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a b s t r a c t

We propose a new type of entropic descriptor that is able to quantify the statistical
complexity (a measure of complex behaviour) by taking simultaneously into account the
average departures of a system’s entropy S from both its maximum possible value Smax
and its minimum possible value Smin. When these two departures are similar to each other,
the statistical complexity is maximal. We apply the new concept to the variability, over a
range of length scales, of spatial or grey-level pattern arrangements in simple models. The
pertinent results confirm the fact that a highly non-trivial, length scale dependence of the
entropic descriptor makes it an adequate complexity measure, able to distinguish between
structurally distinct configurational macrostates with the same degree of disorder, a
feature that makes it a good tool for discerning structures in complex patterns.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The problem we will face here is the reconstruction process of the digitized microstructure of random heterogeneous
materials, a subject closely associated to theoretical methods dealing with the multiscale quantitative characterization of
the concomitant morphological features. In practice, however, the available methods provide only limited morphological
information, restricted to exploring lower-order correlation functions in connection with the simulating annealing (SA)
technique [1,2]. The SA exhibits a very important feature: it can accommodate any set of different types of correlation
functions (as microstructural information) in order to overcome the shortcomings of individual correlation functions. Such
a SA-reconstruction can be called hybrid reconstructions [3]. It should be stressed that the reconstruction process does
not look for an exact duplication of the target microstructure, but it rather aims towards generating statistically similar
microstructures. One can also combine the SA with another optimization technique, for instance with one based on the
genetic algorithm (GA) [4], this being also a hybrid reconstruction method. However, for statistically inhomogeneousmedia,
the counterparts of various correlation functions of statistically homogeneous media now depend upon the absolute (as
opposed to relative) positions of their arguments [5], which enormously complicates the problem one faces.
If we wish for an easy-to-use method for statistically homo/inhomogeneous media we need microstructure statistical

descriptors applicable to a sort of hybrid SA-reconstruction. Such descriptors are undoubtedly of importance for
finding relationships between microstructure and macroscopic properties of random multiphase materials [1]. A few
entropic descriptors mentioned below are examples in this sense. The idea of using entropic descriptors (ED) is a
fresh one, being currently investigated by one of us (RP) [6]. The ED, from their very definition, allow for a multiscale
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analysis of morphological microstructural features leading to a hybrid SA-reconstruction of statistically similar structures
of patterns.
Experimental data and results of theoretical simulations are frequently represented through 8-bit greyscale images

(called also grey-level patterns)with 256 shades of grey intermediate betweenblack andwhite. Instead of the spatial degrees
of freedom typical of a binary pattern, the entropic descriptor in the case of a grey-level pattern deals with other, specific
degrees of freedom. These relate to possible distributions, under certain conditions, of every cell-sum of grey-level values
inside the corresponding cell for a given partition. Two configurational macrostates are compared per cell: (1) one obtained
on the basis of existent patterns that correspond to the actual entropic value and (2) a theoretically computed reference
one, related to the most uniform distribution of grey-level values that maximizes the entropy. In this way the statistical
dissimilarity of the two macrostates, per cell or, equivalently, the average grey-level inhomogeneity (GLI) can be quantified
via a tool called the ‘‘entropic descriptor’’ over a range of length scales.
The latest and the most general two-component entropic descriptor is based on a model of decomposable pillars [7].

However, in the general case the computational cost is high. Previously, a versatile entropic measure (VEM) has been
proposed [8]. This VEM is used for the multiscale analysis of grey-level inhomogeneity and is intended as a natural
completion of the binary entropic measure S∆ ∼ (Smax− S) per cell for extended objects, where Smax denotes the maximum
value of an entropy S [9,10]. VEM is based only on a combinatorial approach and employs Boltzmann’s entropy. By recourse
to the sliding cell-sampling (SCS) approach a striking effect was detected. Multiple intersecting curves (MIC) of the measure
were encountered for paired simulated patterns differing, for instance, in the grey contrasting of sub-domains which were
similar in size or symmetry properties [8,11]. This fact indicates a non-trivial dependence of the GLI on the length scale
and suggests that the measure includes some features that may be useful for a multiscale variability analysis of complex
patterns. In a binary case [12,13], the entropic measure S∆ of spatial inhomogeneity was generalized to Tsallis’ entropy [14].
One can demonstrate (cf. Appendix B in Ref. [12]) that, under certain conditions, the rate S∆/k2 displays similarities (at large
length scales k) to the Shiner–Davison–Landsberg (SDL) entropic measure of complexity [15] denoted here as CSDL, around
which an illuminating and enlightening discussionwas carried out in [16–20]. On the other hand, theminimumvalue Smin of
an entropy S, quite relevant for extended objects, is not taken into account neither by S∆/k2 nor by CSDL, which are different
functions of S and Smax.
Here we will advance an entropic descriptor that, in addition to an entropy S, includes both its minimum value Smin

and maximum one Smax. The proposed approach could be regarded as the natural starting point for the development of a
universal and also practicalmultiscale entropic descriptor for the grey level or spatial complexity of various types of patterns
in the context of structure/property relationships (see the recent review in Ref. [21]). The method can be adapted so that
different entropies be employed and is applicable to a wide range of systems. The basic ingredient is given in Eq. (1). We
will illustrate the properties of our entropic descriptor by using Boltzmann’s and Tsallis’ entropies in the case of a few very
simple systems.

