with topological field
theory in d = 3 [20, 21]. These theories are described by the same modular tensor category as
d = 2 models. The index of the inclusion 1.1 in higher dimensional applications, associated with
different types of topologies for R, is in general given by the order of a group, and can also be
obtained from a limit of entropies [1, 22].

Finally, the appearance of the index in certain limits of the thermal partition function allows
to answer the original question, namely the relation between HDV/GS and bootstrap data, for
the type of incompleteness related to standard global symmetries in higher dimensions as well.
More concretely, this allows to diagnose if a model is the neutral part of another one under
the action of an internal symmetry group by the knowledge of the spectrum asymptotics. We
will discuss this in Sec. 5. These developments leave open the interesting question of how
HDV associated with non-trivial and not disconnected topologies (e.g. those HDV arising from
Wilson/’t Hooft loops in four dimensions), is encoded in the bootstrap CFT data. We will briefly
discuss this, along with further open problems and connections, in the discussion section 6.

2 Renyi entropies and modular invariance

Consider a 2d CFT on the space-time cylinder. For the algebra A(R) of a double cone associated
with a spatial interval R there is Haag duality [23, 24]. Consider two double cones associated
with two disjoint intervals R = R1∪R2 at time t = 0, and define the additive algebra of the union
as the minimal algebra containing both, namely A(R) = A(R1) ∨ A(R2). This is the algebra
generated by operators localized in R1 and R2. The causal complement R′ of R is another two
interval region in the surface t = 0, R′ = R3 ∪ R4. There is a violation of Haag duality for the
two intervals if A(R) ⊂ Â(R) ≡ (A(R′))′ is a strict inclusion of algebras. This occurs when
there are charged sectors for the theory (DHR sectors) because a charge-anticharge pair belongs
to Â(R) but does not belong to the algebra of the two intervals A(R), see [5, 7] for detailed
discussions.

Since HDV is a phenomenon associated with algebras, it is natural to look for signals of
HDV in quantum information measures. These information measures typically input states and
algebras and output numbers. General entropic order parameters for HDV have been introduced
in [1]. These are relative entropies whose definition is based on the existence of the two different
algebras A(R) ⊂ (A(R′))′. See also [25, 26]. In a certain pinching limit in which the appropriate
size of the region goes to zero/infinity, the entropic order captures the index of the inclusion, i.e.
the total quantum dimension of the associated category. As their name suggests, these entropic
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order parameters serve to characterize phases in QFT. In particular, in quite a unified fashion,
they characterize the existence of symmetry and symmetry breaking, including confinement
and other forms of GS, such as higher-form symmetries and the non-invertible symmetries that
appear in 2d. The entropic order parameters obey a “certainty relation” that links the relative
entropies on complementary regions [5, 22, 26, 27]. The connection of these relative entropies
with modular invariance has been established in [26]. Generalizations of these order parameters
to Renyi-type relative entropies have been described [27]. All these entropic quantities (entropic
order parameters) are defined via relative entropy. This makes them directly applicable to QFT.
In particular, they are UV finite and independent of the regularization techniques. But for
our present purposes, it will be convenient to use other quantities directly related to ordinary
Renyi entropies. These will allow us to connect HDV with partition functions and the CFT data
through the replica trick.3

2.1 Renyi mutual information

To start we can focus on the n-th Renyi mutual information for two intervals R1 and R2. This
is defined by

In(R1, R2) = Sn(R1) + Sn(R2)− Sn(R1 ∪R2) , (2.1)

with Sn the n-th Renyi entropy. To compute the Renyi entropies a cutoff is introduced. The
entropies diverge logarithmically with the cutoff by an accumulation of entanglement at the
endpoint of the intervals. We do not need to specify the cutoff further. Cutoff details disappear
from In(R1, R2) in the continuum limit. Then In is a conformal invariant quantity that depends
on the two intervals through a cross ratio. It will be convenient to map the cylinder to the plane,
and the two intervals to R1 = [a1, b1], R2 = [a2, b2] at t = 0, with ordered a1 < b1 < a2 < b2.
For later convenience, we write the mutual Renyi entropy in the form

In(R1, R2) = In(x) = −(n+ 1) c

6n
log(1− x) + Un(x) , (2.2)

where c is the central charge, and the x is the cross ratio

x =
(b1 − a1)(b2 − a2)

(a2 − a1)(b2 − b1)
∈ (0, 1) . (2.3)

The limit x → 0 corresponds to very separated intervals. In this limit, we have In(x) → 0 by
clustering of correlation functions. Then in this limit Un(x) → 0.

With a cutoff in place, such as a lattice, the Renyi entropies are equal for commutant
algebras in a global pure state. This gives the same Renyi entropies for A(R) and Â(R′). If
there is Haag duality for two intervals Â(R′) = A(R′), then one recovers the more usual identity
Sn(R) = Sn(R

′). Taking into account that the single interval entropy is [28]

Sn(R) =
(n+ 1) c

6n
log(r/ε) , (2.4)

where r is the interval length and ε the cutoff distance, and assuming Â(R′) = A(R′) → Sn(R) =
Sn(R

′), we then get the relation

Un(x) = Un(1− x) , (Haag duality for two intervals). (2.5)
3At any rate, once we arrive at the precise connection between Renyi entropies, partition functions, and the

quantum dimensions of the model, we can go back and relate them to the entropic order parameters, whose
dependence on the quantum dimensions has already been established [1, 5, 22, 25–27].
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The symmetry of this function U(x) then signals Haag duality for two intervals in the Renyi
mutual information In. This symmetry has been checked in several modular invariant theories
[13, 15, 29–31]. But it fails in simple examples like a chiral scalar [32] or subnets of free fermions
[25]. In particular, this property implies limx→1 U(x) = U(0) = 0.

The usefulness of Renyi entropies is that they are described by partition functions in a
replicated manifold when the index n is an integer. One has to evaluate the partition function on
n copies of the Euclidean plane sewn on the region R in cyclic order. A particular simplification
occurs for two intervals in a 2d CFT when the index is n = 2. In this case, the replica manifold
has genus one. It can then be conformally transformed to a torus. This is described in detail in
[13, 15, 33], based on earlier work on orbifolds models [34]. The conformal transformation of the
partition function from the flat replicated space to the torus gives an anomalous contribution
that needs to be accounted for. Its contribution follows by evaluating the transformation with
the Liouville action. This contribution is universal and depends only on the central charge and
the transformation properties of the stress tensor. We therefore do not expect any changes
depending on whether the theory is complete or not. We will check this expectation more
explicitly in section 3.7, where we also discuss special issues that appear for the specific case of
the Virasoro net (without any primaries) for c > 1. Using this conformal mapping, the general
result for I2(x) is

I2(x) = log Z[il]− c

12
log

(
28 (1− x)

x2

)
, (2.6)

or
U2(x) = log Z[il] +

c

6
log

(
x (1− x)

24

)
. (2.7)

Here Z[τ ] = trqL0−c/24q̄L̄0−c/24, q = ei2πτ , is the partition function of the original theory, and
Z[il] corresponds to a rectangular torus of modular parameter τ = il. This modular parameter
is related to the original cross ratio x by

x =

(
θ2(il)

θ3(il)

)4

, 1− x =

(
θ2(i/l)

θ3(i/l)

)4

, l =
2F1(

1
2 ,

1
2 , 1, 1− x)

2F1(
1
2 ,

1
2 , 1, x)

. (2.8)

Note x ↔ 1 − x corresponds to l ↔ 1/l. The far away interval limit x → 0 corresponds to the
zero temperature limit l → ∞,

x ∼ 16 e−π l , (2.9)

and the limit in which the two intervals approach each other x → 1 corresponds to the high
temperature one l → 0

x ∼ 1− 16 e−π/l . (2.10)

Using (2.7) we arrive at the following formula for the “crossing asymmetry”

A2(x) = U2(x)− U2(1− x) = logZ[i l]− logZ[i/l] . (2.11)

We see that Haag duality for two intervals implies through (2.5) the S modular invariance of
the torus partition function Z[τ ] = Z[−1/τ ].4 The converse is also true as will become clear in
what follows.

Summarizing, the failure of crossing symmetry (2.5) for the Renyi entropies is because Renyi
entropies are equal for commutant algebras in a pure state, rather than for complementary
regions. The algebras of complementary regions are different from the commutant algebras

4The generalization of this relation for non rectangular torus can be obtained similarly from Haag duality for
intervals boosted with respect to each other.
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precisely when Haag duality is violated. The relation Sn(R) = Sn(R
′), which is connected to

modular invariance, is not implied by unitarity. Modular invariance is then a form of complete-
ness of the theory, since Haag duality for generic regions implies we cannot non-trivially extend
the given theory without violating causality.

2.2 Renyi entropies and replica twists

Another perspective on the connection between modular invariance and completeness comes from
the analysis of Renyi entropies themselves and the associated replica twist operators. Renyi
entropies are computed through partition functions on replicated manifolds glued along the
regions of interest. These replica partition functions can be written in terms of expectation
values of replica twists. More concretely suppose we have a general theory T . We can form
a replicated model T ⊗n by taking n independent copies. The replicated model has a global
unbroken symmetry given by any permutation group between the copies. In particular, we
can take cyclic permutations giving a group G = Zn corresponding to the usual Renyi replica
symmetries. Choose a generating element g ∈ G. Associated to this symmetry there are unitary
operators τR on T ⊗n that implement the cyclic symmetry G on R and do nothing in R̄ ⊂ R′.
R̄ is essentially the complementary region R′ except for a small buffer zone of width ε at the
boundary.5 This ε serves as a cutoff, equivalently a regularization that allows the twist to be
well defined. These twists can be constructed in general by the standard construction [36], such
that they respect the group operation and ⟨τR⟩ = ⟨τ−1

R ⟩. The Renyi entropies are given by

Sn(R) =
1

1− n
log trρnR =

1

1− n
log⟨τR⟩. (2.12)

The operator τR̄ = g τ−1
R is a replica twist for the complementary region R̄. As the vacuum is

invariant under g, we also have ⟨τR̄⟩ = ⟨τR⟩. This naively suggests the general equality of Renyi
entropies for complementary regions.

