
Cognition 112 (2009) 229–240
Contents lists available at ScienceDirect

Cognition

journal homepage: www.elsevier .com/locate /COGNIT
A putative role for neurogenesis in neurocomputational terms: Inferences
from a hippocampal model

Victoria I. Weisz, Pablo F. Argibay *

Department of Theoretical Biology, Instituto de Ciencias Básicas y Medicina Experimental, Hospital Italiano de Buenos Aires, Potosí 4240 8�P,
C1199ACL Buenos Aires, Argentina

a r t i c l e i n f o
Article history:
Received 12 August 2007
Revised 5 May 2009
Accepted 5 May 2009

Keywords:
Computational model
Neurogenesis
Hippocampus
Episodic memory
Hebbian learning
0010-0277/$ - see front matter � 2009 Elsevier B.V
doi:10.1016/j.cognition.2009.05.001

* Corresponding author. Tel./fax: +54 11 4959020
E-mail address: pablo.argibay@hospitalitaliano.o
a b s t r a c t

New neurons are generated daily in the hippocampus during adult life. They are integrated
into the existing neuronal circuits according to several factors such as age, physical exer-
cise and hormonal status. At present, the role of these new neurons is debated. Computa-
tional simulations of hippocampal function allow the effects of neurogenesis to be
explored, at least from a computational perspective. The present work implements a model
of neurogenesis in the hippocampus with artificial neural networks, based on a standard
theoretical model of biologically plausible hippocampal circuits. The performance of the
model in retrieval of a variable number of patterns or memories was evaluated (episodic
memory evaluation). The model increased, in a phase subsequent to initial learning, the
number of granular cells by 30% relative to their initial number. In contrast to a model
without neurogenesis, the retrieval of recent memories was very significantly improved,
although remotes memories were only slightly affected by neurogenesis. This increase in
the quality of retrieval of new memories represents a clear advantage that we attribute
to the neurogenesis process. This advantage becomes more significant for higher storage
loads. The model presented here suggests an important functional role of neurogenesis
on learning and memory.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

The role of the hippocampus and other structures of the
medial temporal lobe in episodic memory formation have
been discussed extensively in the literature (Eichenbaum,
2000, 2004; Maguire, 2001). Their function enables event
codification and event retrieval by conjugating information
coming from distinct association cortices in the temporal,
parietal and occipital lobes (Eichenbaum, 2000). In the
dentate gyrus of hippocampal formation, proliferation of
neuronal precursors has been reported as an important
characteristic (specifically in the subgranular zone). Some
of these precursors then differentiate into granular cells,
which are functionally integrated into already established
circuits (Gould & Gross, 2002; van Praag et al., 2002) (for
. All rights reserved.
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a complete review, see Ming and Song (2005)). However,
the true physiological relevance of adult neurogenesis
and its clinical potential remains unclear in some cases
(Scharfman & Hen, 2007).

Two mutually exclusive hypotheses can be proposed
regarding hippocampal neurogenesis:

1. Neurogenesis is a vestigial process without functional
relevance.

2. Neurogenesis has a specific role in hippocampal
function.

Among other methods, mathematical models provide a
method for generating experimental and verifiable hypoth-
eses in order to elucidate biological functions. The hippo-
campus is eminently amenable to such mathematical
modeling. It has a structure which has been relatively pre-
served across the phylogenetic scale and a network
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architecture which is relatively easy to simulate through a
neurocomputational approach. The present work is based
on the computational theory of the hippocampus and its
simulation as proposed by (Rolls, 1995; Rolls & Treves,
1998; Treves & Rolls, 1994), and introduces neurogenesis
into a hippocampal model. This model, comprised of bio-
logically plausible artificial neural networks (e.g., simulat-
ing anatomical structures), is intended to generate
hypotheses concerning the role that new neurons could
have in hippocampal function.

An exhaustive review of hippocampal function, compu-
tational modeling of the hippocampus, or adult neurogen-
esis, is beyond the remit of this paper; see recent work by
Becker (2005), Rolls and Kesner (2006), and Wiskott, Rasch,
and Kempermann (2006). The simulation we present here
models the generation of new neurons in the adult hippo-
campus as physiological event, so as to infer the effects of
neurogenesis on hippocampal function in relation to epi-
sodic memory. The question we addressed was how the
network’s retrieval capacity, understood as the number of
retrievable patterns representing unique events and con-
texts, could vary with these new neurons. Our hypothesis,
in line with the view that new neurons are implicated in
new learning, is that new neurons would help the hippo-
campal network to increase its efficiency in codifying and
storing episodic memory. Specifically, the process of neu-
rogenesis would increase the number of recent episodic
memories capable of being retrieved, with relatively few
neurons and sensitive to environmental requirements. Ex-
actly how this is achieved is something we return to below,
after detailing our simulations. For our analyses, the pat-
Fig. 1. Hippocampal connections. The main entrance to the hippocampus is m
dentate gyrus (DG) and to the CA3 subfield through the perforant pathway. W
subiculum. The axons from the dentate gyrus constitute the so-called mossy fib
and Schaffer’s collaterals, the former projecting to CA3 and the latter to CA1. Fro
loop (Amaral, 1993; Milner et al., 1998).
tern separation function we assumed for the dentate gyrus
was tested with and without neurogenesis.

2. Materials and methods

2.1. Generalities

The artificial neural network that models the episodic
memory formation in the hippocampus was based on its
main excitatory circuits (Fig. 1). The model includes the
entorhinal cortex (EC), the dentate gyrus (DG) and the hip-
pocampal subfields CA3 and CA1. These areas are inte-
grated in a non-reciprocal, unidirectional pathway
(Fig. 2). The subiculum was not modeled because we con-
sider it simply to be a route through which the memories
pass on their way back to the entorhinal cortex. It is not,
therefore, essential given the aims of the model.

