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a b s t r a c t

In this paper we propose a robust deconvolution filter design that optimises a functional

motivated by the a posteriori probability of the signals to be estimated. The problem is

formulated in the framework of uncertain linear systems represented by discrete-time

input–output ARMAX models, where the uncertainty is modelled as the realisation of a

stochastic process with known statistics. The design is based on the use of a horizon of

measurements in such a way that, for FIR systems, the functional to be optimised

coincides with the one that maximises the a posteriori probability (MAP); and for

ARMAX systems, the functional converges to the MAP functional as the length of the

horizon is increased. The goal is to estimate signals with Gaussian or truncated Gaussian

probability density functions based on measurements correlated with them. The robust

design shows a very significant improvement, in a probabilistic sense for different

systems, of the relative standard deviation of the estimation error when compared with

the nominal model filter design.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

The problem of robust filtering considered in this
paper consists of estimating desired signals associated to
an uncertain system, using measurements correlated with
those signals. The measurements are the output of a
discrete-time linear system corrupted by noise and the
filtering problem consists in estimating the input signal to
the system using a partial or imperfect model knowledge
which constitute, in fact, a robust deconvolution problem.
Robust filter designs can be based on a deterministic

approach, where the uncertainty is modelled as an
unknown element belonging to a family of admissible
uncertainties, or they can be based on a probabilistic

approach, where the uncertainty is assumed to be a

stochastic process with known statistics. In the first
approach, the objective consists in designing a stable
and causal filter, which guarantees that the worst-case
gain from the input signal to the filtering error remains
bounded by a prescribed value for all admissible
uncertainties. The filter can be obtained by minimising
the H1 norm as in [1], and the references therein for
linear systems represented in state space, or in [2] for
input–output models. However, the H1 approach is
known to be conservative. Mixed H2=H1 designs allow a
trade off between the best averaged performance of the
minimum variance design and the best guaranteed worst
case performance of the H1 estimator as in [3], and the
references therein, where the design considers linear
parameter varying systems in the state space model
formulation.

The filter can also be obtained by minimising the error
variance upper bound for all admissible noises and
systems uncertainties, as in the so-called cost guaranteed
filters. This design is achieved by minimising the H2 norm
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for the worst case as in [4,5], and the references therein
for state-space models, or in [6–8], for input–output
models.

A different approach, on the other hand, is the one
based on a probabilistic description of uncertainties. In
the context of state space approach, the finite-horizon
filtering problem for uncertain discrete time-varying
systems subject to both randomly varying measurements
delays and norm bounded parameter uncertainties, using
the Kalman filter, is given in [9]. In [10], a design is
presented which minimises the expected value of the MSE
cost with respect to the model uncertainties, when the
latter are modelled as stochastic processes. In [11], a
continuous-time solution is given to solve the H1 and the
mixed H2=H1 design for a stochastic description of the
system uncertainties. Models with random uncertainties
are common in the communication field where the
problem of detecting finite alphabets transmitted through
random channels is treated as in, e.g. [12–14].

In this paper, a robust deconvolution filter design is
proposed which optimises a functional motivated by the a

posteriori probability of the signals to be estimated. A
horizon (or time window) of measurements is utilised,
where the measurements are related to the signal to
be estimated through an uncertain ARMAX model,
including non-minimum phase systems. The uncertainty
is modelled as the realisation of a stochastic process with
known Gaussian distribution. For the particular cases of
finite impulse response (FIR) models, the functional
considered coincides, independently of the measurements
horizon, with the one that maximises the a posteriori

probability (MAP) of the estimations. For the more general
case of ARMAX models, it is shown in the nominal case
that, as the measurements horizon is increased, the
estimates converge to the ones obtained with a maximum
a posteriori optimisation criterion. In the case of the robust
design, significant improvements are obtained in terms of
reduction of the data horizons required for good perfor-
mance, as shown in the simulation examples presented
below. Thus, the robust design not only improves
the quality of the estimates but significantly reduces the
complexity of the on line estimations, extending
the domains of application.

In addition to the scenario described above, a problem
relevant to several engineering applications is the design
of optimal filters subject to constraints. In particular, the
problem of designing optimal filters for signals with
truncated Gaussian distributions has attracted attention in
recent times. In [15], this problem is treated in the context
of state-space models, and its duality with a correspond-
ing optimal control problem is established. Truncated
Gaussian signals are also considered in applications of
data assimilation for ocean models, see e.g. [16]. The
design proposed in the current paper is optimal for signals
with truncated Gaussian distributions. Thus, the work
exposed in this paper covers a gap in the literature, where,
to the best of the authors knowledge, very few or no
treatments exist dealing with the problem of constrained
robust filtering with input–output models. The improve-
ment, in a probabilistic sense, of the standard deviation of
the error that can be obtained, relative to the perfect

model knowledge filter design, is illustrated through the
average performance calculated for a family of stable
linear systems.

