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Abstract. We present a theoretical study of the ionization of hydrogen atoms as a result of the
interaction with an ultrashort external electric field. Doubly-differential momentum distributions and
angular momentum distributions of ejected electrons calculated in the framework of the Coulomb-Volkov
and strong field approximations, as well as classical calculations are compared with the exact solution
of the time dependent Schrödinger equation. We show that in the impulsive limit, the Coulomb-Volkov
distorted wave theory reproduces the exact solution. The validity of the strong field approximation is
probed both classically and quantum mechanically. We found that classical mechanics describes the proper
quantum momentum distributions of the ejected electrons right after a sudden momentum transfer, however
pronounced the differences at latter stages that arise during the subsequent electron-nucleus interaction.
Although the classical calculations reproduce the quantum momentum distributions, it fails to describe
properly the angular momentum distributions, even in the limit of strong fields. The origin of this failure
can be attributed to the difference between quantum and classical initial spatial distributions.

PACS. 32.80.-t Photoionization and excitation – 32.80.Fb Photoionization of atoms and ions – 42.50.Hz
Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark
shift

1 Introduction

The time-dependent distorted Coulomb-Volkov approxi-
mation (CVA) has been widely used to describe the ion-
ization processes of various atomic targets interacting with
short laser pulses in the last decade [1–3]. The CVA is a
time-dependent distorted-wave theory [4–6] that includes
the effect of the remaining core into the final state at the
same approximation level as the external field. In this way,
the collision dynamics due to the effects of the core poten-
tial to the detached electron can be directly probed. Es-
pecially, CVA gains importance in those cases where the
time-dependent Schrödinger equation becomes impracti-
cal to solve, at high intensities and long pulse durations,
for instance. Several studies have been performed so far
to determine the accuracy of the CVA, within different
levels of approximations when they calculate the emission
spectra for short pulses but of finite durations [7,8].

In the last two decades there has been also a great
revival of the classical trajectory Monte Carlo (CTMC)
calculations applied to atomic collisions involving three or
more particles [9]. This approximation seems to be useful
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in treating atomic collisions where the quantum mechan-
ical calculations become very complicated or intractable,
which is the case usually when higher order perturbations
should be applied or many particles take part in the pro-
cesses [10,11]. The CTMC method has been quite success-
ful also in dealing with the ionization process in laser-atom
collisions when, instead of charged particles, electromag-
netic fields are used for excitation of the target [12,13].

In the present work we study the efficiency of the
strong field approximation (SFA) within the quantum
CVA and the classical trajectory Monte Carlo (CTMC)
method to describe the electron emission spectra of a hy-
drogen atom when it is excited by ultra-short pulses. The
effect of a short pulse on one atom can be treated within
the framework of a sudden momentum transfer (or kick)
where the pulse duration is much less than the classical
orbital period of the electron in the initial state [14,15].
We apply the CVA for the determination of the doubly-
differential electron momentum distribution and the final
angular momentum for the case of hydrogen ionization by
an ultrashort electric pulse. We analytically prove that
in the limit of zero pulse duration and finite momentum
transfer, CVA reproduces the exact quantum mechanical
electron yields. We show that CTMC method provides
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accurate electron momentum distributions but not angu-
lar momentum distributions, even at the limit of strong
fields.

The paper is organized as follows: in Section 2.1 we
introduce the CVA as a time-dependent distorted wave
theory and demonstrate that it provides for exact tran-
sition probabilities to continuum states in the case of
an atom subject to a sudden momentum transfer. We
briefly describe the CVA in its various versions, like (i) the
sudden Coulomb-Volkov (SCV) approximation, (ii) the
single-distorted approximation (SD), and (iii) the doubly-
distorted (DD) approximation. Furthermore, we discuss
the limitations of the well-known strong-field approxima-
tion (SFA) also denominated in the literature Keldysh-
Faisal-Reiss or simply Volkov theory [16]. In Section 2.2
we shortly introduce the classical trajectory Monte Carlo
(CTMC) method where the Hamilton’s equations of mo-
tion of the electron are solved. We present a derivation
of the relation between the angular momentum distribu-
tion and the initial spatial distribution of the electron
within the SFA. In Section 3, we compare results for the
quantum doubly-differential momentum distributions to
classical ones. We complete the chapter with a thorough
study of the classical angular momentum distributions and
quantum partial populations. At the end, in Section 4 we
present the conclusions. Atomic units are used throughout
the paper.