The values used in the simulation were mainly taken
from Rolls (1995), with some modifications (see below).
We constructed a model which does not exhibit neurogen-
esis and which served as a control for evaluating the re-
sults of a model which does exhibit neurogenesis in a
subsequent stage. The code implementing the algorithms
and simulations presented here were developed on DELPHI
6.0 (using Object Pascal), running on a Pentium D 3.40 GHz
computer.

2.2. The hippocampal formation model

The model comprises 4 sub-networks reflecting the dif-
ferent regions modeled (EC, DG, CA3 and CA1). Its biologi-
ade through the entorhinal cortex (EC). The neurons in EC project to the
ith a different pathway, they also project to the CA1 subfield and to the
ers that project to CA3. CA3 emits two ramifications: recurrent collaterals
m CA1 and from the subiculum, the projections go back to EC, forming a



Fig. 2. Hippocampal model. The entorhinal cortex (EC), the dentate gyrus (DG), and the hippocampal subfields CA3 and CA1 are represented here. The cell
number, the connectivity and the sparseness of each region are shown in the figure (adapted from Rolls (1995)). In green, new granular cells (born in adult
life) are shown in DG. These new neurons will be introduced into the circuitry when modeling neurogenesis.
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cal plausibility rests in part on this reflection of the actual
architecture of the hippocampus. We assume different
functional roles for each region, as proposed by Treves
and Rolls. The network corresponding to a specific region
was designed to account for the specific, hypothesized
function of that region.

Thus, while the EC is the neural group for presenting in-
puts to, and outputs from, the hippocampus, the principal
region which presumably ‘‘stores” the different patterns or
memories is CA3, due to its remarkable recurrence (it is the
only region presenting this characteristic) which enables it
to function as an autoassociative network. This kind of net-
work enables the storage of single events (as distinct single
patterns) as well as the pattern completion function that is
required to restore a complete pattern when only a small
part of it is available as a cue. The theory also suggests that
the two input pathways to CA3 should have different func-
tions: the patterns to be stored would be presented
through the mossy fibers (coming from DG), while the
cue initiating memory retrieval would enter through the
perforant pathway (coming from EC) (Treves & Rolls,
1992).

Since an autoassociative network has a limited capacity
for storing patterns, it is desirable in order to maximize
this capacity that the patterns are as dissimilar as possible
(being stored as highly separated patterns), thereby avoid-
ing interference between them. This can be done in our
neurocomputational model by using a competitive net-
work implemented by the dentate gyrus (Rolls & Treves,
1998). The sparse coding in DG, mainly due to the highly
divergent input stream from EC to DG (Amaral, Ishizuka,
& Claiborne, 1990) has been assumed to support a pattern
separation function (Chawla et al., 2005; Treves & Rolls,
1992).

We chose a competitive network for CA1, given its puta-
tive categorization function that enables remapping and to
reorganization of the patterns. Finally, the last sub-net-
work performs pattern association between the outputs
of CA1 and the original inputs in EC.

The number of units in each region, the sparseness and
the connectivity between them, was adjusted to match in
prior experimental work (Amaral et al., 1990; Barnes,
McNaughton, Mizumori, Leonard, & Lin, 1990). We started
from the model of Rolls (1995), which was first tested with
these values and then scaled, to produce the same results,
to fit into a smaller final network. We made few changes to
that model in order to capture the main characteristics of
the regions being modeled. Specifically, we changed the
sparseness value in EC (in our model, the representation
in EC is now denser than that of DG), and the connectivity
of the CA1?EC pathway (our model does not have com-
plete connectivity). For the values used in the simulation,
see Fig. 2.

Memories were represented as random binary patterns
(each neuron firing with its minimal or maximal firing
rate). As mentioned above, an important parameter to bear
in mind when representing the firing patterns of the differ-
ent neural groups is their sparseness. In a sparse represen-
tation with binary neurons, less than half of the neurons
are active for any one stimulus or event. For binary neu-
rons, as in this model, we can use the proportion of neu-
rons in the active state as a measure of sparseness (Rolls
& Treves, 1998). For low sparseness, this measure is large.

2.2.1. The entorhinal cortex
The entorhinal cortex was simulated with 600 neurons.

The sparseness employed by the model for this neural
group was 0.1, i.e., each pattern was represented with 60
active neurons. The initial patterns (or memories to codify)
created in this region (created by setting the activity of
each neuron randomly to zero or one) constituted the in-
put to the first sub-network.
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2.2.2. The dentate gyrus
The dentate gyrus was represented with 1000 neurons.

The sparseness was set to 0.05 (50 active neurons per pat-
tern). The connectivity between these neurons and those of
the entorhinal cortex was 60 synapses per neuron, i.e., each
neuron of the dentate gyrus received afferent input from
60 neurons in the entorhinal cortex. The selection of these
connections was randomly made. Here, the perforant path-
way?dentate granule cells system acted as a competitive
learning network. Competitive learning removes redun-
dancy, so the output from the DG system will be less cor-
related and more categorized than the inputs to it from
the perforant pathway. Thus overlapping signals on the
perforant pathway will be separated before they reach
CA3.

