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A B S T R A C T

We present the asymptotic distribution of the Rényi and Tsallis/Havrda–Charvát entropies and the Fisher
information measure of ordinal patterns embedding their serial correlation. We study the convergence behavior
of the asymptotic variance for some types of dynamics and the permutation entropy to the limit distribution.
These results lead to tests for comparing the underlying dynamics of two time series. We apply these tests
to discriminate uniform white noise, logistic maps with Gaussian noise, fractional Brownian motion, and 𝑓−𝑘

noise, with 𝑘 ∈ {0.5, 1, 1.5, 2, 2.5}. We also applied these tests to cryptocurrency open prices data, with favorable
results. We provide the R code that implements the functions.
1. Introduction

The idea of entropy was first developed by Clausius [1]. Then, Boltz-
mann [2] applied this concept in the field of thermodynamics and
Planck [3] proposed the formula as it is known nowadays. The gen-
eralization of the Boltzmann entropy to thermodynamic systems with
microstates having non-equal probabilities was given by Gibbs [4].
However, it was Shannon [5] who defined the notion of entropy in
the field of Information Theory as a way to measure the uncertainty
associated with a discrete random variable. Entropy can be thought
of as the average amount of information conveyed in a language. The
importance and applications of entropies have been widely studied in
a vast number of works [6–15].

Bandt and Pompe [16] proposed a methodology based on the or-
dinal patterns of a time series, which has been successfully applied in
signal analysis. This technique transforms each equal-sized overlapping
window of the time series into an ordinal pattern, a symbol built from
the sequence of indices obtained that sort the values in the window.
Thus, the time series can be studied through the sequence of ordinal
patterns by computing the histogram of proportions, followed by its
entropy and statistical complexity.

This method has interdisciplinary applications as biomedical and
economic signal analysis [17,18], body temperature classification [19],
emotional states analysis of RRI time series from ECG [20], Alzheimer’s

∗ Corresponding author.
E-mail address: alejandro.frery@vuw.ac.nz (A.C. Frery).

disease research [21], characterization of the clinical electrophysio-
logical evolution of patients [22], texture analysis of synthetic and
biomedical images [23], and SAR image interpretation [24], among
many others.

One of the greatest appeals of this approach is the ability to display
the point with coordinates entropy and statistical complexity in a closed
manifold. The point position reveals structural information about the
underlying dynamics that produced the time series; see, for instance,
Fig. 4 from Chagas et al. [25].

For the sake of notational simplicity, consider the real-valued time
series of length 𝑁 =𝑛+𝑚−1; 𝑚 ≥ 2 is an integer called the embedding
dimension. Denote this time series as 𝒙 = (𝑥1, 𝑥2,… , 𝑥𝑛+𝑚−1). For 𝑡 =
1, 2,… , 𝑛, let 𝒔𝑡 = (𝑥𝑡, 𝑥𝑡+1,… , 𝑥𝑡+𝑚−1) be an overlapping window of
𝑚 consecutive values in 𝒙. Assume these values are different. Then,
map each subsequence 𝒔𝑡 into a symbol 𝜋𝑡 univocally determined by
the indexes that sort (𝑥𝑡, 𝑥𝑡+1,… , 𝑥𝑡+𝑚−1); this is the ordinal pattern of
𝒔𝑡. This operation, called ‘‘Bandt–Pompe Symbolization’’ or ‘‘Ordinal
Pattern Transformation’’, converts the time series 𝒙 into the sequence of
symbols 𝝅 = (𝜋1, 𝜋2,… , 𝜋𝑛). Each symbol 𝜋𝑗 can take one of 𝑚! values:
𝜋𝑗 ∈ 𝛱 = {𝜋(1), 𝜋(2),… , 𝜋(𝑚!)}. The probability that the pattern 𝜋(𝑖)

appears in the sequence 𝝅 is denoted by 𝑞𝑖, for 𝑖 = 1, 2,… , 𝑚!.
The sequence of patterns is invariant to monotonically increasing

functions of 𝒙 and it is less sensitive to outliers than descriptors that use
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the original values [25]. These two features make the ordinal patterns
efficient for signal analysis and interpretation [26].

In the case of a time series obtained from 𝑁 independent trials
ith equally probable outcomes 𝑏1, 𝑏2,… , 𝑏𝑀 , as 𝑁 tends to infinity,

the Shannon entropy distribution converges to a 𝜒2 distribution with
𝑀 − 1 degrees of freedom [27]. This framework includes the case of
white noise, i.e., 𝑞𝑖 = 1∕𝑚! for all 𝑖 = 1, 2,… , 𝑚!, when the entropy
is maximum. The 𝜒2 distribution is also the asymptotic distribution
for the plug-in estimators of the mutual information and the transfer
entropy [28].

The marginal (as opposed to transitional) study of ordinal patterns
is based on computing the histogram of proportions of symbols in 𝝅.
Denote 𝒒 = (𝑞1,… , 𝑞𝑚!) the observed proportion of patterns:

𝑞𝑖 =
#{𝜋𝑗 ∈ 𝝅 ∶ 𝜋𝑗 = 𝜋(𝑖)}

𝑛
, 1 ≤ 𝑖 ≤ 𝑚! (1)

Ordinal patterns of series with structural differences have typically
different proportions. Since the entropy and the Fisher information
measure depend on these proportions, they will also differ.

The entropy is a measure of a system disorder and is a central con-
cept in Information Theory. The Shannon entropy [5] has been widely
used in multiple applications, but there are other forms of entropy as
Tsallis [29] and Rényi [30]. Also, the Fisher information measure [31]
can be computed from the histogram of patterns. This work provides
the asymptotic distributions of these quantities, with which confidence
intervals can be computed. The duality between confidence intervals
and hypothesis tests can be used to determine whether two time series
have similar dynamics.

The literature presents results about test statistics related to ordinal
patterns and to entropy. Salicru et al. [32] proposed a test to study
the diversity of populations using entropies. Esteban and Morales [33]
presented tests for (i) a predicted value of the population entropy, (ii)
for a common predicted value of several population entropies, (iii) the
equality of several population entropies. On the other hand, Matilla-
García [34] and Matilla-García and Marín [35] studied tests for serial
independence. Matilla-García et al. [36] proposed a test for checking if
two series are independent. These tests were revisited, and the results
improved by Elsinger [37]. Weiß et al. [38] studied the distribution
of symbols stemming from monotonic subsequences to identify white
noise. Weiß and Schnurr [39] generalized the definition of ordinal
patterns to test serial dependence in discrete-valued time series.

Chagas et al. [40], using an empirical approach, obtained confi-
dence regions for the entropy and the statistical complexity of white
noise. By making the simplification that the patterns are independent,
Rey et al. [41] obtained the asymptotic distribution of the Tsallis
and Rényi entropies and of the Fisher information measure when the
proportions can be modeled by a Multinomial distribution. However,
due to the overlapping incurred, the sequence of ordinal patterns has
serial correlation [37] and, therefore, the hypothesis of a Multinomial
distribution for the proportions can be improved. Rey et al. [42] ob-
tained the asymptotic distribution of the Shannon permutation entropy
considering correlated patterns.

In this article, we extend those works and obtain asymptotic distri-
butions of three descriptors from correlated patterns: Tsallis and Rényi
entropies, and Fisher information measure. Our main contributions can
be summarized as follows:

• Provide the asymptotic distribution for a group of entropies ob-
tained from the ordinal patterns.

• Obtain the asymptotic variance required for a hypothesis test that
can be applied to distinguish time series with different dynamics.

• Furnish the users with an R package that computes the asymptotic
variance and implements the proposed hypothesis test.