2. The entropic descriptor

Ascertaining the degree of unpredictability and randomness of a system is not automatically tantamount to adequately
grasp the correlational structures that may be present, i.e., to be in a position to capture the relationship between
the components of the physical system. These structures strongly influence, of course, the character of the probability
distribution that is able to describe the physics one is interested in. Randomness, on the one hand, and structural correlations
on the other one, are not totally independent aspects of this physics. Certainly, the opposite extremes of (i) perfect order
and (ii) maximal randomness possess no structure to speak of. In between these two special instances a wide range of
possible degrees of physical structure exists, degrees that should be reflected in the features of the underlying probability
distribution. One would like that they be adequately captured by some functional of the pertinent probability distribution
in the same fashion that Shannon’s entropy captures randomness. A suitable candidate to this effect has come to be called
the statistical complexity (see the helpful discussion of Ref. [22]).
It is worth noticing that characterization of unpredictability in dynamical systems (not considered here), from low-

dimensional to high-dimensional ones with spatio-temporal chaos and to fully developed turbulence, can be related to
different kinds of complexities (see the review given in Ref. [23]). This point of view is not relevant to our investigations,
specifically focused on the multiscale analysis of spatial statistical complexities for configurations of finite-size objects
(pixels) exhibiting different structural disorders. (Pixels (picture cells) are the minimum units in the digital decomposition
of any image.) The most common versions of statistical complexity [24–31] give it the form of a product. One multiplies the
actual system’s entropy times the distance from the associated probability distribution (PD) to the uniform PD, called the
‘‘disequilibrium’’. In most cases, the ensuing complexity measure is neither intensive nor extensive. Since several ‘‘distance-
forms’’ can be concocted, many possibilities are open.
To avoid such multiplicity we propose here the following intensive general form for our entropic descriptor of complex

behaviour that (i) entirely bypasses the need for a disequilibrium and (ii) vanishes for perfect order or complete randomness,
namely,

Cλ =
1
λ

(Smax − S)(S − Smin)
(Smax − Smin)

, (1)
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Fig. 1. Universal parabolic shape of the entropic descriptor Cλ=W (x; δ) represented as a function of x = (Smax − S)/λ ≡ S∆ , cf. [9,10]. The bold, dashed,
and thin lines for a system of two states (W = 2), and their grey counterparts for a system of three states (W = 3), correspond, respectively, to q = 0.6, 1
(equivalent to the Shannon case), and 1.4. One appreciates the fact that the theoretical maximum of complexity Cλ,max(x0) = δ/4 is expected always to be
located at x0 = δ/2.

where S, Smax and Smin refer, respectively, to the actual entropy, and to itsmaximumandminimumvalues for a given system,
while λ is an extensive parameter related to the averaging procedure to be employed. For a given pattern of size L × L,
the parameter λ denotes, typically, the number of cells k × k pertaining to a one of two different types of partitioning
procedures (a) with non-overlapping cells and (b) with maximally overlapping ones. This averaging procedure allows one
to compare (for a given system or systems) the descriptor values at different length scales k ∈ {1, 2, . . . , L}. It is then
reasonable to regard the parameter as a function of k, i.e., λ → λ(k), and also Cλ → Cλ(k). The descriptor becomes then
a length scale depending quantity. We may as well consider other types of systems for which, instead of using a preferred
configurational type of entropy per cell, one utilizes Shannon’s or Tsallis’ entropies. Then, making use of entropies per state
(or per particle), one could also compare systems with a different number λ → W of states (or with a different number
λ→ N of particles), provided that the associated PD is known (see Fig. 1).
Keeping in mind the general form of the entropic descriptor one can easily check that, by using the definitions x =

(Smax − S)/λ ≡ S∆ (cf. [9,10]), y = (S − Smin)/λ, and x+ y = (Smax − Smin)/λ = δ, one can write