2 Theory

The total Hamiltonian of a target hydrogen atom interact-
ing with an ultrashort pulse in the dipole approximation is

H(t) = H0 + V (t), (1)

where H0 = p2/2−Z/r is the atomic Hamiltonian, Z is the
atomic charge (Z = 1 for the case of the hydrogen atom),
p and r are the momentum and position of the electron,
respectively, and V (t) = r · F(t) is the interaction term
with the external electric field F(t) in the gauge length.
For convenience, we model the external electric field as a
square pulse of duration τ , by

F(t) = −Δp δτ (t) ẑ , (2)

where δτ (t) is any function that approaches the Dirac
δ(t) in the limit of ultrashort interaction time, i.e.,
limτ→0 δτ (t) = δ(t). For practical purposes and in order
to simplify our calculations, we model the pulse shape as
δτ (t) = 1/τ Θ(τ/2 − |t|). We can understand the limit
τ → 0 as the pulse duration to be much shorter than the
orbital time of the initial atomic state. In equation (2) the
electric field defines the ẑ direction, the minus sign stems
from the electron charge, and Δp is the momentum trans-
ferred to the electron. We confine our study to a hydrogen
atom initially in its ground state. We calculate the mo-
mentum distribution of ejected electrons by solving the
quantum and classical equations of motion as explained
below.

2.1 Time-dependent distorted-wave methods

As a consequence of the interaction with the laser pulse,
the electron, initially bound to the target nucleus in the
state |φi〉, is emitted with momentum k and energy εf =
k2/2. The process presents cylindrical symmetry around
the direction of the electric field (polarization axis). Elec-
tron momentum distributions can be calculated from the
transition matrix as

dP

dk
= |Tif |2 , (3)

where Tif is the T-matrix element corresponding to the
transition φi → φf , and |φf 〉 is the final unperturbed
state.

Within the CVA, Tif can be computed using three
different methods, namely (i) within the framework of the
sudden Coulomb-Volkov (SCV); (ii) the single distorted
(SD), and (iii) the doubly distorted (DD) approximations.
We also discuss the strong field approximation (SFA), as
a variant of the CVA [17,18].

2.1.1 Sudden Coulomb-Volkov approximation

In general, the transition amplitude in the prior form at
the sudden limit is given by [5,7]

T SCV
if = lim

t→−∞ 〈χCV−
f (t) |φi(t)〉, (4)

where the final Coulomb-Volkov distorted-wave function
χCV −

f (t) can be written as [7]

χCV−
f (r, t) = φ−

k (r, t) exp(iD−(k, r, t)). (5)

In equation (5), φ−
k is the unperturbed final state given

by

φ−
k (r, t)=e−i k2

2 t exp(ik · r)
(2π)3/2

DC(Z,k, t), (6)

where DC(Z,k, t) = N−
T (k) 1F1(−iZ/k, 1,−ikr − ik · r).

The Coulomb normalization factor N−
T (k) = exp(πZ/2k)

Γ (1+ iZ/k) is the value of the Coulomb wave function at
the origin (r = 0), and 1F1 denotes the confluent hyper-
geometric function. The Volkov phase D− in equation (5)
is given by [19]

D±(k, r, t) =A±(t) · r − k·
t∫

∓∞
dt′ A±(t′)

− 1
2

t∫

∓∞
dt′

(
A±(t′)

)2
, (7)

where A±(t) = − ∫ t

∓∞ dt′ F(t′) is the vector poten-
tial. The wave functions φi(t) and φ−

k (t) are solutions of
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the time dependent Schrödinger equation with the non-
perturbed Hamiltonian:

i
∂

∂t
|φi(t)〉 = H0|φi(t)〉 = εi|φi〉 (8a)

i
∂

∂t
|φ−

k (t)〉 = H0|φ−
k (t)〉 = (k2/2)|φ−

k (t)〉. (8b)

In particular, for the case of the square pulse of equa-
tion (2), the vector potential reduces to A±(t) =
Δp (1/2 ± t/τ) for −τ/2 ≤ t ≤ τ/2, and equation (7)
becomes a close form

D±(k, r, t) =Δp (t/τ ± 1/2) · r (9)

− k · Δp
2

τ (t/τ±1/2)2+
|Δp|2

6
τ (t±τ/2)3 .

when −τ/2 ≤ t ≤ τ/2.
Replacing equation (9) into the final distorted wave

function of equation (5) and this into equation (4), the
SCV transition probability (Eq. (3)) becomes

(
dP

dk

)SCV

= |T SCV
if |2 =

∣∣〈φ−
k (r)