In this paper, a common assumption about the
variables that are stochastic in nature (both, external
signals, noises, and uncertain system parameters) is that
they have Gaussian distributions. The main reason for this
assumption is the mathematical tractability of the resulting
techniques. Of course, this represents an approximation to
reality since, in any real life application, an exact
characterisation of the probability distribution is hardly
ever realistic. However, it is well known that many signals
present in nature have distributions that are very close to
Gaussian, a fact that is theoretically well-supported by the
theorem of large numbers. In addition, as a slight
generalisation to this assumption we also include
truncated Gaussian distributions as part of the analysis.
This generalisation allows to include constraints in the
analysis while still keeping mathematical tractability.

The remainder of the paper is organised as follows: in
Section 2 the problem is formally stated and the ARMAX
model, using a finite horizon, is expressed in a linear
matrix equation. In Section 3, the criterion to obtain the
estimations using perfect model is derived for both,
Gaussian and Gaussian truncated input signals. In Section
4 a strategy to improve the solution for the case of
imperfect model is presented. In Section 5 simulation
results of several examples are shown in order to
illustrate the procedure and performance. Finally, in
Section 6 we present the conclusions.

2. Problem formulation

Let us consider the following ARMAX model with
scalar inputs and outputs:

yk ¼ a1yk�1þ � � � þanayk�naþb0ukþ � � � þbnbuk�nbþek

þc1ek�1þ � � � þcncek�nc ð1Þ

where the input uk, at each time instant k, is to be
estimated using a horizon of present and past measure-
ments yk. The input ek represents the measurement noise
and the parameters ai, bi, and ci are scalar constants. The
problem can be easily extended to the multivariate case if
the coefficients are matrices and the variables are vectors
of appropriate dimensions. For simplicity, and without
loss of generality, we will consider the scalar case. The
input signals uk and ek are assumed to be i.i.d. stochastic
processes with normal distributions ukHN ð0,s2

uð0ÞÞ and
ekHN ð0,s2

e ð0ÞÞ, and independent of each other.
The ARMAX model (1) can be written in a compact

form as

yk ¼ aT yk�1þbT ukþcT ek ð2Þ

where the different vectors are given by a¼ ½ana, . . . ,a1�
T ,

b¼ ½bnb, . . . ,b0�
T , and c¼ ½cnc , . . . ,1�T , and

yk�1 ¼

yk�na

^

yk�1

0
B@

1
CA, uk ¼

uk�nb

^

uk

0
B@

1
CA, ek ¼

ek�nc

^

ek

0
B@

1
CA ð3Þ

then, from (2) we have that the following equation is
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satisfied:

yk ¼ Ayk�1þBukþCek ð4Þ

where matrices A, B, and C of dimensions na�na,
na� (nb+1), and na� (nc+1), respectively, are given by

A¼

0 j I

� � �

aT

0
B@

1
CA, B¼

O

��

bT

0
B@

1
CA, C ¼

O

��

cT

0
B@

1
CA ð5Þ

where I is the identity, O is a matrix of zeros, and 0 is a
vector of zeros. The measured value at time instant k+N,
yk +N, for NZ0, can be expressed as a function of the initial
conditions yk�1 by using (2) and (4), as follows:

ykþN ¼ aT ykþN�1þbT ukþNþcT ekþN

ykþN ¼ aT ½AykþN�2þBukþN�1þCekþN�1�þbT ukþNþcT ekþN

^¼ ^

ykþN ¼ aT ANyk�1þaT AN�1½BukþCek�þ � � �

þaT ½BukþN�1þCekþN�1�þ½b
T ukþNþcT ekþN� ð6Þ

Using the previous definitions, it is possible to write
the sequence yk in the interval [�L1, L2] (where L1 and L2

are arbitrary integer numbers that satisfy L1Z0, L2Z1,
defining a backward and a forward horizon, respectively,
with respect to the time instant k as simple matrix
operations of the following form:

~y ¼Ay0þBuþC ~e ð7Þ

where

~y ¼

yk�L1

^

ykþL2�1

0
B@

1
CA, u¼

uk�L1�nb

^

ukþL2�1

0
B@

1
CA, ~e ¼

ek�L1�nc

^

ekþ L2�1

0
B@

1
CA
ð8Þ

y0 is a short notation for yk�L1�1, and

A¼

aT

aT A

^

aT AL1þ L2�1

0
BBB@

1
CCCA, B¼

bT
j O

aT B j ^

^ j ^

aT AL1þL2�2B j O

0
BBBB@

1
CCCCA

þ

0 0 j O

^ bT
j ^

^ ^ j ^

0 aT AL1þ L2�3B j O

0
BBBB@

1
CCCCAþ � � � þ

O j 0

^ j ^

^ j 0

O j bT

0
BBBB@

1
CCCCA
ð9Þ

and C defined similarly to B by exchanging B by C and b
by c. Notice that the vector y0 contains the minimum
possible number of variables that, jointly with the vector
of inputs u and ~e, determine yj for all jZk�L1. In the case
of ARMAX systems the vector y0 represents the initial