These results can be used in works that compare the underlying dy-
namics of time series, provided they have a stochastic component;
e.g., Spichak and Aragoneses [43].
2 
Table 1
Normalized entropies.

Entropy Normalized version

Shannon 𝐻 (𝑆)[𝒑] =
𝑆(𝑆)[𝒑]
log 𝑘

Tsallis 𝐻 (𝑇𝛽 )[𝒑] = 𝛽 − 1
1 − 𝑘1−𝛽

𝑆 (𝑇𝛽 )[𝒑]

Rényi 𝐻 (𝑅𝛽 )[𝒑] =
𝑆 (𝑅𝛽 )[𝒑]
log 𝑘

Fisher 𝐻 (𝐹 )[𝒑] = 4
∑𝑘−1

𝑖=1 (
√

𝑝𝑖+1 −
√

𝑝𝑖)2 .

This paper unfolds as follows. Section 2 recalls the definitions of the
descriptors studied in this work. Section 3 discusses the main properties
of ordinal patterns that are needed to proceed to Section 4, where we
obtain the asymptotic distribution of the Tsallis and Rényi entropies,
and of the Fisher information measure. Using those distributions, in
Section 5 we formulate test statistics for checking if features from two
time series are indistinguishable. In Section 6, when applied to finite
sample size, we assess the theoretical results by numerical validations,
comparison with other techniques, and asymptotic behavior. Moreover,
the proposed test is evaluated using simulated and real-world time se-
ries. Finally, Section 7 concludes the paper by discussing its limitations
and outlining future research avenues.

2. Entropies

Let 𝒑 = (𝑝1, 𝑝2,… , 𝑝𝑘) be a probability vector of size 𝑘, the entropies
based on the 𝒑 vector are defined as follows:

• Shannon entropy:

𝑆(𝑆)[𝒑] = −
𝑘
∑

𝑖=1
𝑝𝑖 log 𝑝𝑖, (2)

where, by convention, 0 log 0 = 0.
• Tsallis entropy with index 𝛽 ∈ R ⧵ {1}:

𝑆(𝑇𝛽 )[𝒑] =
𝑘
∑

𝑖=1

𝑝𝑖 − 𝑝𝛽𝑖
𝛽 − 1

. (3)

This form of entropy was originally proposed by Havrda and
Charvát [44].

• Rényi entropy of order 𝛽 ∈ R+ ⧵ {1}:

𝑆(𝑅𝛽 )[𝒑] = 1
1 − 𝛽

log
𝑘
∑

𝑖=1
𝑝𝛽𝑖 . (4)

• Fisher information measure (for the discrete case):

𝐻 (𝐹 )[𝒑] = 4
𝑘−1
∑

𝑖=1

(√

𝑝𝑖+1 −
√

𝑝𝑖
)2. (5)

This form is obtained by approximating the derivative of the prob-
ability density function 𝑓 (𝑥) with domain 𝛺 involved in the Fisher
information measure, which is given by ∫𝛺 𝑓 (𝑥)
(

𝑑[ln 𝑓 (𝑥)]∕𝑑𝑥
)2𝑑𝑥 [45].

All these descriptors, except the last one, achieve their maximum
value when 𝒑 is the equiprobable vector. If the entropy is divided by
its maximum value, we obtain a normalized entropy that ranges from 0
to 1. The normalized versions of these descriptors are shown in Table 1.
Notice that Eq. (5) is already normalized, but we added it to the table

for completeness.
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3. Ordinal patterns

In this section, we briefly described the methodology based on ordi-
nal patterns proposed by Bandt and Pompe [16].
Let 𝒙 = (𝑥1, 𝑥2,… , 𝑥𝑛+𝑚−1) be a real-valued time series, where 𝑛 and 𝑚 ≥
2 are positive integers. For 𝑡 = 1, 2,… , 𝑛, let 𝒔𝑡 = (𝑥𝑡, 𝑥𝑡+1,… , 𝑥𝑡+𝑚−1)
be an overlapping window of 𝑚 consecutive different values in 𝒙. We
consider 𝛱 = {𝜋(1), 𝜋(2),… , 𝜋(𝑚!)}, the set of labeled permutations,
or symbols, of the elements 0, 1,… , 𝑚 − 1, which represent the pos-
sible ordinal patterns defined as follows. Given 𝑡 ∈ {1, 2,… , 𝑛}, the
subsequence 𝒔𝑡 is said to be 𝜋(𝑖)-type, where 𝜋(𝑖) = (𝑖1, 𝑖2,… , 𝑖𝑚), if
𝑥𝑡+𝑖1 ≤ 𝑥𝑡+𝑖2 ≤ ⋯ ≤ 𝑥𝑡+𝑖𝑚 . In the presence of tied data, the order is
defined by the sequential appearance of the repeated values, e.g., for
𝑚 = 3 the subsequence 𝒔𝑡 = (8, 5, 8) is of type (1, 0, 2). Thus, from the
time series 𝒙, we obtain a sequence of symbols, its ordinal patterns,
𝝅 = (𝜋1, 𝜋2,… , 𝜋𝑛), where 𝜋𝑗 ∈ 𝛱 for 𝑗 = 1, 2,… , 𝑛.

The ordinal pattern probability vector 𝒒 = (𝑞1, 𝑞2,… , 𝑞𝑚!) depends
on the underlying dynamics of the time series. In this case, 𝑞𝑖 denotes
the relative frequency of 𝜋𝑖 in the sequence of ordinal patterns, for
𝑖 = 1, 2,… , 𝑚!. There are two limit cases: (i) 𝑞𝑖 = 1 for a single 𝑖 and
𝑞𝑗 = 0 for all 𝑗 ≠ 𝑖, which is obtained by a monotonic time series,
and (ii) 𝑞𝑖 = 1∕𝑚! for all 𝑖 = 1, 2,… , 𝑚!, which represents a completely
random system.

Ordinal patterns 𝜋𝑡 and 𝜋𝑡+𝓁 are correlated for 𝓁 = 1, 2,… , 𝑚 − 1
and 𝑡 = 1, 2,… , 𝑛−𝓁 because 𝜋𝑡 was computed from the subsequence 𝒔𝑡
while 𝜋𝑡+𝓁 was computed from 𝒔𝑡+𝓁 , and these subsequences overlap.
Such overlap captures information about the underlying unobserved
time series dynamics. Then, studying the probability of transitions
between consecutive patterns is interesting.

For 𝓁 = 1, 2,… , 𝑚− 1, the ordinal pattern transition matrix of order
𝓁 can be defined as 𝐐(𝓁) ∈ R𝑚!×𝑚!, whose elements are

𝑞(𝓁)𝑖𝑗 = Pr
(

𝜋𝑡 = 𝜋(𝑖) ∧ 𝜋𝑡+𝓁 = 𝜋(𝑗)) = 𝑞𝑖 Pr(𝜋𝑡+𝓁 = 𝜋(𝑗) ∣ 𝜋𝑡 = 𝜋(𝑖)), (6)

for 𝑖, 𝑗 = 1, 2,… , 𝑚!.
Let 𝑵 = (𝑁1, 𝑁2,… , 𝑁𝑚!) be the vector whose 𝑖th component 𝑁𝑖

counts the number of times the ordinal pattern 𝜋𝑖 appears in 𝝅, for
𝑖 = 1, 2,… , 𝑚!. In other words, 𝑁𝑖 = #{𝜋𝑡 ∈ 𝝅 ∶ 𝜋𝑡 = 𝜋(𝑖)}. Notice that
𝑁𝑖∕𝑛 is an estimator of 𝑞𝑖. Thus, we can define the following sequence
of random vectors:

𝒒𝑛 =
(𝑁1

𝑛
,
𝑁2
𝑛

,… ,
𝑁𝑚!
𝑛

)

=
(

𝑞1,𝑛, 𝑞2,𝑛,… , 𝑞𝑚!,𝑛
)

. (7)

In what follows, 𝐃𝒒 = Diag(𝑞1, 𝑞2,… , 𝑞𝑚!) denotes the diagonal
atrix obtained by 𝒒. By [46, Eq. (30)], it holds that

𝑛(𝒒𝑛 − 𝒒)


←←←←←←←←←←←←←←←←←←←←←→
𝑛→∞


(

𝟎,𝜮
)

, (8)

with

𝜮 = 𝐃𝒒 − (2𝑚 − 1)𝒒𝒒T +
𝑚−1
∑

𝓁=1

(

𝐐(𝓁) +𝐐(𝓁)T
)

, (9)

here the superscript 𝑇 indicates the transpose operator. Direct com-
utations show that, for 𝑖, 𝑗 = 1,… , 𝑚!