Initially, the synaptic weights (wij) between EC and DG
were random (a random function between 0 and 1) and
scaled in such a way that they had a maximum value of
7 (an arbitrary scaling value that was constant across all
the weights). This scaling tends to prevent winning neu-
rons from being always the same and it can be thought
as responding to homeostatic mechanisms of synaptic scal-
ing (Meltzer, Yabaluri, & Deisseroth 2005). This normaliza-
tion was effected by Eq. (1):

wEC�DG
ij ¼

wEC�DG
ij

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
j¼1 wEC�DG

ij

� �2
r ð1Þ

Here, the first subscript (i) refers to the receiving neu-
ron in DG and the second subscript (j) to a particular input
to that neuron via a synapse of weight wij in EC; n is the
number of neurons in EC. For the output pattern genera-
tion, the activation of each neuron i in DG (denoted hDG

i )
was evaluated following the Eq. (2):

hDG
i ¼

Xn

j¼1

rEC
j wEC�DG

ij ð2Þ

where rEC
j is the firing rate of the jth input in EC to that neu-

ron. The letter r is used to indicate that the inputs and out-
puts of real neurons are firing rates.

The activation function in DG was a binary threshold.
The winning neurons for each input pattern were those
exceeding the threshold set by the sparseness of the region
(i.e., the 50 neurons having the highest activation). The
neurons not exceeding this threshold were set to 0 (repre-
senting inactive neurons). Finally, the outputs were nor-
malized. The interneurons of the region would be in
charge of carrying out this competition and of maintaining
the firing rates within the established limits (Freund &
Buzsáki, 1996; Moser, 2003).

During learning, the synaptic weights were modified
according to the modified Hebb’s rule (3), a biologically
plausible rule which includes weight normalization, neces-
sary in competitive networks to ensure that one or a few
neurons do not always win the competition:

dwEC�DG
ij ¼ k � rDG

i � rEC
j �wEC�DG

ij

� �
; k ¼ 0:5 ð3Þ

where rEC
j is the presynaptic term, rDG

i the postsynaptic
term and k the learning rate. Such a modification in synap-
tic strength is termed heterosynaptic long-term depression
(LTD) in the neurophysiological literature (Rolls & Treves,
1998).

2.2.3. The CA3 subfield
This second sub-network, which implemented the auto-

association of the inputs coming from the dentate gyrus,
specifically constituted the codifying site. The region was
represented with 1000 neurons and a sparseness of 0.05.
Three kinds of inputs were distinguished here: those com-
ing from the dentate gyrus (via the mossy fibers), those
coming from the entorhinal cortex (via the perforant path-
way), and those coming from CA3 (via its self-connec-
tions). The number of synapses per neuron from each
kind of input was 4, 60, and 200, respectively.

According to Rolls’ theory these inputs would have dif-
ferent functions (Rolls & Kesner, 2006; Treves & Rolls,
1992), considered in the following way: During learning,
the memories to be codified and stored in CA3 were pre-
sented by the mossy fibers. The connection weights be-
tween the dentate gyrus and CA3 were fixed (wDG�CA3

ij =1),
since it was empirically found that these synapses are
modifiable, but not in an associative or Hebbian way (Bliss
& Collingridge, 1993; Milner, Squire, & Kandel, 1998). On
the other hand, the weights wCA3�CA3

ij in CA3 (the synaptic
efficiencies of the recurrent connections) were calculated
by the covariance rule (4), a Hebbian-type associative
learning rule:

wCA3�CA3
ij ¼

PN
p¼1

k � ðrp
i ��riÞ � ðrp

j ��rjÞ 16 i;j6neuronsCA3;i – j

0 16 i; j6neuronsCA3; i¼ j

8><
>:

ð4Þ

where rp
i : Firing rate of the ith neuron in the pth pattern

that the network has to learn (total input from DG), �r:
Mean firing rate of a single neuron in CA3 along the
complete set of patterns, neuronsCA3: Number of neurons
in CA3, N: Number of patterns to learn.

The synapses originating in the entorhinal cortex
constituted the presentation pathway for the cues that
initiated the retrieval. Their synaptic weights wEC�CA3

ij were
modified during the learning phase according to the
covariance rule (5), which compared the patterns stored
in CA3 with those original patterns in the entorhinal
cortex:
dwEC�CA3
ij ¼ k � ðrCA3

i � �rCA3
i Þ � ðrEC

j � �rEC
j Þ; k ¼ 6:7 ð5Þ

Again, �r is the mean firing rate of a single neuron along
the complete set of patterns. Neuron activations in CA3
were calculated according to:

hCA3
i ¼ kDG�CA3 �

Xx

j¼1

rDG
j wDG�CA3

ij þ kEC�CA3

�
Xy

j¼1

rEC
j wEC�CA3

ij þ kCA3�CA3 �
Xz

j¼1

rCA3
j wCA3�CA3

ij ð6Þ
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The three components here correspond to the three in-
put pathways (mossy fibers, perforant pathway and recur-
rent collaterals with x, y, and z connections, respectively).
During the learning phase, only the input from the
dentate gyrus was considered ðkDG�CA3 ¼ 1; kEC�CA3 ¼ 0;
kCA3�CA3 ¼ 0Þ. During the retrieval phase, the two other
pathways were considered ðkDG�CA3 ¼ 0; kEC�CA3 ¼
1; kCA3�CA3 ¼ 1Þ. The activation function of the neurons in
CA3, which determined their firing rates or outputs r,
was a binary threshold. The threshold was fixed by the
sparseness, as it was in the dentate gyrus.