conditions. Notice that, in the case of FIR systems,
this vector is not required since a=0. Finally, taking
into account, from (4), that y0=w+v0 where
w¼ Ayk�L1�2þBuk�L1�1, and v0=Ce0 with e0 a short
notation for ek�L1�1, the relationship between the input

and output can be expressed in a simple matrix form by

y¼Hxþv ð10Þ

where

y¼
y0

~y

 !
, H¼

I 0

A B

� �
, x¼

w

u

� �
ð11Þ

v¼
C 0

AC C

� �
e0

~e

� �
ð12Þ

with covariance matrices

Ru ¼ s2
uI, Rv ¼ s2

e

CCT CCTAT

ACCT ACCTAT
þCC

T

 !
ð13Þ

for vectors u and v. The goal is now to obtain an estimate
x̂

opt
of the vector x from the knowledge of its statistics and

the vector y given by the measurements yd. The proces-
sing to obtain such estimates will be done in ‘blocks of
data’.

3. Filter design based on perfect model

To motivate the estimation criterion proposed in this
work, we will start by analysing the estimation criterion
that maximises the a posteriori probability (MAP), given
by

x̂MAP
¼ argmax

x̂
fpxjyðx̂jy

dÞg ð14Þ

Using Bayes’ rule we have

pxjyðx̂jy
dÞ ¼

pyjxðydjx̂Þpxðx̂Þ

pyðydÞ
ð15Þ

Taking into account the following transformation:

x

y

 !
¼

I 0

H I

� �
x

v

� �
ð16Þ

and the fact that x and v are independent of each other,
we have that pyjxðydjx̂Þ ¼ pvðyd�Hx̂Þ.

In addition, pxðx̂Þ in (15) can be written as

pxðx̂Þ ¼ pw,uðŵ,ûÞ ¼ pwjuðŵjûÞpuðûÞ ð17Þ

We assume that the pdf of u is known and that it belongs
to a Gaussian, or truncated Gaussian, distribution. In the
case of a truncated Gaussian distribution, we assume that
the support (that is, the domain where the pdf is different
from zero) is given by linear inequalities. In the case of FIR
systems, since w should not be taken into account, we
have pxðx̂Þ ¼ puðûÞ instead of (17) which gives in (15) the
well known MAP estimation for FIR models. In the case of
ARMAX systems, since we assume the probability dis-
tribution of u to be known, it is in principle possible to
know the conditional probability pwjuðŵjûÞ in (17) by
using the knowledge of H. However, if the input vector u
has a truncated Gaussian pdf, the probability pwjuðŵjûÞ
does not result, in general, in a Gaussian—nor truncated
Gaussian—distribution, and its inclusion in the MAP
functional (14) complicates significantly the computation
of the estimations. Moreover, considering the case where
H may have uncertainties as discussed in the next section,
the calculation of conditional probability computed by
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using the uncertain model can result in unacceptable
inaccuracies. In its place, we propose to replace this prior

knowledge of the statistics of w by its likelihood function,
given by py0jwðy

d
0jŵÞ, which gives us an estimation of the

statistics of w supposing that we have only access to the
measurement y0. Taking into account that py0 jwðy

d
0jŵÞ ¼

pv0
ðyd

0�ŵÞ, the functional is no more the a posteriori

probability of the signal to be estimated, but, on the other
hand, it allows us to work with Gaussian and truncated
Gaussian density functions, and it enormously simplifies
the solution of the estimation problem. In this way, the
design also becomes independent of possible uncertain-
ties of H. We will see later that, for stable systems, as the
horizon L1 is increased, the maximum of the proposed
functional converges to the MAP functional. Thus, the
probability pxðx̂Þ in (15) is substituted by pv0

ðyd
0�ŵÞ

puðûÞ ¼ pv0 ,uðyd
0�ŵ,ûÞ.