However, let us consider more carefully what is going on in the case we have HDV sectors
for R in the original theory T . The replicated theory T ⊗n will have non local sectors that are
the n times tensor product of the original ones. The replica Zn symmetry interchanges non
local operators of different copies, and then it does not keep the HDV sectors of T ⊗n invariant.
Equivalently, the HDV sectors of the replicated theory are “charged” under the replica symmetry.
We are then in the scenario studied in [35].

When R has HDV sectors that transform under the symmetry we have different possible
twists for the region R in the replicated model [35]. These twists differ in their macroscopic
properties rather than in regularization. We have complete twists τ cR, that implement the sym-
metry on Â(R), namely, they transform both the local and the non local operators in R. We
also have additive twists τaR, that only implement the symmetry on the local operators A(R)

and commute with Â(R̄). As their name suggests, the additive twists can be constructed addi-
tively in the appropriate region (region R plus buffer zone ε), while complete twists do contain
HDV operators in themselves. It is important to note that both classes of twists can be con-
structed. Indeed, starting from additive/complete twists in R, the complete/additive twists for
the complementary region R̄ can be obtained as

τaR̄ = g (τ cR)
−1 , τ cR̄ = g (τaR)

−1 . (2.13)

They correspond to the group element g in the complementary region. Additive and complete
are interchanged under this operation. As the vacuum is invariant under replica symmetry we

5See Fig 1 in [35] and associated text for a more detailed description.
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have ⟨τaR⟩ = ⟨τ c
R̄
⟩. This implies that the Renyi entropies of the additive algebras coincide with

the Renyi entropies for the complementary region computed with the complete twist. This
corresponds to the Renyi entropy for the maximal algebra (A(R))′ = Â(R′), but not to the
Renyi entropy of A(R′). This explains why Renyi entropies for complementary regions (and the
additive algebra) do not coincide in these anomalous cases.

In 2d CFT this observation may lead to some additional confusion. Take again a region
R formed by two disjoint intervals. Twist operators, considered in the orbifold theory (the fix
point algebra under the action of the symmetry group) are usually thought of as the product
of new local field operators at the end-points of the intervals. The reason for this is that the
original local charged fields that do not commute with the twist are absent in the orbifold. We
can then choose to include the twist in the set of local fields. This process of projecting to the
neutral part and adding the twisted sectors is called the orbifold construction in the literature
of 2d CFT’s. This process takes us from one local theory to another one with a different local
field operator content. In this case, in the orbifold theory T ⊗n/Zn we could write the additive
twist τaR in the following manner

τaR → σn(a1)σ
†
n(b1)σn(a2)σ

†
n(b2) . (2.14)

These σn(x) are thought as local field operators in the orbifold theory, and the additive twist has
then a nice and simple expression as a product of four σn(x) located at the end of the intervals.
This is the standard construction of replica partition functions.

However, in the present situation in which the original theory T has HDV sectors, this
rewriting in terms of local operators is not possible, even for the additive twist. The ultimate
reason (both physical and mathematical) is that replica symmetry in the replicated theory must
change the HDV classes. Then we have both types of twists τ cR and τaR, complete and additive
respectively. After projecting to the neutral sector they belong to the neutral algebra, where
also the global element g is mapped to the identity. Then, by (2.13) the expression (2.14) would
also represent the complete twist in the complement of the two intervals. But this is not possible
since the complete twist cannot be written additively in the two intervals. The reason is that
complete twits still contain non local operators in the orbifold model. This is required in order
to move the HDV classes, see [35] for examples and further explanations.

There is a related perspective on the problem that arises by thinking of the twists as products
of local fields σn located at the endpoints of the intervals. In fact, if expression (2.14) is correct,
one may obtain the equality of complementary Renyi entropies (x → 1 − x) by the Euclidean
crossing invariance of this multipoint field correlator [15, 33]. As we have seen, this is not correct
for models that violate Haag duality for two intervals.

Let us remark that this reasoning is valid more generally, not only for the case of orbifolding
replica symmetry. For any theory with a global symmetry in 2d, the usual orbifold construc-
tion, that follows by taking only the uncharged operators and promoting twists generating the
symmetry to local fields, is obstructed when this global symmetry changes HDV classes of the
theory. This can be thought as a mixed anomaly between the global symmetry and the gen-
eralized symmetry given by the existence of non local classes. However, non local classes will
not exist if the initial model is modular invariant, and this is why this obstruction has not been
noticed (to our knowledge) in the literature in these terms.

Other heuristics ways of seeing the incompatibility of orbifolding a symmetry that changes
HDV classes go by using the original/standard definition of orbifolds T /G in terms of partition
functions [37, 38], or as gaugings of generalized symmetries [39–41]. In the first approach one
projects into invariant states under the symmetry action. But also notices that one can quantize
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the theory in different sectors, by imposing different boundary conditions on the fields. These
new boundary conditions just reflect the orbifold nature of the theory, namely, we should equate
field configurations that differ by the action of a certain group element. The proposal in [37, 38]
is that this construction produces a modular invariant theory. But this is indeed so when the
input theory T is modular invariant itself. This is implicitly assumed as far as we can tell. But
in the light of the present article, it is natural to ask for the result of “orbifolding” a not modular
invariant theory. As we saw this theory contains HDV sectors. We explored this orbifolding in
simple examples concerning subfactors of minimal models and where the symmetry interchanges
different HDV sectors, and got unphysical results, as expected. According to our discussion,
if a suitable notion of orbifold can be established for non-modular invariant models, it should
be for symmetries that do not change sectors. Notice that, as the non local operators (charge-
anticharge pairs) are ultimately operators in the local algebra of an interval, the action of the
symmetry on the non local sectors is completely determined by the action of the symmetry on
the local operators. This seems to suggest that the origin of the problem can be rephrased in
terms of ’t Hooft anomalies or the mixing of the symmetry with HDV sectors. This parallels the
analysis of the ABJ anomaly [42]. It would be interesting to explore this perspective further.

3 Partition functions and the index

The Renyi crossing asymmetry A2(x), eq. (2.11), measures both the failure of Haag duality for
two intervals and the failure of modular invariance in the torus partition function. In general,
this asymmetry is a complicated function of the modular parameter. However, we now see that
the limit of two touching intervals x → 1, or equivalently the high temperature limit l → 0, has
a particularly simple expression in terms of the Jones index [16–19] associated with the category
of representations of the 2d CFT. This occurs when this limit exists or equivalently when the
index is finite. This index has a simple expression in terms of the quantum dimensions of the
model. It measures the size of the HDV in a universal algebraic manner. To introduce this
idea we first consider a simple case where there are two models (in any dimensions) related by
a symmetry group.6

3.1 The case of a symmetry group

Suppose we have a theory C and a finite global internal symmetry group G acting on C. The
neutral operators invariant under G form another theory T ⊂ C.7 The relation between C and
T can be formalized through a conditional expectation ε : C → T as

ε(x) =
1

|G|
∑
g∈G

U(g)xU(g)† , (3.1)

where U(g) is the group representation of G on the Hilbert space HC of C. The latter contains
charged operators in different sectors, corresponding to the irreducible representations r of G.
The sector corresponding to the identity coincides with T .

Consider the thermal partition functions ZC(β) and ZT (β), of theories C and T in some
compact manifold M . These correspond to the path integral over M × S1. We are interested

6For the entropic order parameters [1] the relation between the limit of two touching intervals, or more
generally the limit in which the size of the regularizing region goes to zero, and the Jones index was established
by different means and in different scenarios in [1, 5, 25–27].

7The logic of the notation, that will extend along the article, is that C corresponds to a “complete” extension
of the theory T we are interested in.
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in the ratio ZT (β)/ZC(β). The partition function ZT (β) only sums over HT , the Hilbert space
of neutral states, and we are assuming the Hamiltonian H is a neutral operator. This can be
obtained from the full Hilbert space HC by projecting over the neutral states. To this end we
can use the following projection operator

P =
1

|G|
∑
g∈G

U(g) . (3.2)

Then we have

ZT (β)

ZC(β)
= ⟨P ⟩β =

1

|G|
∑
g∈G

⟨U(g)⟩β , ⟨· · · ⟩β ≡ trHCe
−βH(· · · )

ZC(β)
. (3.3)

In the path integral formulation ZT (β) corresponds to the original path integral for C with
insertions of the group elements at time t = 0, and averaged over the group. This ratio will in
general be a complicated function of the temperature and the size of M .

A simplification occurs in the high temperature limit. In this limit, there are large fluctua-
tions of charges that make

lim
β→0

⟨U(g)⟩β → δg,1 . (3.4)

This was proved in [43] using algebraic methods. In physical terms, at high temperature, we
have a large number of independent charged fluctuations of different irreducible representations
r of the group at different points in M . Then the typical global representation will be the tensor
product of a large number of different random representations. The product of representations
can be thought as a stochastic process that converges to multiples of the regular representa-
tion (see for example [5]). The character of the regular representation is proportional to δg,1,
and this gives zero expectation values for group elements different from the identity in these
representations. This gives

lim
β→0

ZT (β)

ZC(β)
= lim

β→0
⟨P ⟩β =

1

|G|
. (3.5)

Hence, this ratio of partition functions in the high temperature limit is purely kinematical. It
allows us to evaluate the size of the group.

