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Abstract

MPI for Python provides bindings of the message passing interface (MPI) standard for the Python programming language and allows any
Python program to exploit multiple processors.

In its first release, MPI for Python was constructed on top of the MPI-1 specification defining an object-oriented interface that closely
followed the MPI-2 C + + bindings, and provided support for communications of general Python objects. In the latest release, this package is
improved to enable direct blocking/non-blocking communication of numeric arrays, and to support almost all MPI-2 features.

Improvements in communication performance have been tested in a Beowulf class cluster. Results showed a negligible overhead in comparison
to compiled C code.

MPI for Python is open source and available for download on the web (http://mpi4py.scipy.org/).
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

During the last decade, high-performance computing has be-
come an affordable resource to many more scientists and engi-
neers than ever before. The conjunction of quality open source
software and commodity hardware strongly influenced the now
widespread popularity of dedicated Beowulf [4] class clusters
and cluster of workstations. Message-passing has proven to be
an effective computational model, specially suited for (but not
limited to) distributed memory architectures. Although portable
message-passing parallel programming used to be a nightmare
in the past because of the many incompatible options devel-
opers were faced with, this situation definitely changed after
the MPI Forum [17] released its standard specification, which
rapidly gained widespread acceptance.

At the same time, the popularity of scientific computing
environments such as MATLAB and IDL has increased con-
siderably. Users simply feel more productive in such inter-
active environments with tight integration of simulation and
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visualization. They are alleviated of low-level details associ-
ated to compilation/linking steps, memory management and in-
put/output of traditional programming languages like Fortran,
C, and C + +. However, native support for parallel process-
ing is absent and motivated different approaches to overcome
it [14,15].

Recently, the Python programming language has attracted
the attention of many users and developers in the scientific
community. Python offers a clean and simple syntax, is a very
powerful language, and allows skilled users to build their own
computing environment, tailored to their specific needs and
based on their favorite high-performance Fortran, C, or C + +
codes [16]. Sophisticated but easy to use and well integrated
packages are available for interactive work [25,26], visualiza-
tion [2,12], efficient multidimensional array processing [23],
and scientific computing [13].

Following the aforementioned trends, some researchers have
taken advantage of Python for writing the high-level parts of
large-scale, massively parallel scientific applications and driv-
ing simulations in parallel architectures [3,10], while others
have tried to make available the benefits of parallel computing
to general Python codes using MPI [11,18,22].

In this work, the latest advances in the development of MPI
for Python [6] are reported. MPI for Python is a package for
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the Python programming language enabling general applica-
tions to exploit multiple processors by using any available MPI
implementation as a back-end.

The next section presents a brief overview of MPI, Python
and MPI for Python. Section 3 describes the most relevant fea-
tures added to MPI for Python. Section 4 presents some effi-
ciency comparisons between MPI for Python and compiled C
code communicating numeric arrays. Finally, Section 6 presents
some conclusions and plans for future work.

2. Background

2.1. What is MPI?

MPI [19,20], the Message Passing Interface, is a standardized
and portable message-passing system designed to function on
a wide variety of parallel computers. The standard defines the
syntax and semantics of library routines (MPI is not a program-
ming language extension) and allows users to write portable
programs in the main scientific programming languages
(Fortran, C, and C + +).

Since its release, the MPI specification has become the lead-
ing standard for message-passing libraries in the world of par-
allel computers. Implementations are available from vendors
of high-performance computers and well known open source
projects like MPICH [9,21] and Open MPI [7,24].

MPI defines a high-level abstraction for fast and portable
inter-process communication [8,27]. Applications can run in
clusters of (possibly heterogeneous) workstations or dedicated
nodes, (symmetric) multiprocessors machines, or even a mix-
ture of both. MPI hides all the low-level details, like networking
or shared memory management, simplifying development and
maintaining portability, without sacrificing performance. How-
ever, for communicating data items non-contiguous in mem-
ory or corresponding to user-defined structures, MPI still relies
on manual packing/unpacking of data buffers, or creation of
derived MPI datatypes alongside language datatypes.

2.2. What is Python?

Python [31] is a modern but mature, easy to learn, powerful
programming language with a constantly growing community
of users. It has efficient high-level data structures and a simple
but effective approach to object-oriented programming with
dynamic typing and dynamic binding. Python’s elegant syntax,
together with its interpreted nature, makes it an ideal language
for scripting and rapid application development in many areas
on most platforms.

The Python interpreter and its extensive standard library are
available in source or binary form without charge for all major
platforms, and can be freely distributed. It can be easily ex-
tended with new functions and data types implemented in C or
C + + and is also suitable as an extension language for cus-
tomizable applications that require a programmable interface.

Python is an ideal candidate for writing the higher-level parts
of large-scale scientific applications and driving simulations
in parallel architectures. Python codes are quickly developed,

easily maintained, and can achieve a high degree of integration
with other libraries written in compiled languages.