Once the cues that initiate retrieval were presented, the
recurrent synapses were the only synapses modified dur-
ing the retrieval phase. The learning rule governing the
weight change was the covariance rule (7):

dwCA3�CA3
ij ¼ k � ðrCA3

i � �rCA3
i Þ � ðrCA3

j � �rCA3
j Þ; k ¼ 2 ð7Þ

We made this choice because of the need for a rule which
included LTP and LTD (Rolls & Treves, 1998). This network
was allowed to repeat this recurrent collateral loop 15 times.
Each time the loop operated, the output firing pattern be-
came more like the originally stored pattern. After the itera-
tions, this progressive recall was usually complete.

2.2.4. The CA1 subfield
The third sub-network was composed of the neurons of

CA1. The inputs to these neurons came from CA3 (Schaffer
collateral synapses). The CA1 subfield was represented
with 1000 neurons, a sparseness of 0.05 (50 active neurons
per pattern) and a randomly selected connectivity to CA3
of 200 synapses per neuron. This network carried out com-
petitive learning, as suggested by its anatomical and phys-
iological characteristics, implemented in the same way as
in the dentate gyrus (random and normalized weights, a
binary threshold activation function with threshold set
by the sparseness in CA1, and a modified Hebb’s rule).
The learning rate was set to 0.5. Here, competitive learning
might result in neurons that represent conjunctions of
‘‘whole scenes” or episodic memories in CA3, resulting in
a more effective representation that facilitates retrieval
to the neocortex (Treves & Rolls, 1994).

Regarding this subfield, we can state that although the
model does not take into account the contribution of the
direct perforant pathway into CA1 (it is not taken account
in most published models (see discussion) nor in Rolls’
simulation), we consider that such a contribution would
not interfere with the effects of neurogenesis. However,
most likely it could be taken into account in future studies
to improve the hippocampal model.
2.2.5. Pattern association between CA1 and the entorhinal
cortex

In this last stage, the outputs from CA1 were associated
with the patterns stored in EC (the former as conditioned
stimuli and the latter as unconditioned stimuli). For this
to occur, the weights of these connections were calculated
during the learning phase. They were originally set to zero
and were modified as the different patterns were pre-
sented, according to the modified Hebb rule already
introduced:
dwCA1�EC
ij ¼ k � rEC

i � ðrCA1
j �wCA1�EC

ij Þ; k ¼ 1 ð8Þ

The connectivity between CA1 and EC was set to 200
synapses per neuron. Again, the activation function em-
ployed was the binary threshold, where the threshold
was given by the sparseness in EC.

2.2.6. Pattern separation in the dentate gyrus
In order to verify the hypothesis that the dentate gyrus

does produce pattern separation, the output of the dentate
gyrus was analysed in the simulation once the complete
set of input patterns was presented in the entorhinal cor-
tex. This pattern separation function would consist in
transforming the memories to make them more dissimilar,
facilitating their storage as distinct representations.

The more dissimilar the patterns are, the more sepa-
rated they are. The similarity between patterns in the
entorhinal cortex and in the dentate gyrus was estimated
by building a similarity matrix S for each group. Each sim-
ilarity matrix gives us an idea of how separated or similar
the patterns are in that region. Then, the infinity norm
Norm(S) was calculated as a way of establishing a unique
magnitude with which to estimate the size of the matrices
(similar to the norms for vectors) for comparative pur-
poses. Ideally, for dissimilar patterns Norm(S) should be
small.

The similarity matrix S that estimates the similarity be-
tween patterns in a single layer or neural group was built
as follows:

S ¼

hp1;p1i hp1;p2i hp1;p3i . . . hp1;pNi
hp2;p1i hp2;p2i hp2;p3i . . . hp2;pNi

hp3;p1i hp3;p2i hp3;p3i . . . ..
.

..

. ..
. ..

. ..
.

hpN�1; pNi
hpN ;p1i hpN ;p2i . . . hpN ;pN�1i hpN ;pNi

2
666666664

3
777777775
ð9Þ

where hpx; pyi is the dot product between px and py (repre-
senting their distance), and where p1, p2, p3 . . ., pN are the
representations of the N patterns for that group (here, EC
or DG).

For each matrix SEC and SDG (similarity matrixes in EC
and in DG, respectively) the infinity norm, mathematically
defined by:

NormðSÞ ¼max
i

X
j

jsijj
( )

ð10Þ

was calculated. By this definition, this norm is the maxi-
mum of the sums obtained by adding the absolute values
of the elements in each row. Finally, Norm(SEC) and
Norm(SDG) were compared.
2.3. The neurogenesis model

Starting from the hippocampal model presented above,
the network’s learning proceeded with a given number of
patterns or memories (pre-neurogenesis stage). The neuro-
genesis phase was then implemented by incorporating 30%
of the initial number of neurons in the dentate gyrus, i.e.,



1 By a pattern we mean a binary code representing a unique, single event.
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300 new neurons, while maintaining the preset sparseness
level of the dentate gyrus. This percentage, representing
the neurogenesis rate in rats accumulated along an indi-
vidual’s life, was chosen to take into account the following:
(1) different studies have suggested different rates, ranging
from 10% to 40%, as referred by Wiskott et al. (2006); (2)
rates are extremely variable, by animal strain and living
conditions (i.e., lab-kept vs. living in the wild); (3) depend-
ing on how you define neurogenesis (e.g., proliferation or
survival), the rates will differ. This study requires survival
rates; nevertheless the main reported ones are based on
proliferation rates. In our model, the neurogenesis phase
was modeled with a net increment in the number of cells;
this is distinct from studies where neuronal turnover was
considered to be what really occurs and where the final
number of cells does not change. This issue remains con-
troversial, with no established consensus so far (Meltzer
et al., 2005; Wiskott et al., 2006).