𝑖𝑗 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑞𝑖 − (2𝑚 − 1)𝑞2𝑖 + 2
𝑚−1
∑

𝓁=1
𝑞(𝓁)𝑖𝑖 if 𝑖 = 𝑗,

−(2𝑚 − 1)𝑞𝑖𝑞𝑗 +
𝑚−1
∑

𝓁=1

(

𝑞(𝓁)𝑖𝑗 + 𝑞(𝓁)𝑗𝑖
)

if 𝑖 ≠ 𝑗.

(10)

The covariance matrix depends on the transition probabilities de-
ined in (6). The theoretical matrices 𝑸(𝓁) were calculated for a random

walk [46], for white noise [46], and for the process of 3 drawn of a
random variable with equal probable possible values ±1 [37], using
𝑚 = 3. Given a time series, these matrices can be estimated by the
relative frequencies of the observed pattern transitions.

This context is suitable to apply the multivariate version of the
Delta Method ([47, Theorem 8.22]). Let ℎ , ℎ ,… , ℎ be continuously
1 2 𝑚!

3 
ifferentiable real functions defined in a neighborhood of the param-
ter point 𝒒. Consider 𝑱 the matrix of partial derivatives; i.e. 𝐽𝑖𝑗 =
𝜕ℎ𝑖∕𝜕𝑞𝑗 for 𝑖, 𝑗 = 1, 2,… , 𝑚!. Assuming that 𝑱 is non-singular in this
neighborhood, the Delta Method theorem states that

√

𝑛
[

ℎ1(𝒒𝑛) − ℎ1(𝒒), ℎ2(𝒒𝑛) − ℎ2(𝒒),… , ℎ𝑚!(𝒒𝑛) − ℎ𝑚!(𝒒)
] 
←←←←←←←←←←←←←←←←←←←→
𝑛→∞


(

𝟎,𝑱𝜮𝑱 T).

(11)

Let 𝛼1, 𝛼2,… , 𝛼𝑚! be real numbers. The following convergence for
the linear combination of the components of Eq. (11) [48, Theorem
5.2] holds:

√

𝑛

[ 𝑚!
∑

𝑖=1
𝛼𝑖ℎ𝑖(𝒒𝑛) −

𝑚!
∑

𝑖=1
𝛼𝑖ℎ𝑖(𝒒)

]


←←←←←←←←←←←←←←←←←←←←←→
𝑛→∞

(

0,
𝑚!
∑

𝑖=1
𝛼2𝑖

(

𝑱𝜮𝑱T)
𝑖𝑖 + 2

𝑚!−1
∑

𝑖=1

𝑚!
∑

𝑗=𝑖+1
𝛼𝑖𝛼𝑗

(

𝑱𝜮𝑱T)
𝑖𝑗

)

. (12)

. Asymptotic results for ordinal pattern entropies

In this section, we will extend the results obtained by Rey et al.
42] for the Permutation Entropy, which coincides with the Shannon
ntropy using the ordinal pattern probability vector 𝒒. In that work,
e detailed the computations for 𝑚 = 3. A high computational effort is

equired for larger values of 𝑚.
In order to apply the Delta Method for the entropy, we need to

efine the functions ℎ𝑖 for 𝑖 = 1, 2,… , 𝑚! in an appropriate way. Let
be the interval (0, 1). Then, we consider the following real functions
ith domain ()𝑚!:

ℎ(𝑆)𝑖 (𝑞1, 𝑞2,… , 𝑞𝑚!) = 𝑞𝑖 log 𝑞𝑖, 𝑖 ∈ {1, 2,… , 𝑚!}, (13)

ℎ
(𝑇𝛽 )
𝑖 (𝑞1, 𝑞2,… , 𝑞𝑚!) = 𝑞𝑖 − 𝑞𝛽𝑖 , 𝑖 ∈ {1, 2,… , 𝑚!}, (14)

ℎ
(𝑅𝛽 )
𝑖 (𝑞1, 𝑞2,… , 𝑞𝑚!) = 𝑞𝛽𝑖 , 𝑖 ∈ {1, 2,… , 𝑚!}, (15)

ℎ(𝐹 )
𝑖 (𝑞1, 𝑞2,… , 𝑞𝑚!) =

(√

𝑞𝑖+1 −
√

𝑞𝑖
)2, 𝑖 ∈ {1, 2,… , 𝑚! − 1}. (16)

Notice that the case of Fisher information measure is quite different
since the sum has 𝑚!−1 terms. Hence, ℎ(𝐹 )

𝑖 is defined for 𝑖 = 1, 2,… , 𝑚!−
. All these functions are continuous and differentiable in their domain.
t is worth noticing that the proposed methodology is non-applicable
o the particular case where 𝑞𝑖 = 1∕𝑚! for all 𝑖 = 1, 2,… , 𝑚!, since
he functions (13), (14), (15), and (16) are constant and, thus, the
orresponding matrix of partial derivatives is singular.

Let 𝑱 () be the matrix of partial derivatives of the functions ℎ()
𝑖 ,

or  ∈ {𝑆, 𝑇𝛽 , 𝑅𝛽 , 𝐹 }. Thus, for 𝑖, 𝑗 = 1, 2,… , 𝑚!, it holds that:

𝐽 (𝑆)
𝑖𝑗 =

𝜕ℎ(𝑆)𝑖
𝜕𝑞𝑗

=

{

log 𝑞𝑖 + 1 if 𝑗 = 𝑖,
0 otherwise;

(17)

𝐽
(𝑇𝛽 )
𝑖𝑗 =

𝜕ℎ
(𝑇𝛽 )
𝑖

𝜕𝑞𝑗
=

{

1 − 𝛽𝑞𝛽−1𝑖 if 𝑗 = 𝑖,
0 otherwise;

(18)

𝐽
(𝑅𝛽 )
𝑖𝑗 =

𝜕ℎ
(𝑅𝛽 )
𝑖
𝜕𝑞𝑗

=

{

𝛽𝑞𝛽−1𝑖 if 𝑗 = 𝑖,
0 otherwise;

(19)

We have to treat the Fisher information measure separately. For 𝑖 =
1, 2,… , 𝑚! − 1 and 𝑗 = 1, 2,… , 𝑚!, it holds that:

𝐽 (𝐹 )
𝑖𝑗 =

𝜕ℎ(𝐹 )
𝑖

𝜕𝑞𝑗
=

⎧

⎪

⎨

⎪

⎩

√

𝑞𝑖+1−
√

𝑞𝑖
(−1)𝑖+𝑗−1√𝑞𝑗

if 𝑗 = 𝑖 or 𝑗 = 𝑖 + 1,

0 otherwise.
(20)

Since all these matrices of partial derivatives are non-singular in
their domain, by (11), we conclude that for  ∈ {𝑆, 𝑇𝛽 , 𝑅𝛽},

√

𝑛
[

ℎ()
1 (𝒒𝑛)−ℎ()

1 (𝒒), ℎ()
2 (𝒒𝑛)−ℎ()

2 (𝒒),… , ℎ()
𝑚! (𝒒𝑛)−ℎ()

𝑚! (𝒒)
] 
←←←←←←←←←←←←←←←←←←←→
𝑛→∞


(

𝟎,𝜮()
𝒒

)

.