Finally, considering that pyðydÞ does not depend on the
estimated values, we have that the estimation criterion
can be posed as the following maximisation problem:

x̂opt
¼ argmax

x̂
fpvðy

d�Hx̂Þpv0 ,uðy
d
0�ŵ,ûÞg ð18Þ

In the case of strictly Gaussian distributions, we can pose
the problem in compact form as

x̂opt
¼ argmin

x̂
fJyd�Hx̂J2

R�1
v
þJEx̂þFydJ2

P�1 g ð19Þ

where the norm of a vector z weighted by a matrix R is
JzJ2

R ¼ zT Rz,

P¼
Rv0

0

0 Ru

" #
, E¼

�I 0

0 I

� �
, F ¼

I 0

0 0

� �

Rv0
¼ s2

e CCT is the covariance matrix of the vector
v0. Problem (19) can be formulated as a minimisation
problem with quadratic cost (quadratic programme, or qp)
without constraints, of the following form:

x̂opt
¼ argmin

x̂

1

2
x̂T

Q x̂�f T x̂

� �
ð20Þ

The minimiser is x̂ ¼ Q�1f , where

Q ¼HT R�1
v HþP�1 ð21Þ

f ¼ ð�P�1EFþHT R�1
v Þy

d ð22Þ

and where we have used the fact that ETP�1E=P�1 and
ETP�1F=P�1EF.

In the case of truncated Gaussian density functions for
the variable u, the problem consists of minimising the
same objective function, but now subject to linear
constraints on the vector û ¼ ½0 I�x̂, as follows:

x̂
opt
¼ argmin

x̂

1

2
x̂

T
Q x̂�f T x̂

� �

s:t: ½0 S�x̂rs ð23Þ

where the matrix S and vector s characterise1 the
constraint set.

By considering a horizon L2=1, we have a filtering
problem, whereas a horizon L241 makes it a smoothing
problem. The estimation is by blocks of data of length
L1+L2+nb for û and of length na for ŵ. The processing
strategy can be carried out by blocks of L1+L2+na samples
updating the vector y with each new output measurement
and keeping the previous ones. For each block estimation
we keep the estimation at ûkþ L2�1. It is important to stress
that in the case of FIR systems, the length of the horizon is
not critical, since the estimates coincide with the MAP
estimates for all horizons. In the case of ARMAX systems it
is convenient to use horizons sufficiently large so that the
estimates converge to the MAP estimates as it is proved in
the following theorem.

Theorem 1. Given the block structure of the ARMAX model

(10) with inputs u Gaussian or truncated Gaussian and v
strictly Gaussian, the proposed estimator converges asymp-

totically to the optimal MAP estimator when the horizon L1

increases.

For the proof see Appendix A.
In the next section the problem of robust filter design

for uncertain models will be addressed.

4. Robust filter

The design of optimal filters requires the perfect
knowledge of the system. This, however, is not generally
possible since the system is identified experimentally
using a known input. Even when using a persistent
excitation, the best that can be obtained is a partial
knowledge of the system. The use of parameters that only
approximate the real ones from the system can consider-
ably deteriorate the estimation of a given signal.

The system, in these cases, can be modelled as the sum
of two components. One is a known component, given by
a matrix of gains H , sometimes called the nominal model
of the system and that is the one obtained experimentally,
and the other is a matrix D, which is unknown but
assumed to belong to a family with known statistical
properties. This kind of probabilistic models can be found
in several robust approaches, see [10] for matrix poly-
nomial representation of system dynamics, [9] in sensing,
[14,12] in communication. The general formulation is as
follows:

H¼HþD, Di,j �N ð0,s2
DijÞ, 8i,j ð24Þ

where Di,j are the components of D. In our case, H is a
matrix of known constants which is in fact the mean of
the multivariable Gaussian distributed variable H. In this
section, we develop a design for the estimator that is
robust to uncertainties based on the knowledge of the
system characterised in the form (24).

We assume that the covariances between the column
vectors di of D are known in such a way that calling
L=L1+L2+na+nb the length of the vector x, we have

D¼ ½d1 � � � dL�, E½did
T
j � ¼ RDij ð25Þ

It is important to notice that uncertainties in the
knowledge of the covariance matrices Rv and Ru in (19)
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affect the cost in a much smaller extent than uncertainties
in the system H. In Appendix B, it is shown that the
nominal design minimises the variation of the cost
with respect to uncertainties in the covariance matrix.
On the other hand, with the nominal design there is no
control over the variations of the cost with respect to
uncertainties in the system. For this reason, in this work
we deal with the problem of robust design against
variations in the system, and we assume that the
covariance matrices Ru and Rv are known, since any
discrepancy in their values is effectively counteracted by
the nominal design.