∣∣ eiΔp·r |φi(t)〉
∣∣2 , (10)

which results equal to the exact quantum transition prob-
ability when the external field is reduced to a sudden mo-
mentum transfer of strength Δp = − ∫ ∞

−∞ dt F(t) [14].
The second and third terms of the Volkov phase D− in
equation (7) do not contribute to the transition probabil-
ity since they do not depend on the electron position r
and, therefore, add only a time dependent phase to the
transition amplitude which is cancelled out by the abso-
lute value in equation (10). Hence, the SCV describes the
exact quantum transition probability in the sudden limit,
i.e., τ → 0. This means the SCV reckons the interaction of
finite duration between the electron and the external field
as a sudden momentum transfer localized at a particular
time (in this case t = 0).

2.1.2 Single distorted approximation

The transition amplitude in the post form within the SD
approximation can be expressed as [5]

T SD+
if = −i

+∞∫

−∞
dt 〈χCV−

f (t)|V (t) |φi(t)〉. (11)

One could be tempted to directly calculate the
Volkov phase shift for sudden momentum transfer as
D±(k, r, 0±) = limτ→0 D±(k, r, t) = ±Δp · r and then
to solve the time integral by making use of the temporal
delta function originating from the potential V (t) in equa-
tions (2), but this would lead to incorrect transition prob-
abilities due to the improper handling of the time limits
for ultra short pulses in equations (11) and (2). The cor-
rect way to derive T SD+

if for a sudden momentum transfer

is to perform the whole calculation for a short (but finite)
pulse of duration τ and then, at the end, take the limit
of τ → 0. In the case of the square field of equation (2),
the Volkov phase is described by equation (9). The second
and third terms on the right hand side of equation (9)
are of the same order: O(τ), while the first term is O(τ0).
Therefore, we preserve only the term which depends on the
spatial coordinates in our calculations and consequently
equation (11) becomes

T SD+
if =

i

τ
〈φ−

k (r)|Δp · r eiΔp·r/2 I(Δp · r) |φi(t)〉, (12)

where we have exchanged the order of spatial and time
integrals reducing, in this way, the temporal integral to
the factor I(Δp · r) given by I(x) =

∫ +τ/2

−τ/2
dt e−itx/τ =

2τ sin(x/2)/x. In equation (12) we have also neglected the
factor exp(iεit) resulting from the time evolution of the
initial state since the exponent is also of the same order as
O(τ) in equation (9). Considering the orthogonality condi-
tion between the initial and final states, the SD transition
amplitude reduces again to the exact result

T SD+
if = 〈φ−

k (r)|eiΔp·r |φi(t)〉. (13)

It is important to recall that we use the orthogonality
condition; if approximated continuum wave functions are
used the equality in the sudden limit is violated.

2.1.3 Doubly distorted approximation

In the doubly-distorted (DD) CVA, the transition ampli-
tude is calculated distorting both initial and final states [5]

T DD
if = T SCV

if − i

+∞∫

−∞
dt 〈χCV−

f (t)|Wi(t)
∣∣χCV+

i (t)
〉
, (14)

where T SCV
if is the transition amplitude in the SCV ap-

proximation given in equation (4) and the initial Coulomb-
Volkov distorted wave function reads as

χCV+
i (r, t) = φi(r, t) exp(iD+(0, r, t)). (15)

The operator Wi(t) in equation (14) acts on the distorted
initial state in the following way

Wi(t)χCV+
i (t) = −i∇φi(r, t) · A+(t) exp[iD+(0, r, t)].

(16)
The time domain of the external field for the same square
finite field described in equation (2) is −τ/2 ≤ t ≤ τ/2,
thus, the limits of the integral in second term of equa-
tion (14) should keep within these values. Then, as the
integrand in equation (14) is finite and does not diverge
in the limit τ → 0, the whole integral in equation (14) van-
ishes. Therefore, the DD transition amplitude collapses to
the SCV one in the limit of sudden momentum transfers,
i.e., T DD

if = T SCV
if .
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In summary, by calculating the transition probability
produced by an ultrashort pulse in the sudden limit (sud-
den momentum transfer, i.e., τ → 0), through any of the
above mentioned versions of the CVA -sudden Coulomb-
Volkov (SCV), single distorted (SD), or double distorted
(DD), we obtain the same result as by solving the TDSE
exactly, i.e., T SCV

if = T SD
if = T DD

if = T TDSE
if , where we

T TDSE
if is the exact quantum mechanical transition prob-

ability.
For the sake of completeness, we mention that the first

Born approximation can be calculated within the SD ver-
sion of the CVA by inserting the final state φ−

k (r) instead
of the distorted Coulomb-Volkov wave function χCV −

f (t)
into equation (11). This results in the dipole approxima-
tion of the transition matrix

T 1B
if = i Δp · 〈φ−

k (r)|r |φi(t)〉, (17)

which is valid when the external field can be described
only perturbatively, i.e., Δp · r � 1.