Cλ =
xy

(x+ y)
=

(
x−

x2

δ

)
=

(
y−

y2

δ

)
, (2)

where x ∈ [0, δ] and 0 ≤ Cλ(x) ≤ Cλ,max(x0) = δ/4 at x0 = δ/2 (cf. Fig. 1). In practice, the equivalent notation,
Cλ,max(S)|S=S0 = (Smax − Smin)/(4λ) and S0 = (Smin + Smax)/2 can be usefully employed.
The most complex behaviour, or in ‘‘pattern’s language’’, the most complex arrangement at a given length scale emerges

when the average departures of the actual entropy S from the highest one Smax and from the lowest reference entropy Smin
are similar to each of other, a kind of compromise between two opposite limiting configurations: the most homogeneous
and the most inhomogeneous. For these relatively uncomplicated cases the descriptor Cλ tends to its lowest values. Within
a linear approximation the corresponding boundary expressions are given by

Cλ ∼=


(Smax − S)

λ
≡ S∆ for x→ 0+,

(S − Smin)
λ

≡ δ − S∆ for x→ δ−.
(3)

We recognize that the upper formula has been used previously for our investigations of various types of degree of patterns-
inhomogeneity [8–13], using S∆ together with a microcanonical entropy, S(k) = kB lnΩ(k), where the Boltzmann constant
kB = 1 for convenience, Ω(k) being the number of (proper) configurational microstates. Such an approach allows for
rewriting of Eq. (1) in another, rather enlightening form, namely,

Cλ =
1
λ

ln(Ωmax/Ω) ln(Ω/Ωmin)
ln(Ωmax/Ωmin)

. (4)

Now, in this representation Cλ,max(Ω)|Ω=Ω0 = [ln(Ωmax/Ωmin)]/(4λ) forΩ0 = (ΩmaxΩmin)1/2.
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When pixels are not treated as points, binary or grey-level patterns belong to an important class of the systems: finite-
size objects (FSO). For such systems, the most inhomogeneous arrangement differs from that obtained for point objects.
For instance, for binary patterns at a given length scale k > 1, it is impossible to place all black pixels inside a single-
cell of size k × k (in contrast to what happens with points). If we consider grey-level patterns within the context of the
pillar model [7] there arises another restriction entailing more complicated mathematics. Therefore, usually we consider
Smin(k) > 0, a condition that is advantageous for the comparison of patterns at different length scales by recourse to our
entropic descriptor Cλ. If we compare the normalized measures CSDL/CSDL,max = 4∆(1 − ∆), with ∆ ≡ S/Smax [15] and
Cλ/Cλ,max, the significance of the non-zero term Smin become apparent. A toy-model example is found in the dashed lines
of Fig. 4(b), and also in the B-macrostates of Table 1 (Appendix). In general, the entropy-based measures of generalized
inhomogeneity (including also the measure Cλ of complex behaviour) seem to provide relatively dissimilar structural
information than the two-point spatial correlation function alone, cf. Fig. 5 in Ref. [7].
On the other hand, in the case of patterns composed of points or particle systems with particles approximated by points,

we become less constrained with regard to the lowest value of configurational entropy. In particular, when an evolving
W -state system is describedwith an appropriate probability distribution, e.g., (p1, p2, . . . , pW ), the zero-value of its entropy
can be easily attributed to the (0, 0, . . . , 0, 1)-instance. If just a single state can be occupied we have always Smin = 0. Thus,
the normalized entropic descriptor Cλ/Cλ,max reduces itself to the form 4∆(1−∆) [15].
Generally, taking into account the properties of our entropic descriptor, Cλ can be placed within the second category

of statistical complexity measures described in Refs. [15,26–28], that covers measures which can be quite small for larger
amounts of either order or disorder, with a maximum at some intermediate stage.

3. Examples

In order to examine the validity of our approach, we will apply it to a few simple systems with a small number W of
microstates. We employ here the microcanonical specialization of Tsallis’ non-additive entropy Sq = kB(1−Σp

q
i )/(q− 1)

with kB = 1 and i ∈ {1, 2, . . . ,W }, a generalization of Shannon’s celebrated one [32] for three values of the non-extensivity
index q: 0.6, 1, and 1.4. The intermediate value unity yields the extensive Shannon entropy-instance. According to Eq. (1) a
convenient final q-form of the entropic descriptor can be cast as the microcanonical expression

Cλ=W (Tsallis) =
1

W (q− 1)

(W 1−q −
W∑
i=1
pq)(1−

W∑
i=1
pq)