Using a system description comprising an uncertain
model, Eq. (10) can be rewritten as

yk ¼ ðHþDÞxkþvk ð26Þ

considering the following transformation of variables:

x

y

 !
¼

I 0

H I

� �
x

Dxþv

 !
ð27Þ

we have that pyjxðydjx̂Þ in (15) is given by

pyjxðy
djx̂Þ ¼

py,xðyd,x̂Þ

pxðx̂Þ
ð28Þ

¼
pDxþv,xðy

d�Hx̂,x̂Þ

pxðx̂Þ
ð29Þ

¼ pDxþvjxðy
d�Hx̂jx̂Þ ð30Þ

¼ pDx̂þvðy
d�Hx̂Þ ð31Þ

then, in this context, the criterion (18) can be rewritten as

x̂opt
¼ argmax

x̂
fpDx̂þvðy

d�Hx̂Þpv0 ,uðy
d
0�ŵ,ûÞg ð32Þ

Given the fact that D has a Gaussian distribution, as
well as v, the probability density function pDx̂þv of (31),
for any x̂, is also a Gaussian function of the form:

pDx̂þvðy
d�Hx̂Þ ¼ const:�

e
�ð1=2ÞJyd�H x̂J2

R�1
vD

jRvDj
1=2

ð33Þ

where, taking into account that D is independent of v,
RvD ¼ E½ðDx̂þvÞðDx̂þvÞT � has the following form:

RvD ¼ EðDx̂x̂TDT
ÞþRv ð34Þ

¼
XL

i ¼ 1

XL

j ¼ 1

x̂ix̂jRDijþRv ð35Þ

Then, the criterion in (32) is equivalent to the
following minimisation problem:

x̂
opt
¼ argmin

x̂
flogðjRvDjÞþJyd�Hx̂J2

R�1
vD
þJEx̂þFydJ2

P�1 g

ð36Þ

Notice that the covariance matrix RvD depends on the
estimates x̂, thus problem (36) is not a quadratic
programme as it was in the nominal case. However, it is
possible to derive an algorithm to improve the nominal
solution obtained as a minimiser of cost (19). To this end,
we state the following problem: given the covariance
matrix Ri, computed according to (35) with any initial

estimation x̂
opt
i , we are interested in obtaining a new

estimation x̂
opt
iþ1, and their corresponding covariance

matrix Ri + 1 computed with (35), which fulfils JiZ Jiþ1

where

Ji ¼ logðjRijÞþJyd�Hx̂
opt
i J2

R�1
i
þJEx̂

opt
i þFydJ2

P�1 ð37Þ

is the type of robust cost given in (36). Formally, we are
interested in a new estimated vector x̂ iþ1 such that the
following holds:

logðjRijÞþJyd�Hx̂opt
i J2

R�1
i
þJEx̂opt

i þFydJ2
P�1

Z logðjRiþ1jÞþJyd�Hx̂ iþ1J
2
R�1

iþ 1
þJEx̂ iþ1þFydJ2

P�1 ð38Þ

By subtracting Jyd�Hx̂ iþ1J
2
R�1

i
from both sides of (38) and

reordering, the inequality can be written as

ðJyd�Hx̂
opt
i J2

R�1
i
þJEx̂

opt
i þFydJ2

P�1 Þ�ðJyd�Hx̂ iþ1J
2
R�1

i
þJEx̂ iþ1

þFydJ2
P�1 ÞZ ðlogðjRiþ1R�1

i jÞþJyd�Hx̂iþ1J
2
R�1

iþ 1
�R�1

i
Þ

ð39Þ

In order to force the above inequality as much as possible,
an optimal x̂

opt
iþ1 can be obtained that minimises the

second term on the left-hand side of (39). Note that, as a
result, the cost to be minimised is similar to that of the
nominal case and it is given by

x̂
opt
iþ1 ¼ argmin

x̂ iþ 1

fJyd�Hx̂ iþ1J
2
R�1

i
þJEx̂ iþ1þFydJ2

P�1 g ð40Þ

Thus, it is possible to derive a strategy to improve the cost
obtained with the nominal solution. It consists in
computing in a first iteration, i=0, the nominal solution,
x̂

opt
1 , with R0=Rv. The covariance matrix R1 is obtained

using (35) and x̂
opt
1 . In the second iteration, i=1, we use R1

to obtain x̂opt
2 and the corresponding covariance R2 using

(35) and x̂
opt
2 , also the cost J2, using (37). Comparing both

costs we decide if the new estimation is accepted J2o J1 or
rejected J2Z J1. In the case that the cost is improved it is
possible to continue with a third iteration, i=2, and so on
until the cost ceases to improve. Otherwise, we keep the
estimation of the previous iteration as final result.
Extensive simulation results confirm that, with this
algorithm, the robust design improves considerably the
nominal estimation in the first iteration (see the simula-
tion examples in Section 5).

Finally, we recall that the minimum of the cost (40)
can be obtained in a similar way than in the nominal case
as the minimiser of a quadratic programme of the
following form:

x̂
opt
iþ1 ¼ argmin

x̂ iþ 1

1

2
x̂T

iþ1Q x̂ iþ1�f T x̂ iþ1

� �
ð41Þ

with minimiser x̂opt
iþ1 ¼Q�1f , and

Q ¼H
T
R�1

i HþP�1 ð42Þ

f ¼ ð�P�1EFþH
T
R�1

i Þy
d ð43Þ

In the case in which u has truncated Gaussian
distribution, the minimum is found with a similar
quadratic programme but now subject to constraints on
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the vector û as follows:

x̂
opt
iþ1 ¼ argmin

x̂ iþ 1

1

2
x̂

T
iþ1Q x̂ iþ1�f T x̂ iþ1

� �
s:t: ½0 S�x̂iþ1rs

ð44Þ

where S and s are, respectively, a matrix and a vector of
constants.