In the second stage (post-neurogenesis), the network
was trained again with new patterns (new episodic mem-
ories) which were created using the same methodology
used in the pre-neurogenesis stage. Learning new patterns
implied the adaptation of synaptic strengths with different
forces depending on whether the synapses were old or
new. This implementation was chosen because the new
synapses appear to be more plastic in biological hippocam-
pus, where they present an LTP induction threshold lower
than the one of mature neurons (Schmidt-Hieber, Jonas, &
Bischofberger, 2004; Snyder, Kee, & Wojtowicz, 2001;
Wang, Scott, & Wojtowicz, 2000), though the older dentate
granule cells still exhibit LTP. As we shall see later, this dis-
tinction also allowed the new neurons to become more ac-
tive for new patterns than for the old ones, as reported in
recent work (Bischofberger, 2007; Kee, Teixeira, Wang, &
Frankland, 2007).

In the model, the new neurons established connections
with the entorhinal cortex and with CA3, using the same
connectivity values employed in the pre-neurogenesis
stage (Fig. 2, in green). Since each neuron in the dentate
gyrus is connected with approximately 15 neurons in
CA3 in the real hippocampus (Amaral et al., 1990), each
unit in CA3 received only 5 connections from the new neu-
ral group in DG ½ð300� 15Þ � 1000� in the model. Also, as
in the first stage, each new neuron in DG in the model re-
ceived 60 synapses from EC. The precise way by means of
which the new neurons are integrated into the existing cir-
cuits has not been studied yet. An exhaustive physiological
and anatomical analysis is still required.

After creating new, random patterns in the EC, the
activity in each region was computed and propagated in
the same way and with the same formulae as used in the
pre-neurogenesis stage (implementing competition in
DG, autoassociation in CA3, competition in CA1, and pat-
tern association in CA1-EC). Weight modifications, due to
the learning of the new patterns, were also implemented
using the same formulae as used in the first stage. The
main point here was that the synapses from DG to CA3
were updated with different learning rates, depending on
the kind of synapse (old: k ¼ 0:25; new: k ¼ 0:5), thereby
taking account of biological constraints. Moreover, the
weight matrices where the new associations were added
or stored were no longer null or random; they were the
weight matrices calculated from the patterns stored in
the previous stage.

3. Results

The entire network was trained with different numbers
of patterns1 (N) or learning exemplars that enabled us to as-
sess the retrieval quality of the model vs. the network stor-
age load, i.e., as a function of the number of patterns that
were stored in the hippocampus. To evaluate retrieval, cues
composed of 5%, 10%, 15%, etc., up to 100% of the original
patterns that had been presented in EC were, again, pre-
sented in EC as inputs.

The cue’s remainder was completed with zeros (like a
mask) to permit its biological plausibility, representing
the missing aspects of the context. To analyse how similar
the cue was to the original pattern presented in EC, the lin-
ear correlation coefficient between the cue and its original
pattern was calculated for each network input (input cor-
relation). The retrieved pattern in EC constituted the net-
work output, for which its linear correlation with the
stored pattern was calculated again (output correlation).
This last value, indicating how similar the output is to
the original memory, measured the retrieval quality. The
correlation value will range from 0 for absolutely different
patterns to 1 for identical patterns.

Because each memory was presented just once and in
sequence, the output correlation shown in the figures
was the averaged for the ten first (remote), or the ten last
(recent), memories presented to the network; this allowed
us to distinguish between remote and recent memories.

3.1. The hippocampal formation model

3.1.1. Pattern retrieval and system variability
Fig. 3A shows a representative curve of pattern retrieval

with the network storing N = 50 patterns (mean and stan-
dard deviation, n = 20 trials). The curve represents the re-
trieval in EC as a function of the cue quality (output
correlation vs. input correlation), once the complete net-
work has fully operated. An output larger than an input
(above the diagonal line) indicates effective retrieval,
meaning that the network was able to restore part of the
missing context. The variation among trials (creating mul-
tiple individualized networks from a generic one) was due
to the fact that initial weights in the networks (represent-
ing synaptic efficacy) were random, as were the generated
patterns. These differences among initial weights represent
intersubject variability.

Fig. 3B shows that the retrieval quality (here estimated
with the mean output correlation) decreased as the net-
work was exposed to a larger number of patterns. The fig-
ure also shows that the network was effective in retrieving
patterns until a specific number of them were stored (we
will name this specific number the ‘critical limit’, here
Nc�100). Beyond this point, the information added to the
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cues was null (mean output correlation6mean input
correlation).
3.1.2. Pattern separation in the dentate gyrus
Fig. 4 shows the values for Norm(S) both in EC and in DG

for a representative case (N = 50 patterns). After the pas-
sage from EC to DG, a significant decrease in the similarity
Fig. 3. Hippocampal model: pattern retrieval in the entorhinal cortex. (A) Rep
standard deviation, n = 20 trials). The retrieval in EC is shown as a function of the
fully operated. For each cue (ranging from 5% to 100% of the complete pattern)
against the input correlation (output correlation: correlation between the outpu
and the original pattern). An output larger than an input (above the diagonal) in
load.

Fig. 4. Pattern separation in the dentate gyrus. To show how the pattern sep
similarity between patterns Norm(S) is shown for both regions.
between patterns is seen between these two groups, con-
firming the pattern separation function in DG.