(W 1−q − 1)
−−−−→
lim q=1

Cλ=W (Shannon), (5)

where Sq,min = 0 is assumed. We recall that the non-extensivity index q can adopt any real value and that for q = 1
Tsallis’ entropy becomes Shannon’s logarithmic one. Let us begin by depicting the universal parabolic shape of the entropic
descriptor Cλ=W (x; δ) of Eq. (2), using Tsallis’ as the entropic-quantifier. In Fig. 1, instead of using a particular δ-value we
compute Eq. (2) as applied to a few instances of two- and three-state systems withW = 2 and 3.
Next, we test again a two-state system (W = 2) but for any possible choice of occupation probabilities, p1 ≡ p and

p2 ≡ 1 − p (cf. Fig. 2). Remarkably enough, the behaviour of the entropic descriptor Cλ(p) in Fig. 2 is similar to that of the
dynamical complexity defined as a variant of the predictability (see the tent map example in Fig. 2(a) of Ref. [33], where
it is plotted as a function of the skewness parameter). As expected, in all cases Cλ(p) is small both near the equiprobable
distribution and also for cases of large non-uniformity. Cλ-maximum indicative of very complex behaviour is reached at two
symmetrically located probability values, p∗(q) and 1 − p∗(q). However, our intuition fails in predicting for which specific
entropic-quantifier will the complexity be greater. Firstly, there are symmetrical p-‘‘points’’ at which the domination of
Cλ(p; Tsallis, q = 0.6) over Cλ(p; Tsallis, q = 1.4) is reversed (and vice versa). Secondly, there exist p-intervals for which
Cλ(p; Shannon) is greater than its two Cλ(p; Tsallis, q) counterparts.
In a similar vein we pass now to consider a three-state system for any possible value of the occupation probabilities,

p1, p2, and 1 − p1 − p2, cf. Fig. 3(a) and (b) for non-extensivity index q-values 0.6 and 1.4, respectively. As expected, even
if the Cλ(p1; p2)-behaviour displays a more complicated geometry, it remains qualitatively similar to that exhibited in the
preceding example. Instead of isolated, single-probability values, for each case here there exist three separate contour-lines
(not shown) built out of appropriate pairs (p∗1 , p

∗

2), that signal the existence of maximal complex behaviour.
Now, the spatial aspects of complex behaviour for comparable systems are illustrated at common length scale. For each

of our illustrative examples, all possible system’s macrostates are clustered into representative classes, as listed in Table 1 of
the Appendix. Certain macrostates are also represented by configurations of black pixels, which are placed on a very small
lattice partitioned (in a standard way) at the fixed length scale k = 2. Fig. 4 depicts the normalized entropic descriptor
Cλ/Cλ,max as a function of the configurational entropy S for a fewmodel systems of different number of finite-size objects. A
characteristic feature of spatially complex systems becomes apparent. Using the notation of Table 1, the largest complexity
for macrostates C#6 and A#4 is maximal since the corresponding entropies are located exactly at S0 = (Smin + Smax)/2, see
the remark following Eq. (2). Also the rather unusual situation encountered for the B#3 and B#4macrostates, both with the
same entropy and the largest complexity, involves an entropic value S = 4.1589 which is the closest possible one to the
theoretical S0 = 4.0740.
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Fig. 2. The entropic descriptor Cλ=W (p) for a system of two states (W = 2) occupied with probabilities p and 1 − p. The bold, dashed and thin lines
correspond to Tsallis’ index q = 0.6, 1 (equivalent to the Shannon case) and 1.4, respectively. In each case there are two symmetrically located probability
values p∗ and 1 − p∗ that yield the most complex behaviour, p∗(q = 0.6) ∼= 0.07 with Cλ,max ∼= 0.10, p∗(q = 1) ∼= 0.11 with Cλ,max ∼= 0.087, and
p∗(q = 1.4) ∼= 0.13with Cλ,max ∼= 0.077. For the uniform distribution (1/2, 1/2) the system’s complexity vanishes with Sq = Sq,max and the same happens
in the case of the maximally non-uniform one [(0, 1) and (1, 0)], but now with Sq = Sq,min . Interestingly enough, for p ∈ (pa, pb) or (1 − pb, 1 − pa) with
pa ∼= 0.1465 and pb ∼= 0.2655, the value of Cλ(p; Shannon) exceeds that of Cλ(p; Tsallis).

a b

Fig. 3. The entropic descriptor Cλ=W (p1, p2) for a system with three states (W = 3) occupied with probabilities p1 , p2 and 1 − p1 − p2 . The surface
corresponds to a Tsallis’ index (a) q = 0.6 and (b) q = 1.4. In each instance there are three places at which the contour-lines built out of appropriate pairs
(p∗1, p

∗

2) signal maximal complex behaviour of the same ‘‘degree’’. Notice that Cλ,max(q = 0.6) ∼= 0.115 > Cλ,max(q = 1.4) ∼= 0.074. For the Shannon case
(not depicted) we have intermediate value of Cλ,max ∼= 0.092. For the uniform distribution (1/3, 1/3, 1/3) the system’s complexity equal to zero because
of Sq = Sq,max . Also, as expected from the symmetry reasons, the same behaviour there is for three possible maximally non-uniform distributions [(0, 0, 1),
(0, 1, 0), and (1, 0, 0)] because of Sq = Sq,min .