2.3. What is MPI for Python?

Python has enough networking capabilities as to develop an
MPI implementation in “pure Python”, i.e., without using com-
piled languages or third-party MPI implementation. This ap-
proach is attractive as it assures almost immediate portability to
any platform capable of running Python. However, even some
basic MPI features (like communication scheduling or datatype
management) would require a fair amount of work to be de-
veloped. Moreover, achieving reasonable performance and ac-
cessing special platform features or dedicated communication
hardware would necessarily require the support of compiled
languages. Additionally, the availability of a full-featured MPI
package for Python implemented on top of a third-party MPI
implementation is expected to notably ease the integration of
many other MPI-based libraries.

MPI for Python [5] is a Python package providing bindings
of the MPI standard, allowing any Python program to exploit
multiple processors. This package is constructed on top of the
MPI-1/MPI-2 specification and defines an object-oriented in-
terface that closely follows MPI-2 C + + bindings.

The core of MPI for Python is implemented as an extension
module written in C in order to access and take advantage of
any other MPI implementation providing a C interface. The
exposed Python interface is implemented with Python code
defining the relevant class hierarchies, functions, and constants.
This higher-level code is supported by the C extension module.

In its first release, MPI for Python provided support for
blocking point-to-point and collective communications of gen-
eral Python objects, as well as many facilities for managing
process groups and defining new communication domains. Its
API was designed with a focus on translating syntax and se-
mantics of standard MPI-2 bindings from C + + to Python.
Users with only a basic knowledge of standard C/C + + MPI
bindings were able to use this package without having to learn
a new interface.

2.4. Related projects

As MPI for Python started and evolved, many ideas were
borrowed from other well known open source projects related
to MPI and Python.

pyMPI [18] rebuilds the Python interpreter and adds a built-
in module for message passing. It permits interactive parallel
runs, which are useful for learning and debugging, and provides
an environment suitable for basic parallel programing. There
is no full support for defining new communicators, process
topologies or intercommunicators. General Python objects can
be messaged between processors, but there is no support for
direct communication of numeric arrays.

Pypar [22] is a rather minimal Python interface to MPI.
There is no support for communicators or process topologies. It
does not require the Python interpreter to be modified or recom-
piled. General Python objects of any type can be communicated.
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There is also good support for communicating numeric arrays
and practically full MPI bandwidth can be achieved.

Scientific Python [11] provides a collection of Python mod-
ules that are useful for scientific computing. Among them, there
are interfaces to MPI and BSP (Bulk Synchronous Parallel pro-
gramming). The MPI interface is simple but incomplete and
does not resemble the MPI specification. However, there is good
support for efficiently communicating numeric arrays.

3. New features in MPI for Python

This section presents a survey of MPI capabilities and the
new available features in MPI for Python to enhance commu-
nication performance and better support classic MPI-1 opera-
tions [19] in a Python programming environment. The recent
availability of free, high quality, open source MPI-2 imple-
mentations strongly motivated the inclusion of another set of
features, in order to provide support full for almost all MPI-2
extensions [20].

3.1. Object serialization

The Python standard library supports different mechanisms
for data persistence. Many of them rely on disk storage, but
pickling and marshaling can also work with memory buffers.

The pickle (slower, written in pure Python) and cPickle
(faster, written in C) modules provide user-extensible facili-
ties to serialize general Python objects using ASCII or binary
formats. The marshal module provides facilities to serialize
built-in Python objects using a binary format specific to Python,
but independent of machine architecture issues.

MPI for Python can communicate any general or built-in
Python object taking advantage of the features provided by
cPickle and marshal modules. Their functionalities are
wrapped in two classes, Pickle and Marshal, defining
dump() and load() methods. These are simple extensions,
being completely unobtrusive for user-defined classes to par-
ticipate as they actually use the standard pickle protocol, but
carefully optimized for serialization of Python objects on
memory streams exposing the standard Python buffer proto-
col. This approach is also fully extensible; that is, users are
allowed to define new, custom serializers implementing the
generic dump()/load() interface.

Any provided or user-defined serializer can be attached to
communicator instances. They will be routinely used to build
binary representations of objects to communicate (at sending
processes) and restoring them back (at receiving processes).

3.2. Direct communication of memory buffers

Although simple and general, the serialization approach
(i.e., pickling and unpickling) previously discussed imposes
important overheads in memory as well as processor usage, es-
pecially in the scenario of objects with large memory footprints
being communicated. The reasons for this are simple. Pickling
general Python objects, ranging from primitive or container
built-in types to user-defined classes, necessarily requires

computer resources. Processing is needed for dispatching the
appropriate serialization method (that depends on the type of
the object) and doing the actual packing. Additional mem-
ory is always needed, and if its total amount in not known a
priori, many reallocations can occur. Indeed, in the case of
large numeric arrays, this is certainly unacceptable and pre-
cludes communication of objects occupying half or more of
the available memory resources.

MPI for Python was improved to support direct communi-
cation of any object exporting the single-segment buffer inter-
face. This interface is a standard Python mechanism provided
by some types (e.g. strings and numeric arrays), allowing
access in the C side to a contiguous memory buffer (i.e.,
address and length) containing the relevant data.