2.2 Classical simulation in the sudden limit

The classical trajectory Monte Carlo method (CTMC) is a
non-perturbative method, where classical equations of mo-
tion are solved numerically. The microcanonical ensemble
that characterizes the initial state of the target is here
assumed as:

ρE0(r, ṙ) = C1δ(E0 − E) = C1δ

(
E0 − 1

2
ṙ2 − V (r)

)
,

(18)
where C1 is a normalization constant, E0 is the binding
energy of the active electron and V (r) is the electron and
target-core potential. According to the equation (18), the
electronic coordinate is confined to the intervals where the
relation

ṙ2

2
= E0 − V (r) > 0 (19)

is verified.
In the present CTMC approach, Hamilton’s classical

nonrelativistic equations of motion are solved [10,20,21]
numerically when an external field is taken into account
as a kick. The solutions of the Hamilton’s equations during
the kick reduces to a shift Δp along the ẑ component of
the momentum of the initial distribution in phase space.
For the ionization channel the final energy and the scat-
tering angles (polar and azimuth) of the projectile and
the ionized electron were recorded. These parameters were
calculated at large separations of the ionized electron and
the target nucleus, where the Coulomb interaction is neg-
ligible. The double differential ionization probability (Pi)
was computed with the following formula:

Pi =
d2P

dkρdkz
=

Ni

NΔkρΔkz
, (20)

while the angular momentum distribution is calculated by
means of:

Pi =
dP

dL
=

Ni

NΔL
. (21)

The standard deviation for a differential probability is de-
fined through:

ΔPi = Pi

[
N − Ni

NNi

]1/2

. (22)

In equations (20)–(22) N is the total number of classical
trajectories calculated for the given collision system, Ni

is the number of trajectories that satisfy the criteria for
ionization under consideration in the perpendicular mo-
mentum interval (or box dimension) Δkρ and the parallel
momentum interval Δkz , or in the angular momentum in-
terval ΔL of the electron.

2.3 Quantum and classical strong field approximations

The strong field approximation assumes that the electron
is driven only by the strong external electric field and ne-
glects the Coulomb attraction of its nucleus in the final
state. Similarly, from the mathematical point of view, SFA
reduces to the replacement of DC(ZT ,k, t) by 1 in equa-
tion (6). This means that the final state is represented as a
pure Volkov state [19] and not as a Coulomb-Volkov wave
function as in equation (5). Hence, the total transition
probability by a sudden momentum transfer of strength
Δp within the SFA is the simple Fourier transform of the
initial wave function shifted by the magnitude Δp in the
momentum space

dP

dk

SFA

=
∣∣∣φ̃i(k − Δp)

∣∣∣2 , (23)

where φ̃i denotes the Fourier transform of the initial state
φi. For the case of the hydrogen atom in cylindrical coor-
dinates it reads

dP SFA

dkρdkz
= kρ

16/π

[1 + k2
ρ + (kz − Δp)2]4

. (24)

Considering the Parseval-Plancherel theorem which states
that a function and its Fourier transform have the same
norm, it turns out that the total ionization probability
within the SFA is equal to unity. This result does not de-
pend on the value of Δp, which shows the proper limit
of the SFA for strong kicks (Δp � 1) and it also gives
incorrect results when Δp is small or even zero! This is
due to the lack of orthogonality between the initial and
final states. As the SFA neglects the effect of the Coulomb
potential on the electron after the kick, it predicts the ex-
act velocity distribution of the electron yield right after
the kick, at t = 0+, when no further Coulomb attraction
is possible yet. A direct comparison of CVA and SFA re-
sults lets us study the effect of the Coulomb potential on
the momentum of the escaping electron, which is exactly
calculated in the full CVA but completely neglected in the
SFA. In the perturbative limit, the SFA predictions of the
final momentum distributions and total ionization prob-
abilities are completely wrong, as previously mentioned.
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However, the SFA transition probability dP SFA/dk calcu-
lated in equation (23) as a shift Δp of the Fourier trans-
form of the initial wave function does provide the exact
electron momentum (or velocity) distribution right after
the sudden momentum transfer (at t = 0+). As seen from
equation (23), this is only a shift Δp of the initial electron
momentum distribution.