We can generalize ZT (β) by evaluating the partition function Z(r)(β) restricted to global
states in any given irreducible representation r (so ZT (β) = Z(1)(β)). In this case, we have to
insert the projector on the representation r

Pr =
dr
|G|

∑
g∈G

χ∗
r(g)U(g) (3.6)

in the partition function. Using (3.4) we get

lim
β→0

Z(r)(β)

ZC(β)
= lim

β→0
⟨Pr⟩β =

d2r
|G|

. (3.7)

Hence, the probability of the charge r at high temperature is given by

pr =
d2r
|G|

. (3.8)

This probability distribution was unravelled in [5], both as the probability (or ratio) of different
irreducible representations in the vacuum density matrix or in the thermal density matrix at
infinite temperature. Ref.[44] independently arrived at it in the context of d = 2 CFT’s, where
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it appears as controlling the contribution to the density of states of a specific irreducible rep-
resentation. In this vein it was later conjectured in [45]. Ref. [43] established the equivalence
between all these perspectives and presented a direct general proof. See also [46] for a derivation
in weakly coupled theories.

Notice this pr is exactly the fraction of basis states in the representation r within the regular
representation, as expected from previous arguments. These results translate quite directly to
other situations. For example, we can obtain the same results by taking the limit of large volume
at any fixed non zero temperature, even for a massive theory. The reason is again the existence
of a large number of independently charged fluctuations with non zero probabilities.

Another scenario is to consider vacuum expectation values of twists operators. A twist is a
unitary operator τ(g) that implements the symmetry operation in some region of the space R
and does nothing in a spatially separated region R̄.8 For concreteness we take the region R to
be a ball and R̄ the complement of a ball separated by a distance ε form R on the surface t = 0.
Twists can be constructed with standard methods such that they are representations of the
group G, and transform covariantly under the global operations U(h) τ(g)U(h)† = τ(h g h−1)
[36, 47]. If we take a decreasingly small separating size ε, the twists become very sharp. They
will necessarily display large fluctuations except for the identity. In the limit one then obtains

lim
ε→0

⟨τ(g)⟩ → δg,1 . (3.9)

This can also be understood as a consequence of the existence of a large number of almost
independent, charge-anticharge pair fluctuations, with non trivial probability in the vacuum,
where charge and anticharge operators are localized in R and R̄, separated by a distance of
order O(ε) across the boundary of R. A formula analog to (3.7) (and to (3.5) for r = 1) in
this case involves the Euclidean plane partitions function Z(r)(R, ε) with insertions of localized
charge projectors Pr(R, ε) in R constructed in terms of the local twists with the formula analog
to (3.6). The limit of large temperatures is replaced by the limit ε → 0. More explicitly

lim
ε→0

Z(r)(R, ε)

Z0
= lim

ε→0
⟨P (R, ε)⟩ = d2r

|G|
, (3.10)

where Z0 is the plane partition function without insertions, and the expectation value is in
vacuum. This is the way these probabilities appear in the entanglement structure of the vacuum,
first obtained in [5], see also [48] for a different approach to the same formula in 2d CFT. We
note these formulas make the connection with symmetry resolved entropies [49, 50] transparent,
as explained in [43].

3.2 More general charged sectors

The case treated previously corresponds to T ⊂ C, where T is the fix-point subalgebra of C
under the action of an internal symmetry group G. According to DHR theorem [9–12], this is
the general case of a subtheory in dimensions d > 2. In 2d we can have more general scenarios.
More precisely, the relation between an algebra of charged sectors of a theory C and a subtheory
T is not necessarily associated with the average of a group. Such subfactors give rise in general to
braided categories, as opposed to symmetric categories. See [51] for a discussion and references.

However, much of the relevant structure is common to both cases and remains intact. In
particular, we have again irreducible charged sectors r, r ∈ (1, · · · , n), where r = 1 is the identity,

8Strictly speaking, in the causal region determined by R.
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and we are assuming for simplicity to form a finite set. Operators in each of the charged sectors
are transformed within themselves under the operators in T . Sectors have fusion rules and
decomposition into sums of irreducible ones,

r × s =
⊕
t

N t
rs t , (3.11)

where N t
rs ∈ N, and N s

1r = δr,s. For each sector r there is a unique conjugate sector r̄ which
is the only one that gives a fusion containing the identity, namely N1

rs = δrs̄. The fusion is
associative and commutative, and then the matrices N (r) defined by

N
(r)
st = N s

rt (3.12)

commute with each other. They are then simultaneously diagonalizable. Since they have positive
entries, by the Perron-Frobeniuos theorem there is a unique common eigenvector with positive
entries and positive eigenvalues. These eigenvalues are also the maximal ones for each matrix.
The maximal eigenvalue of N (r) is called the dimension dr of the sector (or the quantum dimen-
sion alike). It also follows that the common eigenvector with positive entries for the matrices
N (r) is proportional to (d1, d2, · · · , dn). We have dr ≥ 1, and d1 = 1. In 2d the dimensions are in
general not integer numbers. A physical understanding of these non integer dimensions is that
they determine the asymptotic dimension of the Hilbert space associated with m excitations of
a given sector r, when m goes to infinity, see [52]. Indeed, due again to the Perron-Frobeniuos
theorem, the dimension of the intertwiner space associated with m sectors of type r to fuse
into a sector of type s scales as dmr ds/D for large m, where D2 =

∑
r d

2
r is the total quantum

dimension of the model. This total quantum dimension plays the role of the size of the finite
group G in the group case described above. Another interpretation of the quantum dimensions
was developed by R. Longo [18]. There the dimensions arise from the Jones index associated
with the inclusion of algebras determined by the endomorphism of T induced by the given sector
r.

Now, consider again the theory in a thermal state at high temperature in a compact space
M (a circle in 2d). The full Hilbert space HC is decomposed as a direct sum of spaces of different
charges H(r), and we have the corresponding projectors to these spaces Pr. In particular, we
again have H(1) = HT , the Hilbert space of “neutral” states. We want to understand the
expectation value of these projectors for β → 0. We could again follow the steps in [43] and
arrive at the same universal results for twisted partition functions and charged densities of
states. Another path (more physical and simpler) goes as follows. Let us define qr as the
fractional probability of having a representation r in the large temperature limit. As in this
limit, there are many independent fluctuations of any charge, it must be the case that the
distribution reaches a value qr that is stable under fusion with any other sector. That is

r ×
∑
s

qs s =
∑
st

N
(r)
st qs t ∝

∑
t

qt t , r = 1, · · · , n . (3.13)

Then, it must be the case that qr ∼ dr, is proportional to the eigenvector of the fusion matrices
with positive entries. In fact, the fusion of many sectors always converges to this distribution
qr ∼ dr. This gives the fraction of representations in the stationary distribution. The frac-
tional probability of states pr = ⟨Pr⟩ results from this fraction qr times the dimension of the
representation. Then, the normalized probability is

pr = lim
β→0

⟨Pr⟩β =
d2r∑
r d

2
r

. (3.14)

The sum
λ = [C : T ] =

∑
r

d2r (3.15)
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is called the global Jones index of the inclusion C ⊂ T . It can be defined in purely algebraic
terms [16–19]. As mentioned before, this is also called the total quantum dimension in topological
models in d = 3 [52]. For T the neutral part of C under the action of a finite group G we have
λ =

∑
r d

2
r = G.

The dual algebra to the charged sectors, analogous to the group operations and the projectors
into the different representations in the orbifold case, are usually called topological defect lines
or Verlinde lines in the physical literature. For diagonal modular invariants, they were defined in
the Verlinde’s original contribution [53], but there are more general topological defect lines, see
e.g. [54]. At any rate, in the present algebraic formulation, von Neumann’s double commutant
theorem implies that this dual category of non local operators comes in parallel with that
of charged sectors. Moreover, this dual algebra comes with precisely the same size, the global
index described before [2, 12].9 Indeed, in the general finite index case we also have a conditional
expectation ε : C → T that eliminates the charged operators, see [12] for the algebraic analysis
of these more general nets of subfactors. And there is also a dual conditional expectation ε′ that
maps the topological defect projectors into the identity10

ε′(Pr) =
d2r
λ

1 . (3.16)

Hence the thermal state ωβ approaches at high temperatures a state invariant under the dual
conditional expectation ωβ → ωβ◦ε′. This means that relation 3.14, initially devised and derived
for symmetry groups, is valid as well in the general non-invertible scenario.

3.3 The limit of the asymmetry

Using these results and assuming a finite index, we now compute a particular limit of the Renyi
crossing asymmetry for a generic theory T

lim
x→1

U2(x)− U2(1− x) = U2(1) = lim
l→0

(logZT [i l]− logZT [i/l]) . (3.17)

This is zero for a modular invariant or complete model. But now assume the model T is a
submodel of a complete one C, so that T ⊂ C is a strict inclusion. In the complete model the
partition function can be pictured as a featureless path integral without insertions, and satisfying
modular invariance directly from the geometric symmetry of the calculation. Then we have

U2(1) = lim
l→0

(
log

ZT [i l]

ZC [i l]
− log

ZT [i/l]

ZC [i/l]

)
. (3.18)

Now, the second term in this expression corresponds to the zero temperature limit. In this limit,
the partition function is dominated by the vacuum or Casimir energy, and subleading terms give
exponentially small corrections. Since the vacuum and Hamiltonian are the same for the two
models this term vanishes in the limit. We get

U2(1) = lim
l→0

log
ZT [i l]

ZC [i l]
= − log λ . (3.19)

This follows from 3.3 and 3.16. This result clearly expresses the failure of completeness of
the model in terms of the index, the partition function and the Renyi entropy. Notice we

9For the QFT vacuum and compact regions, this algebraic structure can be nicely described into quantum
complementarity diagrams that encode the HDV [1, 2, 22]. These complementarity diagrams are part of the
Jones ladder [16] associated to the inclusion of algebras A(R) ⊆ (A(R′))′.