(21)
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where 𝜮()
𝒒 = 𝑱 ()𝜮(𝑱 ())T. And,

√

𝑛
[

ℎ(𝐹 )
1 (𝒒𝑛)−ℎ

(𝐹 )
1 (𝒒), ℎ(𝐹 )

2 (𝒒𝑛)−ℎ
(𝐹 )
2 (𝒒),… , ℎ(𝐹 )

𝑚!−1(𝒒𝑛)−ℎ
(𝐹 )
𝑚!−1(𝒒)

] 
←←←←←←←←←←←←←←←←←←←→
𝑛→∞


(

𝟎,𝜮(𝐹 )
𝒒

)

,

(22)

where 𝜮(𝐹 )
𝒒 = 𝑱 (𝐹 )𝜮(𝑱 (𝐹 ))T. This matrix is of order 𝑚! − 1.

Since 𝑱 () is diagonal if  ∈ {𝑆, 𝑇𝛽 , 𝑅𝛽}, for 1 ≤ 𝑖, 𝑗 ≤ 𝑚!, then it
holds that

(

𝜮()
𝒒

)

𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

(

𝐽 ()
𝑖𝑖

)2𝛴𝑖𝑖 if 𝑖 = 𝑗,

𝐽 ()
𝑖𝑖 𝐽 ()

𝑗𝑗 𝛴𝑖𝑗 if 𝑖 ≠ 𝑗.
(23)

In addition (see [41] for details), for 1 ≤ 𝑖, 𝑗 ≤ 𝑚! − 1, it is verified that
(

𝜮(𝐹 )
𝒒

)

𝑖𝑗 =
(

𝐽 (𝐹 )
𝑖𝑖 𝛴𝑖𝑗 +𝐽 (𝐹 )

𝑖,𝑖+1𝛴𝑖+1,𝑗
)

𝐽 (𝐹 )
𝑗𝑗 +

(

𝐽 (𝐹 )
𝑖𝑖 𝛴𝑖,𝑗+1 +𝐽 (𝐹 )

𝑖,𝑖+1𝛴𝑖+1,𝑗+1
)

𝐽 (𝐹 )
𝑗,𝑗+1.

(24)

Shannon entropy. Since

𝐻 (𝑆)[𝒒] =
𝑚!
∑

𝑖=1
𝛼𝑖ℎ

(𝑆)
𝑖 (𝒒), (25)

with 𝛼𝑖 = −1∕ log(𝑚!) for all 𝑖 = 1, 2,… , 𝑚!, by applying (12) to (21),
we can state that
√

𝑛
(

𝐻 (𝑆)[𝒒𝑛] −𝐻 (𝑆)[𝒒]
) 
←←←←←←←←←←←←←←←←←←←←←→
𝑛→∞


(

0, (𝜎(𝑆)𝒒 )2
)

, (26)

for

(

𝜎(𝑆)𝒒
)2 = 1

log2(𝑚!)

[ 𝑚!
∑

𝑖=1

(

𝜮(𝑆)
𝒒

)

𝑖𝑖 + 2
𝑚!−1
∑

𝑖=1

𝑚!
∑

𝑗=𝑖+1

(

𝜮(𝑆)
𝒒

)

𝑖𝑗

]

> 0. (27)

This implies that for 𝑛 sufficiently large,
𝐻 (𝑆)[𝒒𝑛] ∼ 

(

𝐻 (𝑆)[𝒒], (𝜎(𝑆)𝒒 )2∕𝑛
)

.

Tsallis entropy. Since

𝐻 (𝑇𝛽 )[𝒒] =
𝑚!
∑

𝑖=1
𝛼𝑖ℎ

(𝑇𝛽 )
𝑖 (𝒒), (28)

with 𝛼𝑖 = 1∕(1 − 𝑚!1−𝛽 ) for all 𝑖 = 1, 2,… , 𝑚!, by applying (12) to (21),
we can state that
√

𝑛
(

𝐻 (𝑇𝛽 )[𝒒𝑛] −𝐻 (𝑇𝛽 )[𝒒]
) 
←←←←←←←←←←←←←←←←←←←←←→
𝑛→∞


(

0, (𝜎
(𝑇𝛽 )
𝒒 )2

)

, (29)

for

(

𝜎
(𝑇𝛽 )
𝒒

)
2
= 1

(1 − 𝑚!1−𝛽 )2

[ 𝑚!
∑

𝑖=1

(

𝜮(𝑇𝛽 )
𝒒

)

𝑖𝑖 + 2
𝑚!−1
∑

𝑖=1

𝑚!
∑

𝑗=𝑖+1

(

𝜮(𝑇𝛽 )
𝒒

)

𝑖𝑗

]

> 0. (30)

n other words, for 𝑛 sufficiently large,
(𝑇𝛽 )[𝒒𝑛] ∼ 

(

𝐻 (𝑇𝛽 )[𝒒], (𝜎(𝑇𝛽 )𝒒 )2∕𝑛
)

.

ényi entropy. This case is different. Let 𝑓 [𝒒] =
∑𝑚!

𝑖=1 ℎ
(𝑅𝛽 )
𝑖 (𝒒). By

pplying (12) to (21), it holds that

𝑛
(

𝑓 [𝒒𝑛] − 𝑓 [𝒒]
) 
←←←←←←←←←←←←←←←←←←←←←→
𝑛→∞


(

0, (𝜎
(𝑅𝛽 )
𝒒 )2

)

. (31)

for

(

𝜎
(𝑅𝛽 )
𝒒

)2 =
𝑚!
∑

𝑖=1

(

𝜮(𝑅𝛽 )
𝒒

)

𝑖𝑖 + 2
𝑚!−1
∑

𝑖=1

𝑚!
∑

𝑗=𝑖+1

(

𝜮(𝑅𝛽 )
𝒒

)

𝑖𝑗 > 0. (32)

This implies that if 𝑛 is sufficiently large, then
𝑓 [𝒒𝑛] ∼ 

(

𝑓 [𝒒], (𝜎(𝑅𝛽 )
𝒒 )2∕𝑛

)

. Since

𝐻 (𝑅𝛽 )[𝒒] = 1
(1 − 𝛽) log(𝑚!)

log
(

𝑓 [𝒒]
)

, (33)

for 𝑛 is sufficiently large, 𝐻 (𝑅𝛽 )[𝒒𝑛] ∼ 𝛽 , where

𝛽 (𝑥) = Pr(𝐻 (𝑅𝛽 )[𝒒𝑛] ≤ 𝜆) = 𝛷
⎛

⎜

⎜

exp[(1 − 𝛽) log(𝑚!)𝜆] − 𝑓 [𝒒]
(𝑅𝛽 ) √

⎞

⎟

⎟

, (34)

⎝

𝜎𝒒 ∕ 𝑛
⎠

4 
and 𝛷(𝑥) denotes the cumulative distribution function of the stan-
dard Normal distribution. We can omit the modulus in the logarithm
argument in (33) because 𝑓 [𝒒] is always positive.