In the SFA, the classical momentum distribution is
not affected by the Coulomb potential. As both classical
and quantum results of the SFA are reduced to a shift Δp
in momentum and as the CTMC initial momentum distri-
bution in the microcanonical ensemble perfectly replicates
the quantum one, the final classical and quantum momen-
tum distributions are the same within the SFA, which is
a good approximation for the case of Δp � 1. The width
of the SFA electron momentum distribution is unaffected
by the kick. Thus, the relative ratio of the momentum
distribution width relative to the displacement Δp dimin-
ishes as the kick strength increases. In consequence, we can
consider an additional approximation (peaking approxi-
mation) in which the whole momentum distribution after
the kick concentrates at k = Δp, i.e., dP/dk =δ(k−Δp).
In this case, the absolute value of the angular momentum
can be simply written as L = ρΔp, where ρ is the ra-
dial cylindrical coordinate. Therefore, the classical angu-
lar momentum distribution can be derived directly from
the initial radial momentum distribution via the simple
relation

dP

dL
=

1
Δp

dP

dρ
. (25)

For the current case of sudden momentum transfer the ini-
tial and final distributions in position space are the same,
thus, as the initial ρ-distribution is known, one can replace
ρ = L/Δp on the right half side of equation (25) and, in
this way, the final angular momentum distributions can
be obtained.

When using the microcanonical ensemble for the initial
CTMC distributions, the cylindrical radial distribution for
the ground state reads dPC/dρ = −3Z3ρ(ρ−2/Z)/4. Now,
by using equation (25), the final classical angular momen-
tum distribution within the SFA results can be written as:

dP

dL

SFA−C

=
−3Z3

4(Δp)3
L(L − 2Δp/Z). (26)

As expected for the case of the SFA, the integral of equa-
tion (26) over all possible values of L is equal to 1, which
indicates that the atom is fully ionized.

Along this line, we can ask what the relation between
the initial ρ-distribution and the final partial populations
pl in quantum mechanics is. The difficulty stems from the
discreteness of the absolute value of the angular momen-
tum. But, considering that in the SFA Δp � 1 and the
average value of the cylindrical radial coordinate ρ is of the
order of the unity, we can say that the angular momentum
(on average) is much higher than the step size between
consecutive angular momentum values, which is of the or-
der of 1. Hence, it is a good approximation, within the
SFA, to consider the quantum angular momentum and the

quantum orbital number as a continuum variable. Conse-
quently, the relation between the initial distribution in
spatial coordinates and the final partial populations pre-
serves in quantum mechanics.

In quantum mechanics the initial spatial distribution is
given by the square of the absolute value of the initial wave
function. In the case of the ground state of the hydrogen
atom the initial ρ-distribution, calculated by results after
integrating over the remaining cylindrical coordinates, can
be written as dPQ/dρ = 4Z3ρ2K1(2Zρ), where K1 is the
modified Bessel function of second kind. With the help
of equation (25), we calculate the quantum final partial
populations (or angular momentum distribution) within
the SFA, which reads

dP

dL

SFA−Q

=
4Z3L2

(Δp)3
K1(2ZL/Δp). (27)

Analogously to the classical case, the integral over all pos-
sible values of L is 1 indicating the total atomic ionization.
A thorough comparison between the quantum SFA mo-
mentum distributions and the full quantum (CVA) needs
to establish a relation between the classical angular mo-
mentum L and the orbital quantum number l. As we will
show below, the prescription widely used in the literature
L = l + 1/2 seems to be adequate.

We can derive the most probable classical and quan-
tum angular momentum within the SFA by finding the
maxima of angular momentum distributions in equations
(26) and (27), respectively. For the quantum case the most
probable angular momentum within SFA is LSFA−Q

0 	
0.67Δp/Z, while the classical most probable angular mo-
mentum within SFA is LSFA−C

0 = Δp/Z and there is a
cut-off at the double, i.e., 2Δp/Z. For high momentum
transfers (SFA) the influence of the Coulomb field is ne-
glected and only the difference in the initial conditions
are responsible for the difference of the classical and quan-
tum angular momentum distributions. No limit is found at
high kick strengths so that the quantum and classical an-
gular momentum distributions coincide, in opposition to
extended oscillatory pulses where quantum-classical cor-
respondence is found for near-threshold tunneling ioniza-
tion [22].