10The projection e : HC → HT is called the Jones projection in the mathematical literature, and we have
ε′(e) = λ−11. In this paper, we have called P to this projection.
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could get individual squared dimensions dr, instead of the total one λ just by considering the
projected partition functions into different representations r. Following [43], this way one derives
symmetry resolved entropies [49, 50] and the universal charged density of states for these more
generic (typically non-invertible) scenarios. Indeed all these quantities follow from eq. (3.16)
as well. In particular, the density matrix has the block decomposition ⊕rprρr, with pr = d2r/λ,
first derived in [5], here seen to be valid in generic categorical scenarios. Symmetry resolved
entropies were also derived using boundary conformal field theory methods in [48, 55], obtaining
the same result.11

Still, expression (3.19) is not completely satisfactory because it involves the index of the
incomplete model T with respect to a given completion C. Although the index itself does not
depend on the particular completion, it would be more appropriate to find an intrinsic formula
that only cares about theory T . This can be achieved by using an algebraic index that pertains
to the incomplete model itself. A particularly good candidate is the two interval index, or global
index µ. This is the Jones index associated with the inclusion of the algebras

A(R) ⊂ Â(R) , (3.20)

where R = R1 ∪R2 is the two interval region. In [7], proposition 24, it was shown that for two
models T ⊂ C the global indices of the two models satisfy the following relation

µT = λ2 µC , (3.21)

where we remind λ = [C : T ], namely the index of the inclusion T ⊂ C. Then, if C is complete,
µC = 1, it follows that µT = λ2. We then obtain the desired expression

U2(1) = −1

2
logµ . (3.22)

This is an intrinsic expression measuring the failure of completeness/modular invariance for a
model T .

The index appears as a subleading term in the free energy logZT without involving the
partition function of the complete model ZC . To see this consider first the case of the complete
model where logZC [il] = logZC [i/l]. The low temperature expansion dominated by the Casimir
energy is

logZC [i/l] ≃
π cl

6
+ exponentially small , l ≫ 1 , (3.23)

and does not have a constant term. In consequence, the same happens for the large temperature
expansion

logZC [il] ≃
π c

6l
+ exponentially small , l ≪ 1 . (3.24)

This gives the Cardy formula [56] for the thermal entropy, that we see here that does not depend
on exact modular invariance, at least for finite index (see section 3.6 below for the discussion of
an infinite index). Then, from (3.19) we get

logZT [i l] =
π c

6l
− 1

2
logµ+ · · · , l ≪ 1 . (3.25)

11In [48, 55] an obstruction to define symmetry resolved entropies was found for theories in which the symmetry
cannot be orbifolded. This obstruction is a problem with the computational technique, that requires certain
classes of boundary conditions. It is related to the problems mentioned in section 2. While the expression of the
twists in terms of local fields might not exist (obstructing the existence of the orbifold), the twists and projectors
still exist as non local operators in the original model. Therefore formula 3.19, and associated symmetry resolved
entropies, are still well defined and correct even when considered for the computation of entanglement entropy
in such anomalous scenarios.

14



This formula was obtained (for chiral theories) in [57].

In terms of the mutual information (Renyi index n = 1) we have for the corresponding U1(x)
the same limit in terms of the index [1, 5, 25, 27]

U1(1) = −1

2
logµ . (3.26)

The same limit holds for all Renyi entropies, as we discuss in section 3.7 below.

It is interesting to note that the mutual information crossing asymmetry, A1(x) = U1(x) −
U1(1 − x), is monotonically decreasing, at least for models that are submodels of a complete
one. If there is a conditional expectation from ε : C → T , then the conditional expectation
property of mutual information implies that IC1 (x)− IT1 (x) can be written as a relative entropy
[5, 25, 58, 59]. It is precisely a special case of an entropic order parameter. The monotonicity
of this relative entropy gives the monotonicity of the mutual information difference between the
two models

(IC1 (x)− IT1 (x))′ = (UC
1 (x)− UT

1 (x))′ ≥ 0 . (3.27)

Then, as C is complete, UC
1 (x)− UC

1 (1− x) = 0, leading to

(AT
1 (x))

′ = (UT
1 (x)− UT

1 (1− x))′ ≤ 0 . (3.28)

This implies the extremal values of the asymmetry, reached at x = 0, 1, are proportional to the
index. Several examples suggest the same property could be valid for the asymmetry A2(x),
and hence also for the asymmetry in the partition function. However, we could not prove this
is generally valid.

3.4 DHR sectors, global index, and statistical modular matrices

For a given theory T there may be localizable superselection sectors. That is, states that differ
from the vacuum in a bounded region and that cannot be produced out of the vacuum with the
local operators. These are called DHR sectors [9, 10]. This is a characteristic of the theory alone.
These sectors can be analyzed already in the vacuum sector of the theory. In this particular
sector, they are seen as inducing endomorphisms of the local algebras. The main observation is
that these endomorphisms form a category, with direct sums, subobjects and conjugates. One of
the most important observations is that in d > 2, this category has a symmetric or permutation
exchange symmetry. This key result serves as the starting point for the DHR reconstruction
theorem [11, 12], stating that these sectors are given by the representations of a symmetry group.
On the other hand, for d = 2 the category of DHR endomorphisms does not admit generically
a permutation symmetry. Instead, it is a braided category [60, 61], with a representation of the
braiding group.

In both scenarios, there is a natural dimension dr for any given irreducible sector r. This
dimension, originally defined in [9, 10], see also [62], of course, coincides with the standard
definition in terms of the maximal eigenvector of the fusion category. The relation between
the algebraic approach in terms of an inclusion of algebras with associated Jones index, as
used above, and the DHR endomorphisms was laid down in [18]. In particular the index of
the inclusion ρr(T ) ⊂ T , where ρr is an endomorphism with label r is equal to d2r . For the
specific case of the two interval inclusion, Ref. [7, 12] showed the global index to be equal to the
dimension of the canonical endomorphism, namely

µ =
∑
r

d2r , (3.29)
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where r runs over all possible sectors in two balls. This is natural because non local operators
in two intervals are charge anticharge operators in each interval, and the sum must run over all
possible sectors.

Notice that in d = 2 this leads to surprises. If we have a complete model, then the two interval
inclusion is trivial and therefore µ = 1. Equivalently there is no non trivial DHR sector. But if
we have a model T with index λ with respect to a complete model C, then µT = λ2, as mentioned
above. So there are more DHR sectors than the ones the complete model C has with respect to
T . The reason is that DHR sectors need not be local to each other in d = 2. For example, if the
relation to a complete model is a group G, we have λ = |G|, and µT =

∑
r∈DHR d2r = |G|2. The

reason is that both charges and twists of the symmetry group give place to DHR sectors. We
see that DHR sectors and/or the two interval inclusion contains information about all possible
local completions. On the other hand, in more dimensions the index µT of a two double cone
region is |G| [5, 18] since there is no possibility of twist sectors that can be localized in the two
balls.12

After this digression let’s go back to d = 2. In these QFT’s, the braided category of DHR
sectors has further important properties [63]. In particular, there is always associated a unitary
representation of the group SL(2,Z), with “statistical” matrices S̃, T̃ , such that13

S̃S̃† = T̃ T̃ † = 1 , T̃ S̃T̃ S̃T̃ = S̃ , S̃2 = C , T̃C = CT̃ = T̃ . (3.30)

The matrix C = δrs̄ is the conjugation matrix. Further, there are Verlinde-like formulas [53] for
the fusion matrices

N r
st =

∑
u

S̃suS̃tuS̃
∗
ru

S̃0u

, (3.31)

and

S̃0r = S̃r0 =
dr√∑

d2r
, S̃rs = S̃sr = S̃∗

rs̄ = S̃r̄s̄ , dr =
S̃r0

S̃00

. (3.32)

The global index is
µ =

∑
r

d2r = S̃−2
00 . (3.33)

For groups, there are analog formulas in terms of the group characters, but here S̃ is symmetric
in contrast to the case of non-abelian groups.

3.5 Modular invariance and index in terms of chiral characters

Let A be a local chiral algebra for the light cone. For each superselection sector r of this algebra
we have a character defined as

χr(τ) = Trr e2πiτ(L0−c/24) . (3.34)
12Still, in higher dimensions we can again see differences for other types of regions. For example, pure gauge

theories in d = 4 have an index of the inclusion of algebras associated with a ring which is the square of any
possible Haag-Dirac net we might define [1]. Here Haag-Dirac nets play the role of a local completion in d = 2.
Still, these “completions” of higher form symmetries in higher dimensions are not full-fledged completions since
they are achieved at the expense of additivity of the net of algebras.

13We use tildes for the statistical matrices to avoid confusion with the modular transformations matrices
associated to chiral characters. These later are the statistical matrices of the special case of the DHR sectors
associated to the chiral subtheory.
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Assume these transform under modular transformations linearly as

χr(−1/τ) =
∑
s

Srs χs(τ) , χr(τ + 1) =
∑
s

Trs χs(τ) . (3.35)

In all known cases these S, T are the same matrices as the statistical matrices for the DHR
sectors of the chiral theory. A chiral net where this holds was called a modular net in [57], where
it was shown that this property is preserved by local extensions of the chiral net. We note the
standard relation between characters and dimensions of the modular category

lim
τ→0

χr(τ)

χ1(τ)
=

S0r

S00
= dr , lim

τ→0

χ1(τ)

χ1(−1/τ)
= S00 . (3.36)

See e.g. [57] for a derivation from the present perspective.

Now, if we take A×A as the full chiral algebra for a CFT, the CFT corresponds to a local
extension A×A ⊂ T of the chiral algebra. The partition function of the CFT is

Z =
∑

Mrs χr(τ)χs(τ̄) , (3.37)

with the coupling matrix Mrs ∈ N, and M00 = 1, by uniqueness of vacuum.