Fisher information measure. Since

𝐻 (𝐹 )[𝒒] =
𝑚!−1
∑

𝑖=1
𝛼𝑖ℎ

(𝐹 )
𝑖 (𝒒), (35)

ith 𝛼𝑖 = 4 for all 𝑖 = 1, 2,… , 𝑚! − 1, by applying (12) to (22), we can
tate that

𝑛
(

𝐻 (𝐹 )[𝒒𝑛] −𝐻 (𝐹 )[𝒒]
) 
←←←←←←←←←←←←←←←←←←←←←→
𝑛→∞


(

0, (𝜎(𝐹 )
𝒒 )2

)

. (36)

or

𝜎(𝐹 )
𝒒

)2 = 16

[𝑚!−1
∑

𝑖=1

(

𝜮(𝐹 )
𝒒

)

𝑖𝑖
+ 2

𝑚!−2
∑

𝑖=1

𝑚!−1
∑

𝑗=𝑖+1

(

𝜮(𝐹 )
𝒒

)

𝑖𝑗

]

> 0. (37)

his is equivalent to say that, for 𝑛 sufficiently large, 𝐻 (𝐹 )[𝒒𝑛] ∼
(

𝐻 (𝐹 )[𝒒], (𝜎(𝐹 )
𝒒 )2∕𝑛

)

.
In practical applications, there may be missing observed patterns.

his may be due to forbidden patterns, as is the case of some chaotic
aps, or to the fact that we are dealing with finite-size time series. We
ill refer to this situation as ‘‘missing patterns’’ because, in principle,

he user does not know the nature of the system that produced the time
eries.

The present methodology has to be slightly modified for time series
ith missing patterns. For simplicity, let us suppose a unique 𝑟 ∈
1, 2,… , 𝑚!} exists such that the pattern 𝜋𝑟 has zero probability of
ccurrence, i.e., 𝑞𝑟 = 0. This implies that the functions ℎ()

𝑟 , for  ∈
𝑆, 𝑇𝛽 , 𝑅𝛽 , 𝐹 } vanish and, thus, the matrices 𝑱 () are singular and vio-
ate the hypothesis of the Delta Method. However, this method can be
pplied to 𝑱

(), which is the matrix obtained from 𝑱 () by eliminating
he 𝑟th row and the 𝑟th column. Since the pattern 𝜋𝑟 never occurs, there
s no transition from or towards this pattern, which means that the 𝑟th

row and the 𝑟th column of 𝐐(𝓁) are null for 𝓁 = 1, 2,… , 𝑚 − 1. Let �̃�(𝓁)

e the matrix obtained from 𝐐(𝓁) by eliminating the 𝑟th row and the
𝑟th column, and 𝒒 be the vector obtained from 𝒒 by eliminating the
𝑟th component. Finally, we consider 𝜮𝒒

()
= 𝑱

()
�̃�(𝑱

()
)T, where �̃� is

btained by Eq. (9) replacing 𝒒 and 𝐐(𝓁) by 𝒒 and �̃�(𝓁), respectively.
his reasoning can be extended in the case of several missing patterns,
nd translates immediately to the sample quantities.

. Hypothesis test

In this section, we test whether two time series share the same un-
erlying behavior. Let 𝒙 = (𝑥1, 𝑥2,… , 𝑥𝑛𝒙+𝑚−1) and
= (𝑦1, 𝑦2,… , 𝑦𝑛𝒚+𝑚−1) be two time series, with 𝑛𝒙 and 𝑛𝒚 sufficiently

arge. We find the sequences of ordinal patterns 𝝅(𝒙) and 𝝅(𝒚). Then,
sing the formula (7), we compute the vectors 𝒒𝑛𝒙 (𝒙) and 𝒒𝑛𝒚 (𝒚). If 𝒙
nd 𝒚 have dynamics with the same distribution of ordinal patterns 𝒒,
e expect to observe a statistically insignificant difference between the
alues 𝐻 ()[𝒒𝑛𝒙 (𝒙)] and 𝐻 ()[𝒒𝑛𝒚 (𝒚)], for  ∈ {𝑆, 𝑇𝛽 , 𝑅𝛽 , 𝐹 }.

We state the following hypothesis test:
{

ℋ0 ∶ 𝐻 ()[𝒒(𝒙)] = 𝐻 ()[𝒒(𝒚)],
ℋ1 ∶ 𝐻 ()[𝒒(𝒙)] ≠ 𝐻 ()[𝒒(𝒚)].

(38)

or  ∈ {𝑆, 𝑇𝛽 , 𝐹 }, the proposed statistic is

() =
𝐻 ()[𝒒𝑛𝒙 (𝒙)] −𝐻 ()[𝒒𝑛𝒚 (𝒚)]
√

√

√

√

(

𝜎()
𝑞𝑛𝒙 (𝒙)

)2

𝑛𝒙
+

(

𝜎()
𝑞𝑛𝒚 (𝒚)

)2

𝑛𝒚

∼  (0, 1). (39)

Again, the Rényi entropy must be treated in a different way because
its asymptotic distribution does not verify normality. From expres-
sion (33), it is straightforward by injectivity that ℋ ∶ 𝐻 (𝑅𝛽 )[𝒒(𝒙)] =
0
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𝐻 (𝑅𝛽 )[𝒒(𝒚)] is verified if and only if 𝑓 [𝒒(𝒙)] = 𝑓 [𝒒(𝒚)]. Using the
asymptotic distribution given by (31), the proposed statistic is:

𝑊 (𝑅𝛽 ) =
𝑓 [𝒒𝑛𝒙 (𝒙)] − 𝑓 [𝒒𝑛𝒚 (𝒚)]

√

√

√

√

(

𝜎
(𝑅𝛽 )
𝑞𝑛𝒙 (𝒙)

)2

𝑛𝒙
+

(

𝜎
(𝑅𝛽 )
𝑞𝑛𝒚 (𝒚)

)2

𝑛𝒚

∼  (0, 1). (40)

The statistics introduced in (39) and (40) are analogous to the one
derived from the test that states the equal diversity of two independent
populations [32, Theorem 2.2].

6. Finite sample size assessment

In this section, we present experiments to evaluate the performance
of the theoretical results introduced in this work. We first describe the
time series processes and dynamics that will be used for this aim.

The random walk (RW) is a process generated by the recursive
formula

𝑥𝑡 = 𝑥𝑡−1 + 𝜉𝑡, (41)

where 𝜉𝑡 ∼  (0, 1). In [46, Eqs. (41) and (43), respectively], the authors
rove that the theoretical vector of ordinal pattern probabilities is

(RW) =
( 1
4
, 1
8
, 1
8
, 1
8
, 1
8
, 1
4

)

, (42)

and that the theoretical covariance matrix is

𝜮(RW) = 1
192

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

60 −6 −6 −6 −6 −36
−6 15 7 −9 −1 −6
−6 7 15 −1 −9 −6
−6 −9 −1 15 7 −6
−6 −1 −9 7 15 −6
−36 −6 −6 −6 −6 60

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (43)

otice that we had to adapt these results to the way the ordinal patterns
re labeled.

Another process regards a time series whose values are independent
nd can be 1 or −1 with equal probability. We denote this process
s ‘‘TS±1’’. In Ref. [37, page 11], the author computes the theoretical
rdinal pattern distribution which is given by the vector

(TS±1) =
( 1
2
, 1
8
, 1
8
, 1
8
, 1
8
, 0
)

, (44)

s well as the theoretical covariance matrix given by

(TS±1) = 1
64

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

16 −8 −8 0 0 0
−8 7 3 −3 1 0
−8 3 7 1 −3 0
0 −3 1 3 −1 0
0 1 −3 −1 3 0
0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (45)

otice that in this case, the pattern 𝜋6 is missing and, hence, we have to
onsider the modification introduced at the end of Section 4 that leads
s to work with

̃(TS±1) =
( 1
2
, 1
8
, 1
8
, 1
8
, 1
8

)

(46)

nd

̃ (TS±1) = 1
64

⎛

⎜

⎜

⎜

⎜

⎜

⎝

16 −8 −8 0 0
−8 7 3 −3 1
−8 3 7 1 −3
0 −3 1 3 −1
0 1 −3 −1 3

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (47)

We also consider time series simulated under the following dynamic
behaviors.