In the next section we present simulation results in
order to illustrate the procedure and the performance of
the estimation scheme.

5. Simulation results

We will see first in a simple example how the cost
function is improved with the proposed strategy.

Example 1. We consider a first order FIR model given by
yk=huk+vk where uk and vk are independent white noise
sequences with variance s2

u ¼ 1 and s2
v, respectively. The

horizon is L2=0 and L1=1. The gain h is a Gaussian process
HN ðh,s2

dÞ with h ¼ 1. Thus, the problem can be accom-
modated to our notation by defining

H ¼
1 0

0 h

� �
, P¼

s2
v 0

0 s2
u

 !
, Ri ¼

s2
v 0

0 û
2
i s2

dþs
2
v

0
@

1
A
ð45Þ

yd ¼
0

yd

 !
, x̂ i ¼

0

ûi

 !
ð46Þ

where i is the ith iteration. Replacing in (42) and (43) we
obtain the optimal estimator for ith iteration which is
given by

ûiþ1 ¼
s2

uh

s2
uh

2
þ û

2
i s2

dþs2
v

yd
k ð47Þ

Note that for i=0, in the first iteration, the solution for the
nominal system coincides with the Wiener filter design.

In order to show that the nominal design is robust to

uncertainties in the knowledge of noise covariance,

contrary to uncertainties in the knowledge of the system

coefficients, we will calculate the following functionals:

fQ ¼
JðQ ,H,x0Þ�Jð ~Q ,H, ~xQ Þ

JðQ ,H,x0Þ
, fH ¼

JðQ ,H,x0Þ�JðQ , ~H , ~xHÞ

JðQ ,H,x0Þ

ð48Þ

where J(Q,H,x) is a short notation of the cost of Eq. (19)

where x0 is its minimiser, ~xQ is the minimiser of Jð ~Q ,H,xÞ,

and ~xH is the minimiser of JðQ , ~H ,xÞ. In Fig. 1 both

functionals are shown versus the signal to noise ratio

when a change of 10% in both s2
v , which produces a

variation from Q to ~Q , and h, which produces a variation

from H to ~H . Note that both functional are independent of

yd, due to cancelation in the numerator and denominator.

It can be seen from the figure that the cost variation is

much smaller in the case of differences in the knowledge

of the noise variance than in the knowledge of the system

gain. The differences increase as the signal-to-noise ratio

increases.

In Fig. 2 the cost for three iterations, starting with the

nominal solution, is shown for the case where s2
d ¼ 0:4

and s2
v ¼ 10�2. Note that the improvement obtained in the

first iteration is significant. In Fig. 3 the estimated values

as a function of the measured output y are depicted. In

Figs. 4 and 5 the same graphics are depicted but using

s2
d ¼ 0:1 and s2

v ¼ 10�2 with the same observations as in

the previous case.

The same procedure can be used for higher order FIR

filters. We recall that in the case of FIR systems, the length

of the horizon is not critical, since the estimates coincide

with the MAP estimates for all horizons.

Example 2. Systems with poles near the origin can be
very well approximated by FIR filters. In contrast, systems

ARTICLE IN PRESS

0 5 10 15 20 25 30 35 40
10−3

10−2

10−1

100

Signal to noise ratio

R
el

at
iv

e 
va

ria
tio

n 
of

 th
e 

co
st

fQ

 fH

Fig. 1. Cost variation for uncertainties of 10% in s2
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with poles near the unit circle can only be represented by
IIR filters. We will see in this example the performance of
the proposed heuristic design when it is used to estimate
the input of a second order IIR system with poles and
zeros near the unit circle given at z1=�0.87 j 0.51 and
poles at 7 j 0.895. First we show, for the case of perfect
knowledge of the system, the convergence of the heuristic
design versus the horizon length compared with the
optimal Wiener filter design. The performance is depicted
in Fig. 6 where it can be seen that, increasing the horizon,
the heuristic design cost coincides with the one of the
optimal Wiener filter.