Modular invariance of Z then corresponds the two matrix relations

SM = M S , T M = M T . (3.38)

The meaning of the T symmetry is well known, and for unitary local CFT’s this symmetry is
obligatory by the locality of the theory [63, 64]. Let us clarify this shortly here. Given a primary
field φ with scaling dimensions (h, h̄) the Euclidean correlation function is

⟨φ(z)φ(0)⟩ = 1

z2h z̄2h̄
. (3.39)

Euclidean correlations of local fields have to be real analytic everywhere except the coincidence
points, and (for bosonic fields) must be permutation invariant. This is only possible if

h = h̄+ k , k ∈ Z. (3.40)

This is a condition on the self-locality of the field. It coincides with the requirement of T modular
invariance for the parity symmetric case c = c̄ (for simplicity we are restricting to this case).
One can check that self locality of the fields is enough for locality in three and higher point
functions provided the primaries close an algebra of self local fields. As an example, we might
worry that T duality might not invalidate a scenario in which we have a twist field and a local
field charged under it. These two fields are self local themselves but fail to be local relatively to
each other. Here is where closing of the algebra with self local fields enters the game. In fact,
the product of a twist and a local field charged under it will produce not self local fields.

To find the expression of the global index of the local CFT extension T defined by the
coupling matrix M , we use the limit of the asymmetry (3.17), and (3.19). This is given in terms
of the partition function as

µ
−1/2
T = lim

l→0

Z(τ)

Z(−1/τ)
= lim

l→∞

Z(−1/τ)

Z(τ)
= lim

l→∞

∑
rstu

SrsMst S
∗
tu χr(τ)χu(τ̄)∑

rs
Mrs χr(τ)χs(τ̄)

. (3.41)
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Taking into account that in this last, low temperature, limit, in the denominator dominates the
character of the identity, that M00 = 1, and that

lim
τ→∞

χr(τ)

χ1(τ)
= δr,0 , (3.42)

we get

µT =

( ∑
i d

2
i∑

ij diMij dj

)2

. (3.43)

This number is 1 for a modular invariant model. It has to be greater or equal to one for a
consistent (closed under fusion) model. As a bona fide Jones index, it also has to fall into one of
the allowed values [16]. Note that if the model admits a local extension of the chiral algebra, the
matrix M , the characters, and the dimensions di will be different expressed with respect to this
new chiral algebra. But the global index (and the partition function) of T remains the same.

3.6 Some examples with infinite index

In the case of an infinite index, the Renyi crossing asymmetry is unbounded as we get to the limits
x → 0, 1. In d > 2 dimensions, where sectors come from a compact group, the infinite index
corresponds to Lie groups. This case was analyzed in [5] in terms of the mutual information
and extended in [65] (appendix B) to other Renyi entropies. It was found that the mutual
information difference between the charged (complete) theory C and its neutral subtheory T
diverges logarithmically for any d > 2 as

IC1 − IT1 ≃ −G (d− 2)

4
log (1− x) . (3.44)

This is for disjoint regions with boundary given by two concentric spheres of radius R ± ε/2,
in the limit of small separation ε ≪ R. The cross ratio is x = (4R2 − ε2)/(4R2) ≃ 1. G
is the dimension of the Lie algebra. This again has purely kinematical information about the
symmetry of the model. This term is a negative contribution to the orbifold model with respect
to the mutual information of the complete one, analogous to the − log |G| contribution for the
finite group case. For two dimensional CFT’s, the analogous formula is

IC1 − IT1 ≃ −UT
1 ≃=

G
2

log(− log(1− x)) . (3.45)

The same results are expected to be independent of the Renyi index (see next section). These
results follow from the statistics of sharp twists for a continuous group. The expectation values
of the twists form a Gaussian distribution around the identity, replacing (3.9). In particular, for
d = 2 CFT’s the current are Gaussian fields with dimension 1. The logarithm of the expectation
value of the projector to the neutral algebra gives (3.45) [5, 65].

From (2.6), for n = 2 this behavior implies

log
ZT (β)

ZC(β)
= log⟨P ⟩β ∼ G

2
log(β) , (3.46)

for the torus partition functions in the limit of large temperature β = 2πl → 0. Again, this
can be obtained from the behavior of the twist expectation values at large temperature. For
τ = ei ai Li , with Li the Lie algebra base, we have

⟨τ⟩ ∼ e−k
|⃗a|2
l , (3.47)
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with k a constant. The twists with non vanishing probability are highly concentrated around
the identity and the eventual non abelianity is not relevant in this limit. With this expression,
one can also compute the expectation values of the projectors on the different representations,
namely 3.7, using the continuous version of 3.6, see [5]. In higher dimensions the analogous to
(3.46) for the thermal partition function in a sphere is [66]

log
ZT (β)

ZC(β)
= log⟨P ⟩β ∼ G (d− 1)

2
log(β) . (3.48)

A particular case where the exact result for the mutual Renyi entropies is known for any
Renyi index n and cross ratio is the case of a free chiral scalar [32]. The chiral scalar torus
partition function is Z(il) = η(il)−1, where η is the Dedekind function. The identification of
I2(x) obtained from (2.6) using this torus partition function, and the formula for I2(x) in [32],
obtained from the exact diagonalization of the density matrix, gives a quite obscure identity

η(il) = exp

[
1

12
log

(
x(1− x)

24

)
+ i

∫ ∞

0
ds csch(2πs) log

(
2F1(1 + is,−is, 1, x)

2F1(1− is, is, 1, x)

)]
, (3.49)

where x and l are related by (2.8). We have checked numerically that the identity holds. The
chiral scalar is the fix point algebra of the chiral complex free fermion under the U(1) charge
symmetry. This latter model is complete. We have from [32]

Un(x) ∼ −1

2
log(− log(1− x)) , x → 1 . (3.50)

This is consistent with (3.45) for a U(1) group. It also shows a limit behavior independent of
the Renyi index n.

For the Virasoro net I2(x) can be computed for any central charge c ≤ 1, by using the
Virasoro character of the identity and (2.6). For c < 1 the Virasoro net has finite index. The
unitary models with c < 1 have central charge

c = 1− 6

m(m+ 1)
(3.51)

with m = 3, 4, · · · . The index for the chiral Virasoro net can be obtained from the known value
of S00 for the chiral characters [64]

µ(m) =
m(m+ 1)

8

[
sin

(
m+ 1

m
π

)
sin

(
m

m+ 1
π

)]−2

. (3.52)

This diverges in the limit c → 1,m → ∞. This formula appeared previously in [67].

For c ≥ 1 the character of the identity is [68]

χ0(l) =
(1− q) q(1−c)/24

η(τ)
, q = e−2πl . (3.53)

For c = 1, using the property η(−1/τ) =
√
−i τ η(τ), τ = il, we get for the asymmetry

A2(l) = log

(
χ1(l)

χ1(1/l)

)
=

1

2
log(l) + log

(
1− e−2πl

1− e−2π/l

)
. (3.54)

In the limit l → 0, x → 1, using (2.10) we get

U2(x) ∼ −3

2
log(− log(1− x)) . (3.55)
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Rehren in [69] showed that the Virasoro net for c = 1 is the fix point algebra of the chiral ŝu(2)1
current algebra at level one, under the action of the global SU(2) symmetry. This current
algebra has finite index. Then, this result for U2(x) is consistent with having a fix point algebra
under the action of a compact continuous group with three generators, and with the generic
formula 3.45.

For the Virasoro net with c > 1 the torus partition function does not have the usual leading
asymptotics. At large temperatures it scales as logZ ∼ π

12 l and it is not proportional to the
central charge, instead of the standard Cardy behavior logZ ∼ πc

12 l . This is natural since there
is only the stress tensor field in the algebra. If we naively use the formula (2.6) in this case we
get a larger divergence for x → 1

U2(x) ∼
(c− 1)

12
log(1− x) . (3.56)

This cannot be obtained with a compact Lie group symmetry, and a larger divergence than a
double logarithmic one is indeed expected. However, the problem with this formula is rather
that for large c one would not expect entropies scaling with c in this case. This is also suggested
by holography. In the following section, we understand why the formula (2.6) is not directly
applicable to this case.

3.7 Revisiting the calculation of I2(x) and other Renyi entropies

Now we describe the problem of computing these quantum information quantities in more gen-
erality in terms of partition functions. This will allow us to understand the case of higher Renyi
entropies. It will also allow us to clarify the scope of the previous computations. In particular,
they cannot be applied to the Virasoro net for c > 1.

We assume the partition functions of the model can be obtained by modifying the ones of
a complete theory C. We can picture these later partition functions as ordinary path integrals
with rotational invariant Lagrangians in an arbitrary d = 2 manifold M . We can use these
partition functions to analyze submodels by inserting appropriate projection operators along
the manifold. These projections operators commute with the stress tensor and are topological
line operators. This means they are lines that can be deformed without changing the partition
function as long as we do not cross any other insertions. The projector lines can be open or
closed.

Denote by Pγ the projector from C to a subtheory T . Then, according to section 3.2, the
path integral on a manifold with the insertion of a single projector Pγ on an open curve γ is
given by

Zγ(M)

Z(M)
= λ−1 , (3.57)

where λ is the global Jones index associated with the inclusion T ⊂ C.14 On the other hand,
when the projector line is a closed loop, the expectation value will depend on the specific theory
and homotopy class of the loop in the manifold. If the path is contractible it can be assimilated
to the identity. Similarly, as the line is a projector, the insertion of two closed lines that are
homotopic to each other is equivalent to the insertion of a single one. Another property is that
if we have a sphere with n punctures and a projector going around each of the punctures, the

14For open defects this is universal because we are assuming sharp regularizations at the edges. Then the parti-
tion function, the expectation value of the projector, is completely controlled by the strong universal fluctuations
on the edges.
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Figure 1: Projector P±
1 lines on the two boundaries R±

1 of an open cut along the interval R1 coalesce into the
protector Pγ1 on the closed curved γ1 surrounding the interval.

partition function is the same as one with projectors on only n− 1 of the punctures. The n− 1
projectors are enough to ensure that no charges can appear in the remaining boundary.