1. Uniform White Noise (UWN). The time series observations are
uniformly distributed in the interval [0, 1]. Although the present

proposal is not applicable to ‘‘perfect’’ WN since its entropy

5 
Table 2
Theoretical asymptotic mean and variances of two time series process using 𝑚 = 3,
where 𝒒 = 𝒒(RW) and 𝒒 = 𝒒(TS±1) for the first and second processes, respectively.

Process Entropy Asymptotic mean Asymptotic variance

RW

Shannon 𝐻 (𝑆)[𝒒] = 0.9671320 (𝜎(𝑆)
𝒒 )2 = 0.0374138

Tsallis 𝐻 (𝑇1∕2 )[𝒒] = 0.9756630 (𝜎(𝑇1∕2 )
𝒒 )2 = 0.0204154

Rényi 𝑓 [𝒒] = 3.2599210 (𝜎(𝑅1∕3 )
𝒒 )2 = 0.0608574

Fisher 𝐻 (𝐹 )[𝒒] = 0.1715729 (𝜎(𝐹 )
𝒒 )2 = 1.2287640

TS±1

Shannon 𝐻 (𝑆)[𝒒] = 0.7737056 (𝜎(𝑆)
𝒒 )2 = 0.1496551

Tsallis 𝐻 (𝑇1∕2 )[𝒒] = 0.7735966 (𝜎(𝑇1∕2 )
𝒒 )2 = 0.0594949

Rényi 𝑓 [𝒒] = 2.7937010 (𝜎(𝑅1∕3 )
𝒒 )2 = 0.1616843

Fisher 𝐻 (𝐹 )[𝒒] = 1.0000000 (𝜎(𝐹 )
𝒒 )2 = 5.0000000

converges to a 𝜒2 distribution, we applied our methodology
because the exact equiprobable distribution of patterns is seldom
observed in practice, even when the signal is WN.

2. Chaotic Logistic Map (CLM). The logistic map is generated by
the recursion 𝑥𝑡+1 = 𝜆𝑥𝑡(1 − 𝑥𝑡), where 𝑥𝑡 ∈ (0, 1) and 𝑡 = 0, 1,… .
For 𝜆 ∈ (3.57, 4), this map is chaotic, and one of the ordinal
patterns is missing, since the time series does not contain a
window 𝒔𝑡 of the form 𝑥𝑡+2 ≤ 𝑥𝑡+1 ≤ 𝑥𝑡 [49]. As we mention
in Section 4, our methodology needs a modification in this case.
In this work, we use 𝜆 = 3.7 and 𝑥0 ∈ [0.1, 0.9].

3. Factional Brownian Motion (FBM). A real stochastic process
𝐵ℋ (𝑡), with Hurst exponent 0 < ℋ < 1 and 𝑡 ≥ 0, is a fractional
Brownian motion if

(a) 𝐵ℋ (0) = 0,
(b) E[𝐵ℋ (𝑡)] = 0 for all 𝑡 ≥ 0, and
(c) E[𝐵ℋ (𝑡)𝐵ℋ (𝑠)] =

(

𝑡2ℋ − 𝑠2ℋ − |𝑡 − 𝑠|2ℋ
)

∕2, for all 𝑡, 𝑠 ≥ 0.

In this work, we use ℋ = 0.7.
4. 𝑓−𝑘 noises (𝑘N). The time series is a process whose power

spectral density is 𝑆(𝑓 ) ∝ 1∕𝑓𝑘. In this work, we use 𝑘 ∈
{0.5, 1, 1.5, 2, 2.5}.

6.1. Numerical validation

This section provides a numerical validation of the mathematical
derivation developed in Section 4. For this reason, we conducted a
Monte Carlo numerical experiment for the two processes, RW and TS±1.
Throughout this section, we consider an embedding dimension equal to
3.

We generated 𝑅 = 105 time series of length 𝑁 = 105 following
each one of the two processes. Then, for each time series, we com-
puted the entropies 𝐻 () for  ∈ {𝑆, 𝑇1∕2, 𝑅1∕3, 𝐹 }. The theoretical
symptotic means and variances related to each process are presented
n Table 2. Figs. 1 and 2 show the corresponding empirical densities
nd histograms using the Freedman–Diaconis rule [50].In all cases, we
an appreciate the proper fitting of the asymptotic distribution model
roposed in this work.

.2. Comparison with other methods

The Shannon entropy’s asymptotic distribution has already been
tudied in several works, especially concerning finite-sample sizes.
or instance, Ricci [51] proves that the Shannon entropy of a pro-
ess obtained by a regular Markov chain is asymptotically normally
istributed. To compare our proposal with this result, we need the
heoretical ordinal patterns transition matrices, for which we need
r
(

𝜋𝑡 = 𝜋(𝑖) ∧ 𝜋𝑡+1 = 𝜋(𝑗)) = Pr(𝜋𝑡+1 = 𝜋(𝑗) ∣ 𝜋𝑡 = 𝜋(𝑖)) ⋅ Pr
(

𝜋𝑡 = 𝜋(𝑖)),
here the conditional probability is given by the transition matrix that
efines the Markov chain but Pr

(

𝜋𝑡 = 𝜋(𝑖)) depends on the instant 𝑡.
his interesting case is out of the scope of the present proposal.
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Table 3
Comparison with means and variances of the Shannon entropy for the two processes
obtained by Basharin’s method.

Process Measure Empirical Basharin Our proposal

RW
Mean 0.9669819 0.9669925 0.9671320
Variance 0.0000039 0.0000037 0.0000037

TS ± 1
Mean 0.7735922 0.7735661 0.7737056
Variance 0.0000150 0.0000150 0.0000150

On the other hand, Basharin [52] found an asymptotic distribution
or the Shannon entropy given by Eq. (2) using the logarithm in base
. If we adapt this result to our context, for 𝑛 sufficiently large it holds

that 𝐻 (𝑆)[𝒒𝑛] ∼ 
(

𝜇Basharin, 𝜎2Basharin
)

, where

Basharin = 𝐻 (𝑆)[𝒒] − 𝑚! − 1
2𝑛 ln(𝑚!)

, and (48)

𝜎2Basharin = 1
𝑛 ln2(𝑚!)

[ 𝑚!
∑

𝑖=1
𝑞𝑖 ln

2(𝑞𝑖) −
(

𝑆(𝑆)[𝒒]
)2
]

. (49)

We computed the means and variances of the Shannon entropy for
he two processes described in this section using the method proposed
y Basharin. Then, we compare them with our proposal and with the
mpirical values. Table 3 shows these results. The fitting of the two
symptotic models is similar, as can be seen in Fig. 3.

.3. Convergence analysis

In this section, we analyze the empirical convergence behavior
f the asymptotic variance in terms of the ordinal patterns sequence
ength. We checked that its value stabilizes and that ensembles of
ntropies can be described as normal samples.