We also are interested in knowing the performance of

the nominal filter using Eqs. (20) and (21) in the case

where the input is truncated Gaussian distributed versus

the constrained design given by the quadratic programme

solution in (23). For such purpose, a comparison between

the relative standard deviation estimation error of both

designs was performed by simulating a truncated Gaus-

sian input signal distribution. The truncated Gaussian

distribution of the input is obtained by taking samples

from a Gaussian distribution HN ð0,1Þ and discarding the

samples that fall outside of a window centred at zero and

of width 2a. In the case of the nominal solution a decision

element is incorporated such that û4a) û ¼ a and

ûo�a) û ¼�a. The result is shown in Fig. 7 for

different noise amplitudes. It can be seen that, with qp

(23), an improvement between 10% and 20% is obtained

depending on the signal-to-noise ratio.

In the case of imperfect knowledge of the system

coefficient, the performance of the robust design at the
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first iteration i=1 using (41), together with the nominal

design, i=0, versus the amplitude g of the uncertainty was

obtained by simulation. The uncertainty is modelled by

matrices D whose elements are realisations of a white

Gaussian process with covariance matrix g2HHT , where g
is a scalar. For each realisation, comprising input

sequences of 2000 samples, the relative standard devia-

tion of the estimation error was calculated for the

nominal design and for the robust design. Then, the

average over 200 realisations was calculated. A signal to

noise ratio of 20 dB was considered, and the horizons

utilised were L1=15 and 30 in all cases with L2=1. The

relative standard deviation of the error is shown in Fig. 8.

It is also important to note that the main improvement is

achieved in the first iteration. Note that the performance

of the nominal design improves when the horizon is

increased, reaching a value without further improvements

when the horizon is sufficiently large so as to capture all

the dynamics of the optimal ARMAX filter. It can be seen

that in the nominal case, with horizons between L1=15

and 30 the filter converges as it was predicted in Fig. 6. It

is important to highlight that the performance of the

nominal design with horizon L1=30 practically coincides

with the Wiener solution. Also note that the

improvements of the robust solution compared with the

nominal design is significant. Note that, even though a
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relative standard deviation of the error greater than one in

the case of the nominal design has no significance, it is

still shown to highlight how uncertainties deteriorate

significantly the performance and the high improvement

achieved with respect to the nominal design.

Example 3. In this example we consider the averaged
performance over a family of stable systems. The systems
considered are second order ARMAX (na=2;nb=2;nc=0)
and consist of all possible combinations, without repeti-
tion, of zeros and poles located inside the unit disc, in
positions corresponding to magnitudes of [0.9; 0.6; 0.3]
and phases [p=3;2p=3;p]. A signal to noise ratio, s2

u=s2
v of

20 dB was considered, both Gaussian distributed.

To give a quantitative illustration of the averaged

improvements that can be obtained when using the

robust design in a problem of deconvolution with an

uncertain linear operator H, extensive simulations were

performed on the same system set up described above.

Each of those systems belongs to a family of uncertainties

given by matrices D whose elements are realisations of a

white Gaussian process with covariance matrix g2HHT ,

where g is a scalar. For each realisation, comprising input

sequences of 2000 samples, the relative standard devia-

tion of the estimation error was calculated for the

nominal design and for the robust design. Then, for each

system considered, the average over 200 realisations was

calculated. A signal to noise ratio of 20 dB was considered,

and the horizons utilised were L1=25, 50, 100 and 500, in

all cases with L2=1. The result of averaging all the relative

standard deviations of the error is shown in Fig. 9. It is
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also important to note that the main improvement is

achieved in the first iteration.

In the simulations, no significant variations were

observed beyond L1=500. In the case of the robust design,

the changes in performance due to different horizons are

significantly smaller and only for horizons smaller than

L1=10 the differences start to become noticeable. This

confirms that the filter is robust against variations in the

horizon of measurements. Thus, as it was stated in

the Introduction, the robust design not only improves

the quality of the estimates but significantly reduces the

length of the horizons. Then the complexity of the on line

estimations become simpler, extending the domains of

application.

In Fig. 10, the performance obtained with the robust

filter for truncated Gaussian inputs uk is shown. The same

quantities as before were averaged in this case, but now

with a distribution for the input uk given by a Gaussian

distribution with zero mean, and with truncated negative

values. The problem is solved as a quadratic programming

problem subject to constraints. The simulations shown

are for the uncertainties interval g 2 ½0:01,0:3�.
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In the case of perfect model, the average improvements

between the constrained and unconstrained designs can

be appreciated by comparing g¼ 0.

6. Conclusion

A robust design for the problem of filtering with finite
measurement horizons has been presented. The design
maximises a functional motivated by the a posteriori

probability and consists in iteratively improving the
solution obtained for the nominal model. First, an
estimation using the nominal model is carried out, and
then the result is used to obtain, iteratively, an improved
robust estimation. It is important to highlight that the
greatest improvement, in all examples considered, is
reached in the first iteration. Because of its formulation,
the design is also feasible for the case of truncated
Gaussian inputs.