However, with the help of an SCS calculation (overlapping cells), as exemplified in the Appendix, one finds that
Cλ(B#3; SCS) = 0.2940 < Cλ(B#4; SCS) = 0.2947. It is also worth noticing that S(C#6) = S(A#3) but Cλ(C#6) > Cλ(A#3)
and, analogously, S(C#7) = S(A#4), although Cλ(C#7) > Cλ(A#4). This entails that, at a fixed scale, two comparable
systems with exactly the same disorder can still differ in their complex behaviour, as quantified by Cλ/Cλ,max. Additionally,
for themaximally orderedmacrostate (B#6) indicated by an arrow in Fig. 4, the SDLmeasure attributes to it a non-vanishing
complexity, in contrast to the zero-value complexity given by Cλ. The next example illustrates an evenmore striking feature:
for a given system containing macrostates of quite similar disorder-degree, the entropic descriptor Cλ can distinguish
between their respective structural complexities.
Thus, we pass to focus attention on examples displaying spatially more complex configurational macrostates, but at

different length scales. In Fig. 5(a) we consider a specific configuration of black pixels placed on a larger lattice but using
still the SCS approach at all possible length scales k. Notice that this approach is less sensitive to fractal properties as
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C

a b

Fig. 4. The normalized entropic descriptor Cλ(S)/Cλ,max as a function of configurational entropy S for a 4×4-lattice partitioned intoλ = 4 non-overlapping
cells, at length scale k = 2, for a given number N of black pixels. The symbols refer to representative classes of configurational macrostates. (a) The C-bold,
B-dashed and A-thin lines correspond to N = 8, 7 and 4, respectively. Some of the identical-entropy macrostates compared for cases C and A exhibit
different complex behaviour, while in case B we observe certain degenerations. (b) for case B (N = 7) the two measures, Cλ(S)/Cλ,max [black] and
CSDL/CSDL,max [grey] dashed lines, are compared. The arrow indicates the maximally ordered macrostate (B#6) to which a non-vanishing complexity is
attributed by the SDL measure, in contrast to the more reasonable zero-value of Cλ . Other details can be extracted from Table 1 in the Appendix.

a b

Fig. 5. Wedisplay the entropic descriptor Cλ in variouswaysmaking use of themicrocanonical entropy, S(k) = lnΩ(k), that does not distinguishmutually
reversed binary patterns (white↔ black) [9,10]. (a) as a function of the length scale k for the inverted deterministic Sierpinski carpet (DSC) of size 27× 27
(in pixels), [bold line], its pseudo-random counterpart (RSC) with conserved sizes of square objects, [dashed line], and for a corresponding random pattern
(RPA) of 1 × 1 objects, [thin line]. The upper thin line (red online) corresponds to the Cλ,max; the maximum of about 95.17 at k = 25 is not shown so
as to better visualizing the other lines. (b) as a function of the microcanonical DSC-entropy [drop line], RSC [open circles] and RPA [crosses]. Increasing
randomness for the RSC and RPA cases significantly reduces Cλ(k), i.e., the degree of complex behaviour around the first peak. In turn, our descriptor Cλ(S)
clearly discriminates, for a variety of systems, the distinct structural complexity of different macrostates, although they are characterized by quite similar
disorder-degrees.

compared to the standard partition into non-overlapping cells. We consider next the interesting, structurally deterministic
Sierpinski carpet (DSC); see the upper inset in Fig. 5(a). Afterwards, we modify its structure in two ways so as to
try to detect possible changes in the sensitivity of the entropic descriptor. Both the DSC’s pseudo-random counterpart
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a b

Fig. 6. Our entropic descriptor is plotted in various ways: (a) as a function of the length scale k for a 1D lattice-gas random configuration (called RND) of
100 particles, see the thin vertical grey lines (on L = 400 possible locations) and [grey circles], and also the thick black lines for the RND counterpart, called
RLG, that includes a ‘‘nearest-neighbour exclusion’’ rule; (b) as a function of the (exactly calculated) microcanonical RLG-entropy [thick black line] and
RND-one [grey circles] (the SCS approach is employed). In spite of the weak nature of the RLG-correlations caused by the ‘‘no-two-particles adjacent’’-rule,
acting as a kind of repulsive interaction, the degree of complex behaviour Cλ(k) does get increased when we use the first half of our length scales. Also,
the behaviour of the two Cλ(S) becomes intricate. Moreover, for each of the two 1D patterns of the graph there exist scales ki ≤ kj at which the involved
entropies are nearly identical (see the inset and text) but the corresponding complexities Cλ(S), instead, are significantly different for RND case (notice the
‘‘crossings’’ and see the text).