3 Results and discussion

3.1 Doubly-differential momentum distribution

It is a well-known fact that in the case of the low kick
strengths (dipole or perturbative regime), quantum and
classical dynamics for the ionization yield of a hydro-
gen atom predict very different outcomes. For example,
for ionization of a hydrogen atom due to a sudden mo-
mentum transfer Δp = 0.25 whereas quantum mechanics
2%, CTMC predicts only 0.4%, which is five times lower.
This behavior is called in the literature classical suppres-
sion [14]. But not only the total ionization probability is
underestimated by classical calculations, differential mo-
mentum distributions also look different. In Figure 1 the
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Fig. 1. (Color online) Doubly-differential electron momentum distributions (logarithmic scale) in cylindrical coordinates (kz, kρ).
First row (a) and (c): quantum results, second row (b) and (d): classical results. First column (a) and (b): exact, second column
(c) and (d): SFA. The momentum transfer is Δp = 0.25.
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quantal (Fig. 1a) and classical (Fig. 1b) doubly-differential
momentum distribution d2P/dkρdkz of the electron yield
after a sudden momentum transfer of strength Δp = 0.25
are displayed. We note that the grey (color on line) coding
is in the same logarithmic scale. While the quantal distri-
bution shows two lobes (Fig. 1a), the classical one does
not reproduce this quantal behavior and shows only one
lobe (Fig. 1b) slightly tilted towards the forward direction
(in the direction of the kick). In the case of the quantum
distribution the right lobe (direction of the momentum
transfer, Δp) is bigger than the left lobe (opposite direc-
tion), and therefore the average final momentum of the
electron is positive, as expected. The two quantum lobes
are related to the dipole transition elements.

Figure 1c shows the SFA doubly-differential mo-
mentum distribution calculated quantum mechanically
through equations (23) and (24). The distribution exhibits
only one spot in the direction of the kick, evidencing no
traces of dipole transitions. The average SFA momentum
(center of the spot) is at kz = Δp = 0.25. Figure 1d show
the corresponding classical momentum distribution right
after the kick. We note that both quantum and classical
SFA momentum distributions look the same within the
statistical errors in CTMC values (below 0.05 a.u.), which
are about 8% due to the finite number of the analyzed
primary trajectories. A direct comparison of Figures 1c
and 1d not only shows that within the SFA the time evolu-
tions of a classical and quantum sudden momentum trans-
fer are exactly the same, i.e., classical dynamics has ex-
actly the same ionization yield as quantum mechanics, but
also that the dynamics of a sudden momentum transfer
is equally described by the time dependent Schrödinger
equation and the Hamilton equations. Nevertheless, the
time evolution of the motion of the kicked electron un-
der the effect of the atomic Coulombic electric field shows
significant differences, which is confirmed in Figures 1a
and 1b, where the final electron distributions are shown.
In the following figures only the SFA results calculated in
the framework of the CVA, free from any statistical error,
are shown.

As the kick strength increases, the total classical
ionization probability tends to the quantum one. For
Δp = 0.5 and 2.5 the total classical ionization probabili-
ties are 7.7%, and 96.1%, respectively, while the quantum
ones are 9.6% and 96.8%, respectively. At Δp = 5 both for-
malisms predict almost full ionization i.e. ∼ 100%. We fol-
low the doubly differential momentum distribution when
the kick strength changes from the dipole (Δp � 1) to the
SFA (Δp � 1) regime, as can be seen in Figures 2a–2c,
Figures 2d–2f and Figures 2g–2i, for Δp = 0.5, 2.5
and 5, respectively. We show in Figure 2 the quantum
(top), classical (medium), and SFA (bottom) results. The
three doubly-differential momentum distributions in Fig-
ures 2g–2i look practically indistinguishable. In Figure 2a
the lobe in the forward direction of the quantum momen-
tum distribution is much bigger than the one in the back-
ward direction, indicating that we are moving away from
the dipole limit. Figure 2b shows that the classical mo-
mentum distribution starts to be like the quantum me-

chanical forward lobe, but still, for this low kick strength,
differences are significant. The SFA momentum distribu-
tion in Figure 2c is centered at kz = Δp and is quite dif-
ferent from quantal and classical momentum distributions
of Figures 2a and 2b, which shows that ionization by a
kick of Δp = 0.5 is far from the strong field regime. Since
Figure 2c displays the velocity distribution right after
the kicks (SFA), a direct comparison between Figures 2a
and 2b show the strong effect of the atomic Coulomb po-
tential on escaping electrons after weak kicks. We note
that the discrepancies in the quantum and classical mo-
mentum distributions can be due to two different effects:
(i) the difference in the quantum and classical time evo-
lution operator of the electron under the influence of the
Coulomb potential and (ii) the difference in the initial con-
ditions in the phase space. In particular, as the quantum
and classical momentum distributions coincide, the differ-
ences mentioned in (ii) reside in the position coordinates.