Certain limits of homotopically non trivial loops γ can be understood. If the size of γ goes
to zero, only the identity can propagate in the direction perpendicular to the loop, and the
loop does not contribute. The opposite limit in which the loop stretches a long distance or the
transversal direction pinch to zero size is analogous to the high temperature limit and we have
an λ−1 contribution.

Now, if we have two open lines γ1, γ2, and take the limit in which the two end-points coalesce
to get a closed curve γ = γ1∪γ2, it is expected that the OPE of the product of operators should
give the projector of the combined line15

Pγ1Pγ2 → Pγ . (3.58)

The idea is that a charge-less operator in the surface γ could contain opposite charges in γ1, γ2.
But these can be approximated by charge-less operators in γ1, γ2 by adding opposite charges near
the coalescing boundaries of both. In (3.58) a factor is expected that depends on the UV nature
of the regularization of the projectors and the microscopic distance between the boundaries.
This is a factor λ−1 for finite index and ∼ (log(ε))−1 for the invariant algebra under a Lie group.
These factors will not matter in what follows since we will be evaluating mutual informations
that are combinations between different partition functions. These combinations eliminate these
factors.

Another form of understanding (3.58) is the following. Suppose we have the theory in a
circle γ and divide the circle in two segments γ1, γ2. Equation (3.58) follows from the stronger
statement that

A(γ1) ∨ A(γ2) = A(γ) . (3.59)

This property is called strong additivity and it is quite generally valid.16 In particular it is valid
for rational nets [7, 70]. These are nets with finite global index and the split property.17 However,
quite insightfully, strong additivity is not valid for the Virasoro net with c > 1 [23]. In this case,
one can think heuristically that there are too many non local sectors in γ to be generated by
the algebras in γ1, γ2. This prevents the previous and following reasonings from being applied
to this case and gives an explanation of the seemingly paradoxical result encountered at the end
of the previous section. We expect the scope of the following arguments restricts to strongly
additive nets.

15Note this equation does not require that each of the projectors can be written as a product of local field
operators at the edge. In fact, one can see examples [35] in which the projectors can be non-local and still we
expect such a relation to hold. Such relation is a particular form of “strong additivity”, as we comment below.

16Here is it connected to (3.58) assuming it is valid for the complete theory C.
17The split property is however automatic for diffeomorphism invariant nets in the circle [71].
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Figure 2: The n = 2 Renyi entropy for two intervals can be computed as a partition function on the two-copy
plane gluing R±

1,2 cyclically as shown in the figure of the left. Inserting the corresponding projectors over γ1
and γ2 computes the Renyi entropy for the submodel. The resulting configuration can be mapped to a genus
g = 1 torus as in the right-hand side of the figure. It is a rectangle with opposite sides identified. Note γ1, γ2 are
homotopical curves.

Now we apply these tools for the computation of the Renyi mutual informations. The
vacuum density matrix for the theory C on a region with several intervals Ri is computed with
the partition function in the plane with open cuts at Ri. For the submodel T we have to project
to the neutral Hilbert space in each of the intervals, inserting projector lines along the two open
boundaries R±

i of each interval. See figure 1. The density matrix needs regularization at the
end points of the intervals. A natural way to deal with the regularization and the projectors
is to displace them a bit out of the intervals cuts. We then coalesce them as a closed curve
surrounding the intervals. See figure 1. We then have a projector curve γi encircling each of the
intervals Ri.

For a single interval region, the projector can be eliminated because it is contractible towards
infinity since the plane is conformally equivalent to a sphere. This is not the case for multi-
interval regions. We focus on the case of two intervals. In this case, one of the two projectors in
the plane around each interval can be eliminated because the two projectors can be deformed to
each other. Computing the Renyi entropies for two intervals we have to glue n copies of the cut
plane in cyclic order along the boundaries. This leaves us with n projectors around the n copies
of the first interval. For n = 2 we have genus 1 and the manifold can be transformed conformally
to a torus. The result was described in section 2. It is not difficult to follow the path of the
projectors around the first interval to see that they are equivalent projectors along the spatial
circle of the torus. See figure 2. So the partition function Z[il] that appears in the formula of
I2(x) is indeed the thermal partition function of the model. When R1, R2 are near to each other
the projector around R1 gets squeezed. In this case, we are in the large temperature limit. For
finite index the difference in the Renyi mutual information between the models reduces to the
index,

lim
x→1

(IA2 (x)− IB2 (x)) = − lim
x→1

UB
2 (x) = log λ . (3.60)

This comes from the contribution of the projector, since all other contributions, including cutoff
and the universal Liouville contribution of the conformal transformation to the torus, cancel. In
the same way, for the case of a compact Lie group symmetry the formula (3.45) applies for I2.
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Figure 3: The n = 3 Renyi entropy calculation for two intervals can be mapped to a genus 2 surface with three
handles and a cyclic Z3 symmetry between them. When pursuing the calculation in a submodel, we have three
projectors Pγ1 , Pγ2 and Pγ3 appearing as circles around each one of the handles. One of the projectors is always
redundant. The marked point a1 is one of the endpoints of the interval R1, and is a branching point of the
original geometry. The marked three lines starting at a1 are the three copies of the interval R1, that connect a1

with the other endpoint b1 of R1 (not shown).

It is not difficult to understand the generalization for higher n. In this case, the manifold has
genus n− 1 and can be transformed to a topology that is the one of n handles joined together
at the two extremes. At these extremes, there are n lines joining two points. The lines are
the n copies of the intervals R1, R2, and the points are the end-points of the intervals that are
branching points of the original geometry. See figure 3 illustrating the case n = 3. The geometry
has cyclic Zn permutation symmetry. Each projector is now a circle around one of the n handles.
One of the projectors is redundant. In the limit x → 1 the projectors get squeezed and are in
the “high temperature limit”. As a result, and because of the factor (n− 1)−1 in the definition
of the Renyi entropy, it follows that the index can be read off from the limit of any of the Renyi
mutual information

lim
x→1

UB
n (x) = − log λ . (3.61)

Hence we have a “flat spectrum”, independent of Renyi index, for this topological contribution.
This terminology comes from the analogy with the Renyi entropies of a finite dimensional density
matrix proportional to the identity. This also has constant Renyi entropies log d, independent
of n, where d is the Hilbert space dimension. Here we have an analogous scenario for the replica
modular asymmetry which can then equal the logarithm of the total quantum dimension of a
generic modular tensor category.

4 Modular invariance, completeness and superselection sectors

Previously we have analyzed the direct relation between modular invariance and completeness
using Renyi entropies. Completeness can be formalized as Haag duality for general regions and
then violations of Haag duality, measured by e.g. Renyi entropies and order parameters, can be
related to departures from modular invariance. We now present a complete mathematical proof
that ultimately stems from the DHR theory of superselection sectors [9–11], generalized to two
dimensional theories and subfactors in [12, 60, 61].

As mentioned in the introduction, that S modular symmetry is related to the absence of
superselection sectors was conjectured by Rehren [6]. The context at the time was the analysis
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and potential classification of local 2-dimensional conformal quantum field theory T which irre-
ducible extends a given pair of chiral theories A = AL ⊗AR. More precisely, the mathematical
structure is an irreducible inclusion of nets, AL(J+)⊗AR(J−) ⊂ T (O), where J+, J− are light
ray intervals and O is a double cone J+ × J−. Although not standard, notice that in principle
the chiral algebras AL and AR can be distinct. We only require the extension to be local.

The chiral algebra A typically has superselection sectors associated with it. Following DHR,
see [51] for an introduction to the subject, the localizable sectors can be encoded in the vacuum
sector via endomorphisms ρr of the chiral algebra. These endomorphisms form a category,
which in d = 2 is a braided modular category. In this context, we have further information.
Since we have an inclusion of algebras AL(J+) ⊗ AR(J−) ⊂ T (O), we have a canonical DHR
endomorphism θ : AL(J+) ⊗ AR(J−) → θ(AL(J+) ⊗ AR(J−)) ⊂ A(O) associated with the
inclusion [18]. Denoting by jA and jT the modular conjugations associated with A(O) and
T (O) respectively, the canonical endomorphism is defined as

θ(A) = jAjT AjT jA A ∈ A(O) . (4.1)

This endomorphism is generically reducible. Since the chiral algebra is a tensor product of
left/right algebras, the irreducible endomorphisms ρ are tensor products of irreducible endomor-
phisms αL

r and αR
s of left/right algebras, namely ρrs = αL

r ⊗ αR
s . We have a general expression

of the form
θ =

⊕
rs

Mrsα
L
r ⊗ αR

s (4.2)

This parallels, in the neutral sector of the chiral algebra, the particular combination of left and
right superselector sectors that naturally appears in the extended theory T . More concretely,
the present matrix M is the same as the one appearing in the partition function in 3.37. We
thus have M00 = 1 and Mrs ∈ N. In the mathematical literature, the matrix M is called a
coupling matrix (and generally denoted Z). The two nets AL and AR define S and T matrices,
SL, TL, SR, SR, respectively, as in [72]. We are interested in the case where the S-matrices are
invertible. By the results in [7], this invertibility, which is called non-degeneracy of the braiding,
holds if the nets are completely rational in the sense of [7]. Then Rehren considered when the
following two intertwining relations hold.

TLM = MTR, SLM = MSR. (4.3)

This condition is the usual modular invariance. Rehren then conjectures that a possible criterium
to enforce the intertwining property is that the local 2D theory C does not possess nontrivial
superselection sectors. We now prove this conjecture, namely that the triviality of the superse-
lection structures is indeed sufficient (and necessary) for the intertwining property (4.3), when
AL and AR are completely rational. We will also prove that this condition is equivalent to “max-
imality” of the extension C (namely the model is complete) if a certain natural symmetry holds
for AL and AR. In this case, we will have in particular AL = AR as a part of the assumptions.