For FIR systems the design is independent of the
horizon. In contrast, for IIR systems the solution improves
as the horizon is increased. For the latter case it was
shown that for perfect model with Gaussian input the cost
converges to the optimal solution given by the Wiener
filter.
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Appendix A

Proof of Theorem 1. We will compare the MAP cost,
given by the following equation:

Jyd�Hx̂J2
R�1

v
þJx̂J2

R�1
x

ð49Þ

where Rx ¼ EðxxT Þ with the heuristic cost of Eq. (19) for
any vector x̂, different from zero. We will show that the
relative error between both criteria with respect to the
MAP cost converge asymptotically to zero as L1 increases,
that is,

lim
L1-1

Jx̂J2
R�1

x
�JEx̂þFydJ2

P�1

Jyd�Hx̂J2
R�1

v
þJx̂J2

R�1
x

¼ 0 ð50Þ

To this end, consider an appropriate uncorrelated
partition of the vector x as follows:

x¼
xa

xb

 !
, xa ¼

w

uk�L1�nb

^

uk�L1�1

0
BBBB@

1
CCCCA, xb ¼

uk�L1

^

ukþL2�1

0
B@

1
CA ð51Þ

Then, the covariance matrix Rx can be written as

Rx ¼
ExaxT

a ExaxT
b

Ex2
bxT

a ExbxT
b

 !
ð52Þ

By using the definition of w we can see that
EðxaxT

bÞ ¼ EðxbxT
a Þ ¼ 0. Hence, we have

R�1
x ¼

R�1
xa

0

0 R�1
xb

0
@

1
A ð53Þ

where Rxa ¼ Eðxa,xT
a Þ and the same for Rxb

. Then, for the
first term of the numerator of (50) we have Jx̂J2

R�1
x

=
Jx̂aJ

2
R�1

xa
þ Jx̂bJ

2
R�1

xb

.
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For the second term we have JEx̂þFydJ2
P�1 ¼ J½v̂

T
0 ,û

T
�T

J2
P�1 . Using an equivalent partition to the one used

previously, of the form J½v̂
T
0 ,û

T
�TJ2

P�1 ¼ J½ẑ
T
,x̂

T
b �

TJ2
P�1 where

ẑ
T
¼ ½v̂

T
0 ,ûk�L1�nb, . . . ,ûk�L1�1�, we have that JEx̂þFydJ2

P�1 =

JẑJ2
R�1

z
þ Jx̂bJ

2
R�1

xb

.

Finally, substituting in (50) the quotient is given by

lim
L1-1

Jx̂aJ
2
R�1

xa
�JẑJ2

R�1
z

Jyd�Hx̂J2
R�1

v
þJx̂aJ

2
R�1

xa
þJx̂bJ

2
R�1

xb

¼ 0 ð54Þ

When L1 grows, both terms of the numerator are bounded,

whereas the term in the denominator, that depends on xb,

grows unbounded. Thus, it is clear that for ARMAX

systems (recall that for FIR systems, the heuristic cost

coincides with the MAP cost), by increasing the horizon of

the proposed estimator both criteria, the heuristic and the

MAP criterion, converge asymptotically for any possible

estimation. Thus, it follows that with long enough

horizon, the minimiser of the MAP cost is the same

minimiser of the heuristic cost. &

Appendix B

The effect on the variation of the cost that the
uncertainties of the covariance matrix have can be
quantified analysing expression (19). To this end, we
write the cost in compact form as follows:

JðQ ,H,xÞ ¼
I �H

F E

� �
yd

x

 !�����
�����

�����
�����
2

Q

ð55Þ

where Q=diag(Rv
�1,P�1). The effect on the cost, caused by

a lack of knowledge of the exact value of the matrix Q, can
be quantified by computing the variation when, instead of
Q, a positive definite matrix ~Q is used, where Q rg ~Q , with
g a given positive scalar. By calling x0 the minimiser of
J(Q,H,x) and ~x the minimiser of Jð ~Q ,H,xÞ, the change in the
value of the functional is bounded by

JðQ ,H,x0Þr JðQ ,H, ~xÞrgJð ~Q ,H, ~xÞ ð56Þ

It is important to note that the bound is minimised by ~x.
Hence, the design is indeed robust to variations in the
matrix Q.

A similar analysis can be performed to calculate the
variation of the cost for uncertainties in the knowledge of
the system. Let us consider a percentage variation in the
system when we use H instead of H, where H¼Hð1þg2Þ.

Then, the variation of the cost is

I �H

F E

� �
yd

x̂

 !�����
�����

�����
�����
2

Q

¼
I �H

F E

 !
yd

x̂

 !�����
�����

�����
�����
Q

þg2JH x̂JP�1

0
@

1
A2

ð57Þ

We conclude that the first term of the right-hand side of
cost (57) is minimised by the design, but the second term
depends on the values of the system multiplied by the
estimation, which might be arbitrarily large.
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