For a kick of strength Δp = 2.5 quantum-classical cor-
respondence is observed not only in the total ionization
yield but also in the doubly-differential momentum distri-
butions (see Figs. 2d and 2e). Quantum mechanics brings
in only one lobe (see Fig. 2d) in the forward direction
which can be accurately reproduced by classical mechan-
ics. The right lobe observed for weak kicks (see Fig. 2a)
disappears as we are far away from the dipole regime.
When we compare it to that of the SFA result (see Fig. 2f)
we observe an overall agreement. However, essentially two
differences arise: (i) the center of the full quantum and
classical distributions of Figures 2a and 2b (most proba-
ble z component of the momentum) are slightly shifted to-
wards the origin with respect to the SFA, which is exactly
at kz = Δp = 2.5, and (ii) the full quantum and clas-
sical momentum distributions are weakly distorted near
the origin (k = 0) due to the effect of the Coulomb field.
This near-threshold distortion is obviously not present in
the SFA momentum distribution (see Fig. 2f). We show
in Figures 2g–2i that for a kick strength of Δp = 5 the
strong field regime is reached.

3.2 Angular momentum analysis

In this section we investigate the angular momentum of
electrons emitted from the hydrogen atom by the action
of the external sudden momentum transfer Δp. In Fig-
ure 3 we show the partial quantum populations pl and
compare it to the continuum classical angular momen-
tum distribution dP/dL as a function of the orbital quan-
tum number l and the angular momentum L, respectively.
As it is known, near the dipole limit (small Δp), quan-
tum mechanics predicts the population of p states only
(see Figs. 3a and 3b). In turn, classical dynamics pre-
dicts angular momenta below L = 1 for weak kicks as
shown in Figure 3a. But, for a kick strength Δp = 0.5
classical and quantal curves, despite the intrinsic differ-
ence in their continuity and discreetness, look quite alike.
As we will immediately see, this is not related to any
classical-quantum correspondence but it is a fortuitous
fact. When kick strengths are increased, the quantum and
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Fig. 3. (Color online) Partial wave populations pl as a func-
tion of the orbital number l (dotted line) and angular momen-
tum distribution of classical trajectories (Eq. (21)) (dashed
line). Lines connecting the dots are included only for eye guid-
ance. The momentum transfer is (a) Δp = 0.25, (b) Δp = 0.5,
(c) Δp = 2.5, and (d) Δp = 5.

classical distributions are different as shown in Figure 3c
for Δp = 2.5 and Figure 3d for Δp = 5. In this case,
whereas quantum partial populations are high for low an-
gular momentum and possess a long tail for high l, classi-
cal distributions are characterized by a cut-off from which
the distribution is zero and is centered at an angular mo-
mentum that is half the cut-off. These are main features
of the SFA.

In Figure 4a we compare the classical and quantum
radial distributions dP/dρ of the initial state mentioned
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Fig. 4. (Color online) (a) Distribution of the initial state
dP/dρ as a function of the radial cylindrical coordinate. Full
red line is the quantum distribution and dotted black line the
classical distribution. (b) Partial ionization probability pl as
a function of the angular momentum l (red dots) and an-
gular momentum distribution of classical trajectories (dashed
line) corresponding to atomic ionization by a kick of strength
Δp = 10. Full lines correspond to quantum (green) and clas-
sical (blue) estimations given by equations (27) and (26), re-
spectively. (c) Partial ionization probability pl as a function of
the angular momentum l as in (b) where we have added a shift
of 1/2 in the angular distribution of equation (27).

in Section 2. Whereas the classical distribution exhibits
a cutoff at ρ = 2Z−1 and a maximum at ρ = Z−1, the
quantum radial distribution (stemming from the square
of the absolute value of the wave function) possesses a
long tail for high ρ and a maximum at ρ 	 0.7. In Fig-
ure 4b the final classical and quantum angular momentum
distributions are shown after the interaction with a kick of
strength Δp = 10. As expected from equation (25), angu-
lar momentum distributions show the same characteristic
as the initial cylindrical radial distributions. We show an
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Fig. 5. (Color online) Quantum (red circular dots) and classi-
cal (empty square dots) most probable angular momentum of
emitted electrons as a function of the kick strength Δp. Dots
corresponding to calculations are connected with straight lines.
Quantum and classical SFA predictions are shown in full red
and dashed black lines, respectively. Shifted quantum SFA pre-
diction is also shown in blue.