(RSC) (with conserved structural black parts) and the random pattern (RPA) of 1 × 1 objects (structural information is
entirely lost), are depicted in the middle and bottom insets, respectively. We are still able to detect, by looking at the
‘‘bold’’ curve, traces of typical behaviour like positions of peaks, minima, and even shape-self-similarity, characteristic of
the DSC.
Despite the simplicity of these patterns one can indeed notice a non-trivial length scale dependence of the entropic

descriptor, This is confirmed, additionally, by the effect of multiply intersecting curves observed also in the context of
grey-level inhomogeneity in [8]. Unexpectedly, for k > 12 the spatial complexity of the RSC pattern is greater than that
of the initial DSC-one. This is not always true for the RPA case. Moreover, the entropic descriptor Cλ(S), even for rather
simple systems with two different macrostates of nearly identical disorder-degree (described at different length scales),
can still discriminate between their spatial complexities, cf. Fig. 5(b). On the other hand, the corresponding characteristic
shapes Cλ(S) seem to be diffused for the simplest RPA case, opposite to what happens for the more structurally complex
DSC case.
Fig. 6 refers to yet another simple test of our entropic descriptor of complex behaviour. In Ref. [29] the authors underline

the fact that a useful complexity measure should be sensitive to the role of a system’s correlations. Therefore, it would
be interesting to compare the length scale behaviour of Cλ(k) for a system of interacting hard-core particles [34], whose
authors show that stripe formation may result from a purely repulsive isotropic short-range pair potential with two
characteristic length scales. Here we propose the much simpler but effective test of the 1D lattice gas, by employing two-
pattern configurations, in the spirit of the interesting work reported in Ref. [35], devoted to 2D case, but without numerical
results.
Our computer program generated a random configuration (RND) by randomly ‘‘tossing’’ 100 particles (denoted by thin

vertical grey lines in Fig. 6(a)) onto a line with L = 400 locations, subject only to the constraint that two of them could not
simultaneously fall onto the same location. A second configuration, called here RLG (repulsive lattice gas), is generated
in exactly the same manner except for the addition of the additional rule that two particles (denoted by thick vertical
black lines in Fig. 6(a)) cannot fall onto adjacent locations. For the two cases the same random ‘‘seed’’ was employed. The
alluded constraints induce correlations that simulate a kind of repulsive interaction. Such correlations are, in the case of
the first half of the length scales we use, sufficiently strong as to increase the degree of a spatially complex behaviour
[see RLG (thick black line)] as compared to the RND instance (grey circles) in Fig. 6(a). It should be stressed that the exact
values of configurational entropies S(k; RLG), as represented by the thick black line in the inset of Fig. 6(b), as well as the
quantities Smax(k; RLG) and Smin(k; RLG), are computed using adequate combinatorial formula for the number [Ω(k; RLG)]
of realizations of a given macrostate given the above mentioned constraint. Such a formula for a 1D case can be cast in the
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a b

Fig. 7. We display the entropic descriptor Cλ(k) as a function of the length scale k making use of the microcanonical entropy, Sgr (k) = lnΩgr (k), as
proposed for grey-level patterns in Ref. [8]. (a) for the grey-level pattern Ts1 of size 151 × 151 (in pixels) adapted from Ref. [37] [bold line], and its
converted (i → 255 − i) greyscale counterpart Ts2 [dashed line]. (b) Same as (a), but for the two associated binarized patterns (see the text) Ts1# and
Ts2#. In the case of the Ts1#-pattern, the maximum of about 70.56 is not shown so as to better visualizing the dashed line. Within the SCS approach
one can observe traces of periodicity (two deep minima whose separation is the same for all curves) and shape-self-similarity around the first peak. The
descriptor Cλ(k) distinguishes between the complexities of the Ts1 and Ts2 patterns linked via a kind of symmetry operation, in grey scales, and does so
for the two associated binarized patterns, Ts1# and Ts2#. Additionally, the binarization procedure reveals two neighbouring peaks at intermediate values
of k.

simple form

Ω(k; RLG) =
κ∏
i=1

(
k− ni + 1
ni

)
≤

κ∏
i=1

(
k
ni

)
= Ω(k; RND), (6)