4.1 Preliminaries

Before presenting the proof we notice that the results for two interval Jones index (the index
µ considered above) derived in [7] are also valid for 2-dimensional nets C(O), where O is a
two-dimensional double cone.

In particular, we have an analogue of [7, Corollary 32], which reads
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Proposition 1. For a 2-dimensional completely rational net C, the following statements are
equivalent.

1. The net C has no non-trivial sector with finite dimension.

2. The net C has no non-trivial sector (with finite of infinite dimension).

3. The two interval Jones index µC is 1.

This proposition then relates the absence of DHR superselection sectors of the net (a fair
notion of completeness), with the validity of Haag duality for two interval regions.18

4.2 Modular invariance and triviality of the superselection structure

To prove Rehren’s conjecture we now add a further equivalent statement to the previous propo-
sition, namely invariance under S and T transformations.19 We arrive at the following theorem:

Theorem 2. Under the above conditions, the following are equivalent.

1. The net C has only the trivial superselection sector.

2. The µ-index µC is 1.

3. The matrix M has the intertwining property (4.3),

TLM = MTR, SLM = MSR.

Proof We first note that whenever we have an inclusion of the form AL(J+)⊗AR(J−) ⊂ C(O),
we also have an intermediate inclusion of algebras of the form

AL(J+)⊗AR(J−) ⊂ Amax
L (J+)⊗Amax

R (J−) ⊂ C(O) , (4.4)

see [63]. Equivalently, for any inclusion of the original form there is always a maximal chiral
extension providing an intermediate inclusion. Denoting by BL and BR the branching (gener-
ically rectangular) matrices relating the original chiral algebra with the maximal ones, we can
write the coupling matrix as

M = Bt
LM

maxBR , (4.5)

where Mmax is the coupling matrix for Amax
L (J+) ⊗ Amax

R (J−) ⊂ C(O). Note also that the
index of the inclusion AL(J+)⊗AR(J−) ⊂ C(O) is automatically finite, because AL and AR are
completely rational and thus [67, Proposition 2.3] applies. Equivalence between (1) and (2) has
been already proved in Proposition 1.

Now we prove that (2) implies (3). First, Corollary 3.2 in [6] says that M intertwines the
diagonal matrices of statistics phases. Let ∆L, ∆R, ∆max

L , ∆max
R , and ∆C be the systems of

18One can show that triviality of the two interval inclusion of algebras implies triviality of the n-interval
inclusion of algebras [7].

19In fact we remind that invariance under T transformations is ensured by locality of the net T , as discussed
above.
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irreducible DHR endomorphisms for AL, AR, Amax
L , Amax

R and C, respectively. We denote their
two interval indices indices, namely the square sums of the statistical dimensions in each of the
systems, by µL, µR, µmax

L , µmax
R , and µC , respectively. By Rehren’s result [63, Corollary 3.5], the

dual canonical endomorphism for the subfactor Amax
L (J+)⊗Amax

R (J−) ⊂ C(O) decomposes as

θmax =
⊕
r

σL
r ⊗ σ̃R

r . (4.6)

Here {σL
r } ⊂ ∆max,0

L and {σ̃R
r } ⊂ ∆max,0

R make closed subsystems of irreducible endomorphisms
with ∆max,0

L ⊂ ∆max
L and ∆max,0

R ⊂ ∆max
R . Also, the map σr 7→ σ̃r gives a fusion rule isomor-

phism. Therefore the indices of ∆max,0
L and ∆max,0

R are the same and we denote them by µ0.
We can then compute the index of the subfactor Amax

L (J+)⊗Amax
R (J−) ⊂ C(O). In [12] it was

shown that such index equals the dimension of the canonical endomorphism. Since dσr = dσ̃r ,
this dimension is then equal to µ0. We now use again Proposition 24 in [7], which was used
above in eq. 3.21. There it was shown that for two models T ⊂ C, the global (two interval)
indices of the two models satisfy the following relation

µT = λ2 µC . (4.7)

In the present scenario T → Amax
L (J+)⊗Amax

R (J−) and we obtain

µmax
L µmax

R = µC µ
2
0 . (4.8)

Since we seek to prove that (2), namely µC = 1, implies (3) we arrive at µmax
L µmax

R = µ2
0. We

also know that µ0 ≤ µmax
L and µ0 ≤ µmax

R due to ∆max,0
L ⊂ ∆max

L and ∆max,0
R ⊂ ∆max

R . Then we
have µ0 = µmax

L = µmax
R , which in turn implies ∆max,0

L = ∆max
L and ∆max,0

R = ∆max
R .

We conclude that if the extended model C has trivial index µC = 1, then the canonical
endomorphism contains all sectors in Amax. Then Corollary 3.8 in [6] gives the desired conclusion
based on Smax

L Mmax = MmaxSmax
R and proven by [73, Theorem 6.5].

Now we prove that (3) implies (2). First note that

Mmax = (Mmax
τσ )τ∈∆max

L ,σ∈∆max
R

(4.9)

contains a permutation matrix

(Mmax
τσ )

τ∈∆max,0
L ,σ∈∆max,0

R
= (δπ(τ),σ) . (4.10)

as a submatrix, where π gives the permutation, and the other parts of the matrix Mmax are
0. These arises from [63, Corollary 3.5]. Since we have the decomposition M = Bt

LM
maxBR,

assuming (3) we have
Bt

L(S
max
L Mmax −MmaxSmax

R )BR = 0 (4.11)

by [73, Theorem 6.5]. Note that for the branching matrix BR = (bR,σρ) with σ ∈ ∆max
R , ρ ∈ ∆R,

we have bR,σρ = ⟨αρ, σ⟩. Thus for ρ = 0, for ρ equal to the identity, we have bR,σ0 = δσ0. A
similar identity holds for BL. Then the (0, 0)-entry of the equation (4.11) gives SL,00 = SR,00.
Corollary 3.6 in [74] now shows that the entries of the matrix

R = (Rτσ) = Smax
L Mmax −MmaxSmax

R (4.12)

are given as follows:

Rτσ =


0, if τ ∈ ∆max,0

L , σ ∈ ∆max,0
R ,

Smax
L,τ,π−1(σ), if τ /∈ ∆max,0

L , σ ∈ ∆max,0
R ,

−Smax
R,π(τ),σ, if τ ∈ ∆max,0

L , σ /∈ ∆max,0
R ,

0, if τ /∈ ∆max,0
L , σ /∈ ∆max,0

R .

(4.13)
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Then the (0, σ)-entry of the product Bt
LR is now computed to be

(Bt
LR)0σ =

{
0, if σ ∈ ∆max,0

R ,
−Smax

R,0σ, if σ /∈ ∆max,0
R .

(4.14)

Since we have Bt
LRBR = 0, the entries of BR is non-negative, and Smax

R,0σ > 0, we have BR,σρ = 0

for σ /∈ ∆max,0
R and all ρ. This means that we have no σ /∈ ∆max,0

R and thus ∆max,0
R = ∆max

R .
Similarly, we have ∆max,0

L = ∆max
L . By the above arguments for (2) ⇒ (3), we know that this

implies µB = 1. □

4.3 Modular invariance and maximality of the extension

In this section we further show that if AL and AR have a certain natural symmetry property,
then the conditions in Theorem 2 are also equivalent to the maximality of the extension C of
AL ⊗AR. We study the Longo-Rehren subfactors [12] for this purpose.

We now assume that the 2-dimensional net C is invariant under the reflection x 7→ −x in
the Minkowski spacetime coordinates (x, t). This assumption in particular implies that we have
a natural identification AL = AR of the left and right chiral conformal nets. For this reason,
we now drop the superscripts L and R in the above notation. Then the decomposition (4.6) of
the dual canonical endomorphism for the subfactor Amax

L (J+)⊗Amax
R (J−) ⊂ C(O) is now of the

form
θmax =

⊕
r

σr ⊗ σr , (4.15)

where the system {σr} is a closed subsystem of irreducible endomorphisms with ∆max,0 ⊂ ∆max.
This gives an intermediate subfactor corresponding to the dual canonical endomorphism

θ′ =
⊕

σ∈∆max

σ ⊗ σ , (4.16)

arising from the Longo-Rehren subfactor. If we have ∆max,0 ̸= ∆max, this gives a proper ex-
tension of a 2-dimensional net C. Noting that the “only if” part is trivial, we have proved the
following

Theorem 3. Under the above conditions including the invariance of the 2-dimensional net C
under the reflection x 7→ −x, we have the three equivalent conditions in Theorem 2 if and only
if the net C is maximal with respect to irreducible inclusions of 2-dimensional nets.

5 Completeness and thermal partition function in higher dimensions

In this section, we make progress towards understanding how to detect failures of completeness
from the CFT data in higher dimensions. We will only discuss the case of Haag duality for
disjoint regions, or DHR completeness. This is the analog to the case studied above for d = 2.
In higher dimensions, the DHR theorem states that a non complete model T in this sense is the
fix point algebra of a complete model C under some compact symmetry group G, namely it is
always the case there is a group average ε : C → T . If the group is finite the global Jones index
is the size of the group |G|.
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Let us recall the salient features of the previous discussion to compare with a possible gener-
alization to higher dimensions. In d = 2 the partition function of the torus has the geometrical
modular symmetry for complete theories. In this case, since the low temperature expansion
(3.23) does not contain a constant term because of the discreteness of the spectrum, the same
is implied for the high temperature expansion (3.24). Then, any failure of completeness, that
breaks the geometric modular symmetry, will give place to a subleading term in (3.24). This
subleading term allows to read off cleanly the global index of the model.

In higher dimensions, the same type of geometric symmetries is expected for partition func-
tions in multi-torus topologies S1 × · · · × S1. The index will make a contribution to these
partition functions at high temperature, exactly as discussed in section 3. Unfortunately, these
partition functions are not related to the CFT data in a simple way and it is not known how to
compute them in a general case.