excellent agreement with the SFA prediction both clas-
sically (Eq. (26)) and quantum mechanically (Eq. (27)).
Tiny discrepancies in the classical angular momentum dis-
tribution show the statistical errors in the calculations and
the use of a finite Δp, that is, small variations with respect
to the SFA. The quantum populations show no cutoff but
a long tail for high orbital quantum number l and the most
populated partial wave correspond to l = 6. In Figure 4b
we see that the agreement with the SFA prediction of
equation (27) is very good. Opposite to the classical case,
the small discrepancies for the quantum distributions are
systematic; in this case there is a small horizontal displace-
ment between the SFA estimation of equation (27) with
respect to the calculated partial populations, as observed
in Figure 4c. By shifting the quantum SFA angular mo-
mentum distribution of equation (27) using the prescrip-
tion L = l + 1/2 mentioned in last section, the agreement
of the quantum angular momentum distribution with its
SFA estimation (Eq. (27)) is excellent (see Fig. 4c).

In Figure 5 we probe the range of validity of the SFA to
predict the most probable angular momentum. We com-
pare the most probable angular momentum calculated
as the maximum of (dP/dL)SFA−Q, i.e., LSFA−Q

0 to the
quantum one calculated with the full CVA (Eq. (10)).
The agreement is very good for high Δp, i.e., Δp > 5. For
low Δp the ejected electron possesses mostly an angular
momentum l0 = 1 as expected by the dipole limit. How-
ever, to make our results consistent we should shift the
quantum prediction LSFA−Q

0 according to the prescription
L = l + 1/2. We show the effect of this shift in Figure 5.
The agreement to the calculated most probable angular

momentum distribution improves considerably. The most
probable angular momentum can now be accurately de-
scribed in the whole domain of kick strengths by either the
dipole approximation or the SFA. Of course, this is not ex-
tendable to the shape of the angular momentum distribu-
tion (see Fig. 3). In Figure 5, the most probable classical
angular momentum within the SFA LSFA−C

0 = Δp/Z is
compared to the full CTMC calculations as a function of
the kick strength. For kick strengths Δp > 2 the SFA most
probable angular momentum agrees with the full CTMC
ones but for low Δp it fails to do so for two different rea-
sons. Firstly, the size of the SFA momentum distribution
is comparable to the kick strength Δp (or bigger) and the
peaking approximation, i.e., L = ρΔp is not valid any
more. Secondly, the complete ionization considered in the
SFA is far from being true for Δp < 2. This figure shows a
crossing between the classical and quantum most probable
angular momentum curves at Δp = 0.5. For this case, as
was shown in Figure 3b, the fact that CTMC correctly re-
produces the quantum most probable partial populations
is only fortuitous. Cohen [12] explains that for H+−H col-
lisions the difference between classical and quantum an-
gular momentum can be overcome by choosing a classical
radial distribution that mimics the quantum one.

4 Conclusions

We have shown that the Coulomb-Volkov approximation
(CVA) describes the quantum atomic ionization proba-
bilities exactly when the external field is described by a
sudden momentum transfer. The velocity distribution of
emitted electrons right after ionization by a sudden mo-
mentum transfer is given through the strong field approxi-
mation (SFA) within both the CVA and CTMC methods.
In this case, the classical and quantum time dependent
evolutions of an atom subject to a sudden momentum
transfer are identical. The difference between the classical
and quantum final momentum distributions resides in the
time evolution of the escaping electron under the subse-
quent action of the Coulomb field. Furthermore, classical
mechanics is incapable of reproducing the quantum an-
gular momentum distribution due to the improper initial
radial distribution used in the CTMC calculations, i.e., the
microcanonical ensemble. We find that in the limit of high
momentum transfer, based on the SFA, there is a direct
relation between the cylindrical radial distribution dP/dρ
and the final angular momentum distribution dP/dL. This
leads to a close analytical expression for the partial wave
populations (dP/dL)SFA−Q given by equation (27) which,
together with the prescription L = l + 1/2, reproduces
quite accurately the quantum (CVA) results. Considering
the inverse problem, knowing the final angular momen-
tum distribution can lead to the inference of the initial
probability distribution, and consequently, the atomic po-
tential. The SFA prediction for the most probable partial
population results to be very accurate except in the dipole
regime, when l0 = 1.
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