where κ(k) = L− k+ 1 denotes allowed positions of the sliding cell of size 1× k and ni ≤ (k+ 1)/2 describes the number
of particles occupying the ith sampling cell. Equality in Eq. (6) happens only for the smallest scale k = 1, when a ‘‘nearest-
neighbour exclusion’’ rule does not apply. Thus, the inequality S(k; RLG) < S(k; RND) holds at every length scale 1 < k ≤ L.
For example, S(k = L; RLG) = 188.338 while S(k = L; RND) = 221.856 (cf. also the inset in Fig. 6(b)). This confirms
the general conclusion of Ref. [35], based on the argument that an RND-configuration is typical in the class comprising a
larger number of configurations. There are not that many available in the RLG case. To the best of our knowledge, the 2D
counterpart of the formula given by Eq. (6), i.e., for the hard-wall case, does not exist. However, after having submitted the
first version of the present article, we found an interesting paper [36] devoted to pair-correlation function- realizability that
provides such a formula for the number of distinct configurations in the array with first-neighbour exclusion, but subject
to periodic boundary conditions. This creates the possibility of future investigation (using our method) of a 2D system of
interacting particles with short-range correlations.
Particularly intricate becomes, in this example, the behaviour of the two Cλ(S) in Fig. 6(b). One can find scales ki ≤ kj

at which the involved entropies are nearly identical but the corresponding complexities Cλ(S), instead, are significantly
different. For instance, S(k = 156; RLG) = 17623.117 and S(k = 250; RLG) = 17623.036, while the corresponding
complexities are Cλ(k = 156; RLG) = 0.2249 and Cλ(k = 250; RLG) = 0.0282. Similarly, one can find S(k =
195; RND) = 21948.835 and S(k = 212; RND) = 21948.569, while the respective Cλ(k = 195; RND) = 0.1153 and
Cλ(k = 212; RND) = 0.0659. Thus, once again, essentially distinct configurations (RND) and (RLG) with nearly the same
amount of disorder can be clearly distinguished at distinct length scales by our descriptor because their respective spatial
complexities are different. In addition, for the RND case, and due to the fact that the third peak of Cλ(k; RND) is of a strength
comparable to that of the second one, the corresponding Cλ(S; RND) in Fig. 6(b) undergoes multiple self-intersections.
There are three intervals of length scales at which a curious interplay between Cλ(S; RND) and S(k; RND) can be
observed.
As follows from the definition of configurational entropy [9,10], see also the right-hand side of inequality in Eq. (6),

the entropy-value does not change under the replacement of a ‘‘black phase’’ (with concentration ϕ) by a ‘‘white phase’’
(with concentration 1-ϕ), and vice versa. Thus, for the inverted patterns of all the binary images above [except for those
patterns related to RLG-configurations, whose specific correlational properties are not conserved under a white↔ black
interchange of pixels], the same Cλ(k) curves are obtained, a particular lack of sensitivity that can be overcome when we
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deal with greyscale images. This is why in a final example we test our entropic descriptor, still using the SCS approach,
for the structurally interesting grey-level pattern adapted from Ref. [37]. An initial pattern of size 151 × 151 (in pixels) is
depicted in Fig. 7(a) (Ts1-inset). The pattern’s morphology is dictated by specific ordering mechanisms at work in confined
diblock copolymers. Here however, we are interested in its non-trivial structural grey-level periodicity with its further
modifications.
First, the initial pattern is converted by a simple symmetry operation [(i → 255 − i) in grey levels] into its greyscale

counterpart; see the Ts2-inset in Fig. 7(a). Then, the simplified ‘‘binarization’’ procedure (i→ j) is applied to those patterns:
if grey-level index i < 128, then it becomes a black one with j = 0, otherwise grey pixels becomes white with j = 255.
This procedure gives two associated binarized patterns (although differently encoded vis-a-vis the zero-one standard binary
matrix); see the insets Ts1# and Ts2# in Fig. 7(b). For the corresponding patterns in Fig. 7(a) and (b) we observe two pairs
of curves (similar in shape around the position of the first peak): Ts1 (Ts1#) [bold lines] and Ts2 (Ts2#) [dashed lines].
This is so because of the method employed for the construction of the Sgr(k) entropy for grey-level patterns. The approach
utilizes all possible order-dependent partitions of grey-level values over k2 positions inside each cell. In mathematics this is
sometimes referred to as a weak composition [38]. Thus, the entropic descriptor Cλ(k) becomes also dependent on the total
sum of grey-level values. At a given length scale, in order to make a quantitative comparison of the complex behaviour
of grey-level patterns differing in their total sums, we should calculate the entropic descriptor per ‘‘grey level’’. In our
case such a procedure results in an increasing of the values for the bold curves, but it leaves unchanged the sequence of
the considered pairs of curves. On the other hand, the binarization of greyscale images, that leads to two colour images
encoded in greyscale fashion, becomes quite useful in revealing some details of the complex behaviour at large scales. For
instance, in Fig. 7(b) one can observe two neighbouring peaks at an intermediate range of k-values which are not detected
in Fig. 7(a).
Summing up, we underline the fact that our entropic descriptor of complex behaviour allows for clearly distinguishing

non-random variations in the pattern’s structure from its random counterparts at different length scales, as seen, for
instance, in Figs. 5 and 6. However, since at this stage only spatial complex behaviour was dealt with, we have to emphasize
the role played by the kind of partitioning used. This point is intimately linked to the behaviour of the entropic descriptor
itself as size varies [39] and thus deserves further investigation.