3.2. The neurogenesis model

3.2.1. Pattern retrieval
Once the neurogenesis process had been modeled (and

the network trained with N1 patterns in the pre-neurogen-
resentative curve for pattern retrieval with N = 50 patterns (mean and
cue quality (output correlation vs. input correlation) once the network has
the output correlation (here measuring the retrieval quality) was plotted
t and the original pattern; input correlation: correlation between the cue
dicates effective pattern retrieval. (B) Mean output correlation vs. storage

aration degree varies from EC to DG, the measure used to estimate the
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esis stage and N2 patterns in the post-neurogenesis stage),
the results of this model were compared with those of the
previous hippocampal model (lacking neurogenesis). In or-
der to do this, we set the same total number of stored pat-
terns in each case (N = N1 + N2 ; where N1 equals the
number of stored patterns in the pre-neurogenesis stage,
N2 equals the number of stored patterns in the post-neuro-
genesis stage and N equals the total number of stored pat-
terns). Also, the proportion N1 = N2 = N/2 held constant as
the number of patterns increased.

Fig. 5 shows how neurogenesis increased significantly
the retrieval of recent memories (the last ten memories).
On the other hand, although neurogenesis affected the re-
trieval of remote memories (the first ten memories), its im-
pact was smaller. Again, as we increased the storage load
in the model with neurogenesis, we arrived at a new criti-
cal limit (Nc�250), beyond which retrieval was no longer
efficient, as previously stated.

3.2.2. Effect of the initial size of the dentate gyrus in pattern
retrieval. Comparison with the effects of neurogenesis

The observed increase in retrieval might be due to the
fact that the number of neurons in the dentate gyrus in-
creased. We hypothesize that these new neurons, incorpo-
rated into the circuitry during adult life and presenting
characteristics which make them different from the pre-
existing neurons, present some advantages beyond the
mere presence of more neurons from the beginning. To test
this hypothesis, the model was ran with an initial size of
Fig. 5. Effects of neurogenesis on pattern retrieval. The retrieval quality was es
standard deviation, n = 20 trials). The same curves as in Fig. 3B are plotted for rec
for the ten first stored) (B), and then compared with the control cases (without ne
case, the number of stored memories in the pre- (N1) and post-neurogenesis stag
patterns).
1300 neurons in DG (the same number as the final value
with neurogenesis) and these results were compared with
those shown in Fig. 5. The 3 conditions (no-neurogenesis,
DG = 1300 neurons; no-neurogenesis, DG = 1000 neurons;
neurogenesis, DG = 1000 + 300 neurons) were merged in
Fig. 6. We see there that an initial increase in the number
of units does not change significantly the pattern retrieval.
This fact demonstrates that the neurogenic process in DG is
more efficient (when evaluating retrieval) that the simple
addition of new neurons from the very beginning.

3.2.3. New granule cells and pattern separation
Our hypothesis at the outset of this work was that new

neurons improve retrieval by separating patterns in the
dentate gyrus to a greater extent than would be possible
on the basis of the old granule cells alone. In order to test
this hypothesis, we built the similarity matrixes SEC and
SDG again (post-neurogenesis) and calculated Norm(S) for
each. The results are shown in Fig. 7. Surprisingly, the
new neurons did not increase the distance between pat-
terns. The analysis and implications of this are discussed
in the next section.

If we look at the activity patterns for old and new neu-
rons in the dentate gyrus when representing remote and
recent memories, we can see that the new neurons were
statistically more active for the new patterns than for the
old ones. This can be quantified by averaging the number
of new neurons which are activated for new memories. If
all granule cells in DG have the same probability of being
timated by the mean output correlation for each storage load (mean and
ent memories (mean for the ten last stored) (A) and for remote ones (mean
urogenesis, recent and remote memories). When testing the neurogenesis
es (N2) were the same (N1 = N2 = N/2) for each value of N (total number of



Fig. 6. Adding more neurons after the initial storing is more efficient on recent memories than starting with the same number of neurons with no new
additions. The efficiency of 300 more neurons added after storing was compared: (a) control case (1000 neurons in DG. Fifty patterns stored); (b) more
initial neurons (1300 neurons in DG. Fifty patterns stored) (non-neurogenic condition); (c) more neurons by neurogenesis (initial number of neurons in
DG = 1000. Once the first 25 patterns were stored, 300 neurons were added. Finally, the remaining 25 patterns were stored) (neurogenic condition). The
efficiency of new neurons can be assessed by the increase in retrieval (difference between mean output correlations) for the neurogenic and non-neurogenic
conditions when compared with the control case. (A) Recent memories. (B) Remote memories. (Open arrows indicated an statistical difference; p < 0.001)
(Filled arrows indicated an statistical difference of p < 0.05) ANOVA test, n = 20 trials.
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activated (this probability is given by the sparseness of the
representation in DG), then this average number would be:

Number of activated new neurons

¼ Number of new neurons� SparsenessDG

¼ 300� 0:05 ¼ 15 ð11Þ
Fig. 7. Effects of new granule cells on the pattern separation function
performed in the dentate gyrus. The estimate of similarity among
patterns Norm(S) in the entorhinal cortex (EC) (p > 0.05, ‘‘t” test) and
the dentate gyrus (DG) (p < 0.05, ‘‘t” test) is shown for the neurogenesis
and no-neurogenesis conditions.
For n = 20 trials and using a representative case
(N = 25 + 25, i.e., 25 patterns in the pre-neurogenesis stage
and 25 patterns in the post-neurogenesis stage), this value
was:

Number of activated new neurons

¼ 20:93� 0:55 ðMean� SDÞ;

i.e., a higher number than shown in (11). As we have al-
ready seen, a higher activation of new neurons was an
important condition of the model from the perspective of
its biological plausibility.
4. Discussion