Firstly, we considered a time series 𝒙 simulated under the dy-
amics CLM, FBM, and 𝑓−𝑘 noises for 𝑘 ∈ {0.5, 1, 1.5, 2, 2.5}. Then,
e computed the asymptotic variance estimations 𝜎()

𝑞𝑛(𝒙)
∕𝑛 for 𝑛 ∈

100, 500, 1000, 2000,… , 25000},  ∈ {𝑆, 𝑇1∕2, 𝑅1∕3, 𝐹 }, and 𝑚 = 3.
ig. 4 shows the obtained results, where we can observe a stabilization.
n general, the Fisher information measure variances are considerably
arger than the other information measures. The fractional Brownian
otion presents the largest variances in all cases apart from the Tsallis

ntropy, for which the chaotic logistic map achieves the most signifi-
ant values. The variance of 𝑓−𝑘 noises for 𝑘 = 0.5, 1 approaches zero
s 𝑛 tends to infinity in all cases. Except for the Fisher information
easure, this property is also verified by 𝑓−1.5 noises. The variances

of the 𝑓−𝑘 noises for 𝑘 = 2, 2.5 seem to approach a value near zero
or Shannon, Tsallis, and Rényi entropies. We notice that the variances
ncrease as the value of 𝑘 also increases.

To assess the convergence rate, we found the value of 𝑛 for which
the difference between the asymptotic variance estimations in two
consecutive steps is less than 10−3. The corresponding values for each
entropy measure are presented in Table 4. We see that the Fisher
information measure required a larger 𝑛 to stabilize, followed by the
Rényi entropy. Meanwhile, the Tsallis entropy generally achieved an
asymptotic behavior for smaller values of 𝑛, followed by the Shannon
entropy.

In the second stage, we conducted a Monte Carlo study to assess
the speed of convergence of the permutation entropy to the limit
distribution. Algorithm 1 outlines the structure of the code. Given a
significance level 𝜂, the types of noise, the embedding dimensions, the
time series lengths, we produce 𝑁 independent time series to form
an ensemble of Shannon permutation entropy values. This ensemble
is submitted to the Shapiro–Wilk test [53] to verify the hypothesis
of normality, and we obtain a 𝑝-value. This procedure is repeated a
 3
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Table 4
Values of 𝑛 for which the difference between two consecutive estimations of the
asymptotic variance of each entropy measure is less than 10−3. Hyphens indicate
that this condition is not satisfied by 𝑛 ≤ 25000.

Dynamic Shannon Tsallis Rényi Fisher

CLM 500 7000 6000 22 000
FBM 13 000 4000 3000 –
0.5N 2000 500 4000 5000
1.0N 2000 1000 2000 13 000
1.5N 1000 500 2000 18 000
2.0N 4000 2000 6000 15 000
2.5N 6000 500 20 000 –

number of replications 𝑅, and we verify the percentage of 𝑝-values
lower than the test significance 𝜂.

Algorithm 1: Convergence of the permutation entropy to the limit
distribution
Input: Seed
Input: Types of 𝑓−𝑘 noise (values of 𝑘); embedding dimensions 𝑚;

time series lengths 𝑛 + 𝑚 − 1; number of time series to form
the ensemble of permutation entropy values 𝑁 ; number of
replications 𝑅; test significance 𝜂

Result: Number of replications for which the normal hypotheses
for the ensemble are rejected

for each 𝑘 do
for each 𝑚 do

for each 𝑛 + 𝑚 − 1 do
for 1 ≤ 𝑖 ≤ 𝑅 do

for 1 ≤ 𝑗 ≤ 𝑁 do
Generate 𝒙, a time series of length 𝑛 + 𝑚 − 1 of
noise of type 𝑘;

Compute 𝝅, the sequence of ordinal patterns of
𝒙;

Compute �̂�, the proportions of patterns in 𝝅;
Compute 𝐻 = 𝐻 (𝑆)[�̂�], the permutation entropy
of the proportions;

end
𝑯 = (𝐻1,𝐻2,… ,𝐻𝑁 ) is a vector of 𝑁 independent
values of the permutation entropy from time series
of type 𝑘, embedding dimension 𝑚, and length
𝑛 + 𝑚 − 1;

Compute the Shapiro–Wilk test of 𝑯 and obtain the
𝑝-value;

end
𝒑𝒗 = (𝑝𝑣1, 𝑝𝑣2,… , 𝑝𝑣𝑅) is a vector of size 𝑅 of
independent 𝑝-values of the hypothesis of normality
for the Shannon permutation entropy;

Compute the proportion of entries of 𝒑𝒗 smaller than 𝜂;
end

end
nd

We used 𝑅 = 100 replications of 𝑁 = 1000 independent time series
f lengths {500, 1000, 5000, 10000, 50000}. The results are displayed in

Fig. 5 where each row is a type of 𝑓−𝑘 noise (𝑘 ∈ {0.5, 1, 1.5, 2, 2.5}) and
ach column is an embedding dimension (𝑚 ∈ {3, 4, 5, 6}). Notice that
f the time series has 500 observations, the choice 𝑚 = 6 is inadequate
ecause 𝑚! = 720 is larger than the number of observations. Although
his case has no statistical or practical significance, we include it for
ompleteness in the plots.

Fig. 5 shows that the convergence to the asymptotic result is slow
or 𝑓−𝑘 noise with 𝑘 = 0.5, 1 and small embedding dimensions (𝑚 =
, 4). There is no evidence against the Normal distribution as a model
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Fig. 1. Histograms of 105 samples of different entropies using 𝑚 = 3, for the random walk, along with the empirical densities (green lines) and asymptotic models (red lines).
Shannon (top left), Tsallis with 𝛽 = 1∕2 (top right), Rényi with 𝛽 = 1∕3 (bottom left), and Fisher information measure (bottom right). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
T
E
3

for the permutation entropy with time series with more than 1000
observations.

6.4. Hypothesis test assessment

We consider the eight groups of time series represented by the
mentioned dynamic behaviors: UWN, CLM, FBM, and 𝑘N for 𝑘 ∈
{0.5, 1.0, 1.5, 2.0, 2.5}. For each group, we generated 100 time series of
length 300, 3000, and 30000. Then, we applied the proposed hypothesis
tests to contrast these types of dynamics for an embedding dimension
equal to 3, using 𝛽 = 1∕2 for Tsallis entropy and 𝛽 = 1∕3 for Rényi
entropy. More precisely, let 𝐺 and 𝐺′ be two of these groups with equal-
length time series. We contrasted each time series in 𝐺 versus each time
eries in 𝐺′, giving a total of 10000 hypothesis tests, and registered the
roportion of 𝑝-values less than 𝜂 = 0.05. This percentage of rejection is
aved in the cell corresponding to both groups. Figs. 6, 7, 8, and 9 show
he percentage of rejection in a pairwise comparison. The perfect case
s represented by a table whose diagonal is green (no rejection within
he same group) and red cells in the upper triangle (total rejection
etween different groups). We also estimated the power of the test in
ach case, i.e., the probability of rejecting the null hypothesis when it
s false. Table 5 contains these results, where the power of the tests
hen comparing long-term time series in decreasing order are: 0.9517

or Fisher information measure, 0.9512 for Shannon entropy, 0.9159
or Rényi entropy with 𝛽 = 1∕3, and 0.9081 for Tsallis entropy with
= 1∕2.

The obtained results show that Tsallis entropy is not effective at dis-
inguishing different dynamics in short-length time series. On the other
and, this entropy performed ideally in identifying middle- and long-
ength time series within the same group. Even though all entropies
howed an adequate behavior when comparing different groups of long-
ength time series, Fisher information measure, followed by Shannon
ntropy, achieved the best results.
7 
able 5
stimation of the power of the proposed test using an embedding dimension equal to
and different time series’ lengths.
Time series’ length Shannon Tsallis Rényi Fisher

300 0.5989 0.2697 0.5738 0.5831
3000 0.8562 0.7042 0.8458 0.8452

30000 0.9512 0.9081 0.9159 0.9517

FBM is deemed compatible with 𝑓−𝑘 noise for 𝑘 = 0.5 by all entropy
measures and for 𝑘 = 2.5 by Shannon, Tsallis, and Rényi entropies.
The test seems to confuse these 𝑓−𝑘 noises with either the fractional
Brownian motion or the fractional Gaussian noise (FGN) defined by the
FBM increments. Recall that power spectral density for FBM and FGN
are 𝑆(𝑓 ) ∝ 1∕𝑓 2ℋ+1 and 𝑆(𝑓 ) ∝ 1∕𝑓 2ℋ−1, respectively [54]. Since we
use ℋ = 0.7, these spectra are of the form 1∕𝑓 2.4 and 1∕𝑓 0.4.