On the other hand, the partition function in the manifold Sd−1×S1 is the thermal partition
function for the theory on the cylinder. The Hamiltonian eigenvalues are directly related to the
field scaling dimensions. However, there is no geometric symmetry in this higher dimensional
case. This in turn does not allow to connect with the low temperature partition function. It
then does not forbid dynamical constant contributions in the free energy in the high temperature
limit. These possible contributions in principle would not allow to isolate the index from the
constant term.

However, there is a general argument suggesting that in even spacetime dimensions the
constant term is absent for complete theories. At large temperatures, the partition function is
dominated by local high energy excitations whose statistics is independent for spatially separated
points at distances larger than the thermal wavelength. Then, we expect an extensive leading
scaling of the free energy logZ = cd−1R

d−1 T d−1 + · · · , where cd−1 is an analog of the Stefan-
Boltzmann constant, and where R is the sphere radius. The subleading perturbative terms in the
large temperature expansion are expected to be local corrections, proportional to polynomials
on the curvature. There are also non perturbative corrections that are exponentially small at
high temperature. This framework is called the high temperature effective action [75–77]. The
curvature corrections introduce even powers R2k of the sphere radius, corresponding to powers
T d−1−2k in the large temperature expansion. For even dimensions, this does not contain a
constant term. For example, in d = 4, and setting R = 1, we will have20

logZ ≃ c3 T
3 + c1 T

1 + c−1 T
−1 + · · · (5.1)

For the neutral subtheory T , there are global constraints that go beyond this local effective
description. Then, for such subtheory T we will expect instead

logZ ≃ c3 T
3 + c1 T

1 − log |G|+ · · · (5.2)

For Lie group symmetry, a term logarithmic in the temperature is expected. And for different
irreducible representations, the same behavior as in 3.7 is also expected.

This neatly identifies the non completeness of the model from CFT data and, in this case,
only the spectrum of conformal dimensions is needed. This solves the problem, at least for even
dimensions. In contrast, for odd dimensions it is not possible to avoid dynamical constant terms
in the free energy logZ, and a finite index seems difficult to isolate.

20There are particular “pathological” exceptions such as the free scalar. One way to think about this is that in
the small S1 size, the dimensionally reduced theory in Sd−1 is generically gapped. This fails for the scalar which
contains a gapless sector [77, 78].
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The density of operators ρ(∆) as a function of scaling dimension is obtained from the partition
function as a Laplace anti-transform. The large ∆ regime involves a saddle point approxima-
tion in the regime of large temperature. Then, expansions of ρ(∆) for large ∆ depend on the
expansions of logZ(β) for small β. For finite index, the multiplicative change in Z leads to

log ρ ≃ log ρc − log |G| , (5.3)

where ρc is the density for a complete theory. The constant term changes the functional form
of the complete model and is recognizable by the knowledge of ρ itself. For example, in d = 2,
from the leading term including the prefactor in Cardy formula for a modular invariant theory
[79], we get

ρ ≃ 1

I

( c

96∆3

) 1
4
e
2π

√
c∆
6

(
1 +O(∆−1/2)

)
. (5.4)

The index can be identified from the density of states at large ∆ from the anomalous prefactor,
or from the constant term in the expansion

log ρ ≃ 2π

√
c∆

6
− 3

4
log∆ +

1

4
log(c/96)− log I +O(∆−1/2) . (5.5)

Expansions of the density of states for complete theories in higher dimensions are likewise
parametrized by the coefficients of the expansion (5.1) of the high temperature partition func-
tion, see [77]. The order of the group |G| of “missing symmetries” can be identified in the same
way from the anomalous constant coefficient in (5.3).

For Lie group symmetries we have a correction of the free energy that is logarithmical in the
temperature (3.48). This is not expected for complete models in odd or even dimensions and
hence gives a way to identify the non completeness in any dimensions in this case. In terms of
the density of states, the saddle point identification β ∼ ∆−1/d, gives

log ρ ≃ log ρc −
G (d− 1)

2 d
log(∆) . (5.6)

which also allows to detect the presence of an incomplete model from the anomalous coefficient
of the logarithmic term. For example, for d = 3 the logarithmic term for complete theories is
universally −4/3 log(∆) [77], and a Lie group orbifold would add the second term in (5.6).

As a final commentary, it is interesting to compare with the case of the entanglement entropy
of a sphere. This is equivalent to the computation of the partition function in a d-dimensional
Euclidean sphere [80]. Again, the index is expected to appear in the constant term of the
entanglement entropy [5]. In odd dimensions, this will be mixed up with the constant F term.
In even dimensions, although no universal constant term is expected (as the thermal partition
function above), there is a logarithmically divergent term due to the trace anomaly on the sphere.
This logarithmic term is absent for Sd−1 × S1 [77]. The uncertainty in the normalization of the
cutoff in the logarithmic term then ruins the identification of the index in the constant term
of the entanglement entropy. Still, such index appears clearly in the mutual information and
related quantities, as discussed above.

6 Discussion

In this article we have exposed the direct connections between modular invariance, locality, and
completeness. While T-duality is required for locality of the QFT, S-invariance is not. We have
seen that S-invariance is a form of completeness of the QFT. More precisely it is equivalent to
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the validity of Haag duality for generic regions, or to the absence of superselection sectors. From
the perspective of Haag duality, it admits a natural generalization to higher dimensions. These
connections have been explained using quantum information techniques, partition function with
insertions of topological defects, and the DHR theory of superselection sectors. We now wish to
discuss connections with other works and some open problems.

Quantum Field Theory Axiomatics: A general framework for a description of CFT’s
as relativistic quantum theories is given by the algebraic approach [51]. This incorporates as
basic elements the quantum operators and locality. Important advances in the understanding
and classification of CFT’s have been accomplished along this line of research, e.g [67, 81].
A parallel framework in terms of partition functions and Hilbert spaces, as in the approach
to topological field theories, has the advantage to put into first focus the geometrical aspects.
Segal’s axioms [82] offer such a purely geometrical description incorporating an associative fusion
algebra. One of the conclusions of this paper is that a purely geometric description in terms
of partition functions as in Segal’s axioms must correspond only to complete relativistic QFT
models. Non complete models contain additional elements on top of the geometry. But they are
perfectly sound as relativistic QFT. Equivalently, although associativity, closedness of the fusion
algebra and the fact that three-point functions are enough to solve the CFT follow nicely and
geometrically from Segal’s axioms, this does not mean that all CFT’s that satisfy those three
properties satisfy Segal’s axioms. It would be interesting to show that this completeness implicit
assumption is the only or main difference between both axiomatics when referring to CFT’s.

Partition functions and modular theory: There is an understanding of generic partition
functions in terms of the basic elements of the quantum theory. The simplest example is the
torus partition function which can be written in terms of the spectrum of the circle Hamiltonian.
Renyi entropies for integer n also establish such a connection for higher genus manifolds. In
this sense, it is interesting to note that there is no current understanding of Renyi mutual
informations in terms of mathematically well defined quantities in the quantum theory (except
for n = 1). It would be natural to explore integer powers of the modular operator in connection
to higher genus partition functions. There is also the interesting case of the Virasoro net for
c > 1 approached above. This does not satisfy strong additivity. A better understanding of
the origin of this property is needed for the construction of adequate partition functions, and of
Renyi mutual information, in this case. Another interesting observation is that for d = 2 CFT’s
Haag duality for two intervals implies Haag duality for any number of intervals [7]. This should
be reflected in that modular invariance for the torus partition function should imply modular
invariance of higher genus partition functions and be related to the uniqueness of the partition
function in more general topologies and geometries. In addition, notice that Haag duality is not
restricted to the vacuum state, and then one may be able to use it for other states representing
more general Euclidean geometries.

Generalized symmetries from bootstrap data: We have solved this problem here for
some cases with global symmetries. But of course, an interesting problem is to understand the
presence of, say, one-form symmetries, related to the violation of Haag duality in a ring, in the
bootstrap data. Haag duality for balls instructs us that this should be possible. For non-abelian
gauge theories in the lattice, the construction of non-abelian Wilson and ’t Hooft loops in terms
of local operators was described in [1]. It is an important open problem to find the footprints
of Wilson and ’t Hooft loops in the CFT bootstrap data. Similar questions have been pursued
in [83].

Towards a classification of QFT’s higher form symmetries: Regarding the classi-
fication of QFT’s there are various interesting questions related to the present work. Is any
consistent model T a submodel of a complete one C? We have seen this is the case for finite
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index in d = 2, where indeed this completion is non-unique and in general unrelated to a group.
For d > 2 it always exists and is unique for theories with DHR sectors in higher dimensions, this
is DHR theorem. This particular type of HDV for orbifolds can be eliminated by extending the
neutral theory to the charged one. This extension does not modify the vacuum correlators of the
neutral algebra. It does not seem to exist any extension that is additive and complete for higher
form symmetries in higher dimensions. Such a completion, that includes particles charged under
a gauge theory, would modify the vacuum correlators of the original algebra, and would not be
just an extension but a dynamical modification of the theory. Still, it is important problem to
classify the possible fusion categories arising for these type of generalized symmetries. In that
direction see [1] and forthcoming work [84].

Quantum Gravity: The necessity of modular invariance has appeared repeatedly in the
field of quantum gravity, and more particularly within String Theory, e.g. in the worldsheet
Polyakov formulation [85–87]. In such formulation one not only has a d = 2 CFT, but a
CFT coupled to gravity. These and other aspects bring the necessity of modular invariance.
More recently, e.g. [88–90], modular invariance has been used in relation with the weak gravity
conjecture [91] and other conjectures in quantum gravity such as the absence of generalized
symmetries [2, 92–94]. Our general results relating modular invariance and completeness might
then help to better understand the lack of global symmetries in quantum gravity, and potentially
provide a unified perspective on several features (e.g. necessary existence of particular brane
solutions) of string theory.
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