It has long been recognized that the hippocampus par-
ticipates in cognitive processes such as learning and mem-
ory. Equally, some studies suggest that it is possible that
the addition of new neurons (adult neurogenesis) in this
region could serve as a mechanism towards brain plasticity
(Shors et al., 2001). New neurons are known to have special
characteristics through which they are thought to have an
important role in dentate gyrus plasticity (Snyder et al.,
2001). Specifically, the new granular cells seem to have a
smaller LTP and LTD induction threshold, leading to a bi-
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directional improvement of plasticity (Ge, Yang, Hsu, Ming,
& Song, 2007; Schmidt-Hieber et al., 2004; Song et al.,
2005; Wang et al., 2000). However, current data are insuf-
ficient to determine the precise functional role of neuro-
genesis and the relationship between the generation of
new neurons, synaptic plasticity and memory. Beyond
the obvious necessity of biological experiments, it is
widely recognized that in order to model some forms of
memory, biologically plausible neural networks are a use-
ful tool.

4.1. Modeling neurogenesis in the dentate gyrus

Our analyses in this study have focused on a specific
moment in the adult life of the subject being modeled. At
this specific moment, the subject has a large number of
mature neurons and a lesser number of new neurons that
are being incorporated into the circuitry, and, critically,
are being incorporated after previous learning has taken
place. The model is applied to this time window when
the new neurons present their characteristic hyperplastic-
ity while the mature neurons remain normo-plastic. Of
course, outside this time window these conditions change.
As time goes by, these new neurons mature and other new
neurons arise, recreating at this later time, the situation we
have modeled. Beyond our chosen time window, we
hypothesize that the impact of new neurons on learning
would be qualitatively the same as that we have observed
here, albeit with higher or lesser strength.

With respect to the actual process of neurogenesis, and
contrary to our implementation in the model, we do not
wish to imply a sudden one-off lifetime ‘‘dose” of neuro-
genesis. Our implementation as such was intended purely
as an approximation on which basis to test our hypotheses.

The neurogenesis phase was implemented in the dentate
gyrus but in no other hippocampal subfields, because
although it is known that neurogenesis does occur here,
the comparison with a network that does not present neuro-
genesis in this region has been neither predictable nor quan-
tifiable. In contrast, for an autoassociative network, which is
the hypothetical case for CA3, it has been shown that the
number of different patterns that the network can store
and recall correctly depends more on the sparseness of the
representation and on the number of connections to each
neuron devoted to the recurrent collaterals than on the net-
work’s effective nodes (Rolls & Treves, 1998).

Briefly, our results indicate that:

1. Neurogenesis enables an important increase in the
capacity of the hippocampus to retrieve recent memo-
ries. It also decreases the retrieval of remote memories,
but to a lesser extent. These data seems to indicate that
neurogenesis increases network capacity for new
information, while increasing the forgetting of old
information. However, this hypothesis would need to
be confirmed in future in silico and in vivo
experimentation.

2. The effect of neurogenesis on recent memories is not
merely an additional effect due to the presence of more
processing units. Neurogenesis represents a successive,
dynamic adaptation to environment.
3. The above mentioned effects of neurogenesis are likely
to be more significant for higher storage loads (i.e., with
a larger number of patterns to be stored).

It is important to note that simply starting with a larger
number of neurons or indiscriminately adding others does
not have the same consequences. The question is how and
with which unique properties the new neurons added
through neurogenesis (which are only a few and which be-
come fewer with time) can make a difference to the net-
work’s performance without interfering with the
information it had previously stored. We explored this is-
sue by using different learning rates (standing for different
levels of plasticity) for old vs. new neurons. The values fi-
nally chosen in the model were in accordance with empir-
ical findings regarding greater plasticity and greater
general activation for new neurons (Bischofberger, 2007;
Ge et al., 2007; Kee et al., 2007).

Some important conclusions can be drawn from these
results, in line with the predictions derived from a theoret-
ical analysis of the effect of adding new units in the man-
ner we adopted for our model: First, neurogenesis is not
performing a sparse coding here; this is the general func-
tion of dentate gyrus, with or without neurogenesis (in
the model, the sparseness before and after neurogenesis
was the same). Second, the new neurons are not perform-
ing pattern separation in general; they are only implicated
in the representation of new patterns, and there will thus
be less overlap between remote and recent memories –
their higher general activation for new patterns will in fact
cause increased overlap among new patterns.

In conclusion, it would seem that the new granule cells
engage in the representation of events that occur during
the time window when they are still immature, presenting
the special characteristics described above, enabling there-
by the establishment of associations between memories
close in time. Moreover, neurogenesis increases the num-
ber of retrievable codes, especially those for memories
formed during the given time window.

4.2. Compatibility of the model with empirical data

Several experimental studies have demonstrated that
neurogenesis is specifically affected by, and potentially in-
volved in, associative memory formation, a fact that supports
our results (Gould, Beylin, Tanapat, Reeves, & Shors, 1999).
Interestingly, empirical evidence of improved memory re-
trieval scores when inducing neurogenesis in an animal
model has recently been reported (Pourié et al., 2006). Fur-
thermore, several authors have also reported that decreasing
neurogenesis in young rats is correlated in time with a deficit
in retention of hippocampus-dependent memories (Rola et
al., 2004; Snyder, Hong, McDonald, & Wojtowicz, 2005).
Regarding our hypothesis, this decrease would correspond
to a failure in the adaptation mechanism provided by neuro-
genesis for new environmental requirements.