4. Conclusions

Wehave advanced an entropic descriptor Cλ in Eq. (1) that generalizes the SDLmeasure of statistical complexity [15]. The
basic properties of our descriptor have been illustrated by recourse to a rather variegated sample of simple systems. Making
use of Tsallis’ entropy for two- and three-state systems, the expected behaviour and characteristic features of a structural
complexity measure was clearly observed in Figs. 2 and 3. Using Boltzmann’s entropy for representative classes of simple
configurational macrostates, the expected diversity in localization on the universally shaped curve of entropic descriptors,
when plotted against the entropy, was indeed reproduced in Fig. 4 and Table 1.
In Fig. 5, that deals with (i) the structurally deterministic Sierpinski carpet, (ii) its pseudo-random counterpart, (iii) and

a fully random case, we studied in the case of standard examples just how the degree of structurally complex behaviour, as
measured by Cλ(k), diminishes formany length scales k. Themore complicated behaviour of Cλ(k) and Cλ(S) is illustrated by
Fig. 6, where the role of a system’s correlations was in evidence. The physically different configurations of the 1D lattice gas,
(a) the random (RND) and (b) the partially random (RLG), were clearly discriminated by their respective spatial complexities,
that display a particularly intricate behaviour.
Finally, we employed the recently introduced grey-level entropy to the case of (i) a suitably adapted pattern and (ii) its

transformed (into a greyscale fashion) counterpart, which were further subjected to the specific binarization procedure. In
Fig. 7 we saw how the descriptor Cλ(k) properly distinguishes among the distinct complexities in all instances, uncovering
also a non-trivial, structural grey-level periodicity. For the binarized patterns the descriptor additionally detects certain
peaks, invisible for the initial grey-level patterns. This augurs well for the possibility of an enhancement of the entropic
descriptor sensitivity at larger scales. A quite complicate dependence of the entropic descriptor on the length scale was
detected in all relevant figures.
Themain conclusion to be drawn from these examples can be summarized as follows: structurally distinct configurations

with nearly the same amount of disorder-degree can be distinguished at different length scales by our entropic descriptor
of complex behaviour because their respective complexities are different. The ability of detecting diverse and multiscale
structural information by recourse to our entropic descriptor encourages its possible application (complementary to low-
order correlation functions) to reconstruction algorithms of patterns’ structure.

Appendix

See Table 1.
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Table 1
Collection of representative classes of macrostates1 and their associated (i) entropies, (ii) entropic descriptor Cλ , and (iii) relative form Cλ/Cλ,max [and
CSDL/CSDL,max in case (B)] for a toy model with: (A) N = 4, (B) N = 7. and (C) N = 8. The black pixels are placed on a 4 × 4 lattice partitioned into λ = 4
(not overlapping) cells at length scale k = 2. The maximal values of the relative complexities are given in bold-faced format. The last columns include also
results of a Cλ(SCS)-calculation (using the sliding cell-sampling approach) for the specific representative configurations given below.

Case Macr.# Config. Smin S Smax Cλ Cλ/Cλ,max CSDL/CSDL,max Cλ(SCS)

A 1 1 1 1 1 5.5452 5.5452 0.0 0.0
A 2 0 1 1 2 4.5643 0.2018 0.5823
A 3 0 0 2 2 3.5835 0.3169 0.9144
A 4 0 0 1 3 2.7726 0.3466 1.0 0.2759
A 5 0 0 0 4 0.0 0.0 0.0 0.0
B 1 1 2 2 2 6.7616 6.7616 0.0 0.0 0.0
B 2 0 2 2 3 4.9698 0.2986 0.8889 0.7791
B 3 0 1 3 3 4.1589 0.3356 0.9989 0.9470 0.2940
B 4 1 1 1 4 4.1589 0.3356 0.9989 0.9470 0.2947
B 5 0 1 2 4 3.1781 0.2986 0.8889 0.9964
B 6 0 0 3 4 1.3863 1.3863 0.0 0.0 0.6520
C 1 2 2 2 2 7.1670 7.1670 0.0 0.0
C 2 1 2 2 3 6.3561 0.1798 0.4014
C 3 1 1 3 3 5.5452 0.3137 0.7003
C 4 0 2 3 3 4.5643 0.4144 0.9251
C 5 1 1 2 4 4.5643 0.4144 0.9251
C 6 0 2 2 4 3.5835 0.4479 1.0 0.3386
C 7 0 1 3 4 2.7726 0.4250 0.9553
C 8 0 0 4 4 0.0 0.0 0.0 0.0
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