6.5. Applications to real data

In this section, we apply the proposed test to real data from the
dataset Cryptocurrency Prices Data [55]. This dataset contains the
historical daily open, high, low, and close prices for 56 cryptocurrencies
from May 2013 to October 2022. We selected the following cryp-
tocurrencies: Bitcoin (https://bitcoin.org/), Ethereum Classic (https://
ethereumclassic.org/), Litecoin (http://www.litecoin.org/), and Tether
(https://tether.to/). The time series of the open prices of these cryp-
tocurrencies are shown in the top row of Fig. 10, and have lengths
equal to 3248 (Bitcoin), 2072 (Ethereum Classic), 3248 (Litecoin), and
2582 (Tether). We can observe a similar shape in terms of pronounced
peaks between Bitcoin and Litecoin. Meanwhile, Tether shows the most
different behavior. These remarks are supported by the ordinal pattern
frequency plots exhibited in the bottom row of Fig. 10, where we used
the following notation: 𝜋(1) = (0, 1, 2), 𝜋(2) = (0, 2, 2), 𝜋(3) = (1, 0, 2),
𝜋(4) = (1, 2, 0), 𝜋(5) = (2, 0, 1), and 𝜋(6) = (2, 1, 0). In Bitcoin and litecoin,

https://bitcoin.org/
https://ethereumclassic.org/
https://ethereumclassic.org/
https://ethereumclassic.org/
http://www.litecoin.org/
https://tether.to/
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Fig. 2. Histograms of 105 samples of different entropies using 𝑚 = 3, for the time series with ±1 values, along with the empirical densities (green lines) and asymptotic models (red
lines). Shannon (top left), Tsallis with 𝛽 = 1∕2 (top right), Rényi with 𝛽 = 1∕3 (bottom left), and Fisher information measure (bottom right). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Comparison with Basharin’s method to obtain the asymptotic distribution of the Shannon entropy for RW (left) and for TS±1 (right). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. Evolution of the asymptotic variance estimations 𝜎()
𝑞𝑛 (𝒙)

∕𝑛 for  = 𝑆 (top left),  = 𝑇1∕2 (top right),  = 𝑅1∕3 (bottom left), and  = 𝐹 (bottom right), considering different
types of dynamic behaviors.

Fig. 5. Percentage of ensembles with 𝑝-values smaller than 0.05 for the normality hypothesis in one hundred replications for each combination of factors: type of noise (rows)
and embedding dimension (columns).
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Fig. 6. Percentage of rejections when the hypothesis test (38) is applied using the Shannon entropy ( = 𝑆) and embedding dimension equal to 3. Groups with time series of
length 300, 3000 and 30000 are represented in left, middle, and right tables, respectively.
Fig. 7. Percentage of rejections when the hypothesis test (38) is applied using the Tsallis entropy with 𝛽 = 1∕2 ( = 𝑇1∕2) and embedding dimension equal to 3. Groups with time
series of length 300, 3000 and 30000 are represented in left, middle, and right tables, respectively.
Fig. 8. Percentage of rejections when the hypothesis test (38) is applied using the Rényi entropy with 𝛽 = 1∕3 ( = 𝑅1∕3) and embedding dimension equal to 3. Groups with time
series of length 300, 3000, and 30000 are represented in left, middle, and right tables, respectively.
the patters 𝜋(1) and 𝜋(6) are the most frequent, followed by the pair 𝜋(2)

and 𝜋(4), and finally by the pair 𝜋(3) and 𝜋(4). In Ethereum, the patterns
𝜋(1) and 𝜋(6) are again the most frequent, but the rest of the ordinal
patterns show a similar frequency. In Tether, 𝜋(1) is the most frequent,
and the rest ordinal patterns seem equiprobable.

We then applied the entropy test for the Shannon entropy and
𝑚 = 3 to give the previous remarks statistical significance. Figs. 11,
12, 13, and 14 show the 𝑝-values and decisions at the 5% confidence
level. The decisions are also coded in colors: red shows rejection,
while green indicates insufficient evidence to reject the null hypothesis
that the series came from the same process. We can observe from
10 
Fig. 11 that for the Shannon entropy, the null hypothesis is always
rejected (as expected) except for the comparisons of Bitcoin vs. Litecoin
(as expected), and Litecoin vs. Ethereum Classic (with a 𝑝-value not
much larger than 0.05). For the Tsallis entropy with 𝛽 = 1∕2, the
decisions coincide with using the Shannon entropy as shown in Fig. 12.
We replicated the procedure for the Rényi entropy with 𝛽 = 1∕3,
and the ‘‘ideal’’ results are presented in Fig. 13. Fig. 14 exhibits the
results for the Fisher information measure, which could not distin-
guish the subtle difference between Ethereum Classic and Bitcoin or
Litecoin.
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Fig. 9. Percentage of rejections when the hypothesis test (38) is applied using the Fisher information measure ( = 𝐹 ) and embedding dimension equal to 3. Groups with time
series of length 300, 3000 and 30000 are represented in left, middle, and right tables, respectively.

Fig. 10. Time series (top row) and the frequency of ordinal patterns (bottom row) for the open prices of the cryptocurrencies Bitcoin, Ethereum Classic, Litecoin, and Tether (from
left to right).

Fig. 11. Decisions at the 95% confidence level and 𝑝-values of applying the Shannon entropy hypothesis test with 𝑚 = 3 to the times series given by the opening prices of
cryptocurrencies.
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Fig. 12. Decisions at the 95% confidence level and 𝑝-values of applying the Tsallis entropy hypothesis test with 𝛽 = 1∕2 and 𝑚 = 3 to the times series given by the opening prices
of cryptocurrencies.
Fig. 13. Decisions at the 95% confidence level and 𝑝-values of applying the Rényi entropy hypothesis test with 𝛽 = 1∕3 and 𝑚 = 3 to the times series given by the opening prices
of cryptocurrencies.
Fig. 14. Decisions at the 95% confidence level and 𝑝-values of applying the Fisher information measure hypothesis test with 𝑚 = 3 to the times series given by the opening prices
of cryptocurrencies.
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7. Conclusions

We have derived the asymptotic distribution of the Rényi and
Tsallis/Havrda-Charvát entropies and the Fisher information measure
of ordinal patterns embedding their serial correlation.

We verified that the convergence to the asymptotic results is slow
for short time series with weak correlation structure and small embed-
ding dimension (𝑚 = 3, 4). This indicates that the asymptotic results
hould be used with caution in such cases. The Fisher information
easure showed the poorest convergence behavior. Overall, the limit
istributions we provide have good performance in other situations.

Tests derived from those asymptotic results can be used to distin-
uish among several types of stochastic structures , with over than
0% of correct rejection for long-term time series. We verified that the
isher information measure achieved the best results in terms of size
nd power, as shown in Figs. 6, 7, 8, 9 and Table 5.

The Rényi entropy showed the desired behavior when the test was
pplied to real data concerning the open prices of cryptocurrencies. The
hannon and Tsallis entropies produced the same results. On the other
ide, the Fisher information measure could not distinguish differences
etween some of the time series under study.
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