It is important to bear in mind that in our model, the ben-
efits would be more noticeable in the long-term, when the
number of stored memories is larger, a fact already observed
in experimental reports (Pourié et al., 2006). In this respect,
the role recently attributed to neurogenesis by Snyder et al.
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in the long-term spatial memory formation (Snyder et al.,
2005) is consistent with our hypothesis. This fact might also
justify the discrepancies among empirical results on the
relationship between neurogenesis and learning. The
advantages attributed to neurogenesis in hippocampal-
dependent learning tasks have not been observed in all stud-
ies (Doetsch & Hen, 2005; Feng et al., 2001; Shors, Townsend,
Zhao, Kozorovitskiy, & Gould, 2002). In our model, for low
storage load, the cases with and without neurogenesis gave
similar results in terms of memory retrieval, probably indi-
cating that the required volume of information is adequately
supported by the pre-existing neurons.

4.3. Compatibility of the model with clinical data

Aging and depressive disorders target the hippocampal
formation and are often accompanied by impairments in
forming new memories (Suzuki, 2007; Wilson, Gallagher,
Eichenbaum, & Tanila, 2006). Moreover, the capacity to
generate new neurons decreases dramatically with aging
(Heine, Maslam, Joels, & Lucassen, 2004; Kuhn, Dickin-
son-Anson, & Gage, 1996). How this decrease occurs is
not fully understood, but we hypothesize that the results
generated by our model could explain the physiological
role of neurogenesis in aging. The association between
declining hippocampal neurogenesis and cognitive dys-
functions in normal aging has also been assumed in at least
one recent study (Montaron et al., 2006).

Regarding depression, antidepressant treatments in-
crease adult hippocampal neurogenesis, and there is some
evidence that the inhibition of neurogenesis blocks behav-
ioural responses to antidepressants (Santarelli et al., 2003).
Coping with a novel environment needs both the effects of
antidepressants and an intact capacity to produce new
neurons in the DG of the hippocampus. Finally, there is
some evidence that indicates that the functional disorgani-
zation in the hippocampus in schizophrenic patients could
be related to major difficulties when coping with new
events (Boyer, Phillips, Rousseau, & Ilivitsky, 2007). The
relationship between neurogenesis and schizophrenia is
supported to some degree by clinical diagnostic imaging
techniques, as well as by animal models such as reelin
and NPAS3 knockout mice. It has been suggested that al-
tered neurogenesis may lead to erroneous temporal encod-
ing of new memory traces, thereby contributing to the
cognitive deficits observed in schizophrenia (Reif, Schmitt,
Fritzen, & Lesch, 2007). Interestingly, it has recently been
suggested that neurogenesis plays a role in the encoding
of time in new memories (Aimone, Wiles, & Gage, 2006).

4.4. Other computational approaches. Future directions

Several computational models have attempted to
hypothesize the function of adult-born neurons. Most of
them share the view, as do we, that new neurons could be
necessary for the hippocampus to adapt to new environ-
mental requests, allowing it to cope in the face of novelty
and a growing volume of information (Becker, 2005; Cham-
bers & Conroy, 2007; Chambers, Potenza, Hoffman, & Miran-
ker, 2004; Deisseroth et al., 2004; Meltzer et al., 2005;
Wiskott et al., 2006). A recent study, which does not deny
the cited effects of neurogenesis on memory, focused on a
different hypothesis (albeit in the absence of an explicit
computational model): As described earlier, Aimone et al.
(2006) proposed that adult neurogenesis could be a mecha-
nism to encode time in memories, and suggested that the
physiological properties of immature neurons would enable
the establishment of close associations between the memo-
ries formed in the recurrent CA3 network.

The work we presented here extends the analysis of
preceding models in several ways. First of all, we assumed
a broad biological plausibility criterion for our model, com-
bining old structural and relatively new functional (neuro-
physiological) information. This issue has received less
attention in previous models. This biological plausibility
criterion determined, roughly, the different hippocampal
regions to model (and the different pathways), the number
of cells in each region, the connectivity between the neuro-
nal groups, the learning rules employed, the sparseness of
the representation in the entire hippocampus, as well as
the different levels of plasticity and activity for old and
new neurons. Second, we believe our hypothesis reconciles
the two perspectives mentioned above in respect of the
functional significance of neurogenesis – increase of mem-
ory capacity and time encoding, placing greater emphasis
on the former. From a very general point of view we can
combine these two perspectives without major contradic-
tions. Third, our results are broadly compatible with the
empirical data. Finally, it takes account of the crucial con-
trol case, ignored in many other studies, of a dentate gyrus
that starts off with more units rather than acquiring them
through neurogenesis.

Some experimental predictions can be made from this
work, an important point for using theoretical models. If
adult neurogenesis can increase the retrieval of recent
memories, this effect can be measured in animals by
means of behavioural tests (testing episodic memory) after
inducing neurogenesis, no matter what strategy we em-
ploy (running-wheel, enriched environment, etc.). An issue
we are already working on.

4.5. Final comments

In conclusion, several physiological, morphological and
behavioural experiments suggest that neurogenesis has an
important role to play in hippocampal functions such as
learning and memory. The evidence is not conclusive and
new experimental models and perhaps new hypotheses need
to be designed. Neurocomputational models will continue to
be an indispensable tool in the generation of new, more ad-
vanced, accounts of the functional significance of neurogen-
esis. In this sense, the model presented here supports the
idea that hippocampus-dependent memory involves the
integration of newly generated neurons into the existing cir-
cuits of the dentate gyrus. Neurogenesis may play a central
role in some forms of episodic memory, and predominantly
in respect of the retrieval of new, recent memories.
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