This new feature, in conjunction with the capability of con-
structing user-defined MPI datatypes describing complicated
memory layouts, enables the implementation of many algo-
rithms involving multidimensional numeric arrays (e.g. image
processing, fast Fourier transforms, finite difference schemes
on structured Cartesian grids) directly in Python, with negli-
gible overhead, and almost as fast as compiled Fortran, C, or
C + + codes.

3.3. Non-blocking and persistent communications

On many systems, performance can be significantly in-
creased by overlapping communication and computation. This
is particularly true on systems where communication can be
executed autonomously by an intelligent, dedicated communi-
cation controller. Non-blocking communication is a mechanism
provided by MPI in order to support such overlap.

The Isend() and Irecv() methods of the Comm class
initiate a send and receive operation, respectively. These meth-
ods return a Request instance, uniquely identifying the started
operation. Its completion can be managed using the Test(),
Wait(), and Cancel() methods of the Request class.

Often a communication with the same argument list is
repeatedly executed within an inner loop. In such a case, com-
munication can be further optimized by using persistent com-
munication, a particular case of non-blocking communication
allowing the reduction of the overhead between processes and
communication controllers. This kind of optimization can also
alleviate the extra overheads associated to interpreted, dynamic
languages like Python, especially for fine-grained tasks.

The Send_init() and Recv_init() methods of the
Comm class create a persistent request for a send and receive
operation, respectively. These methods return an instance of the
Prequest class, a subclass of the Request class. The actual
communication can be effectively started using the Start()
method, and its completion can be managed as previously
described.

The inherently asynchronous nature of non-blocking com-
munications currently imposes some restrictions in what can
be communicated using MPI for Python. Communication of
memory buffers, as described in Section 3.2 is fully supported.
However, communication of general Python objects using
serialization, as described in Section 3.1, is possible but not
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transparent since objects must be explicitly serialized at send-
ing processes, while receiving processes must first provide a
memory buffer large enough to hold the incoming message and
next recover the original object. Additionally, the management
of Request objects and associated memory buffers involved
in communication requires a careful and rather low-level coor-
dination in order to avoid synchronization problems. Similar
issues arise in many other Python packages. The buffer inter-
face as currently defined in Python is rather simple, lacking of
a lock/unlock semantics for accessing the exposed memory.

3.4. MPI-2 extensions

3.4.1. Dynamic process management
An MPI-1 application is static; that is, no processes can be

added to or deleted from an application after it has been started.
This limitation was addressed in MPI-2. The new specification
added a process management model providing a basic inter-
face between an application and external resources and pro-
cess managers. This extension can be really useful, especially
for serial applications built on top of parallel modules, or par-
allel applications with a client/server model. The MPI-2 pro-
cess model provides a mechanism to create new processes and
establish communication between them and the existing MPI
application. It also provides a mechanism to establish commu-
nication between two existing MPI applications, even when one
did not “start” the other.

In MPI for Python, new processes can be created by calling
the Spawn() method within an intracommunicator (i.e., an
Intracomm instance). This call returns a new intercommu-
nicator (i.e., an Intercomm instance), which can be used to
perform point to point and collective communications between
the parent and child groups of processes.

Alternatively, disjoint groups of processes can establish
communication in a client/server approach. Server applications
must first call the Open_port() function to open a “port”
and the Publish_name() function to publish a provided
“service”, and next call the Accept() method within an
Intracomm instance. Client applications can first find a pub-
lished “service” by calling the Lookup_name() function,
which returns the “port” where a server can be contacted; and
next call the Connect() method within an Intracomm in-
stance. Both Accept() and Connect() methods return an
Intercomm instance. When connection between client/server
processes is no longer needed, all of them must cooperatively
call the Disconnect() method of the Comm class. Addi-
tionally, server applications can release resources by calling
the Unpublish_name() and Close_port() functions.

3.4.2. One-sided communications
One-sided communications (also called Remote Memory

Access, RMA) supplements the traditional two-sided MPI com-
munication model with a one-sided interface that can take
advantage of the capabilities of RMA network hardware. This
extension lowers latency and software overhead in applications
written using a shared-memory-like paradigm. The semantics

of one-sided communication are fairly complex. The MPI
RMA API revolves around the use of objects called windows,
which intuitively specify regions of a process’s memory that
have been made available for remote operations.

Windows are created by calling the Create() method of
the Win class at all processes within a communicator and
specifying a memory buffer (i.e., a base address and length).
Three one-sided operations for remote write, read and reduction
are available using the Put(), Get(), and Accumulate()
methods respectively within a Win instance. These methods
need an offset into the window and an integer rank identify-
ing the remote target. This one-sided operations are implicitly
non-blocking and must be synchronized.

Windows are synchronized by using two primary modes. Ac-
tive target synchronization requires the origin process to call
the Start()/Complete() methods at the origin process
and target process cooperates by calling the Post()/Wait()
methods. There is also a collective variant provided by the
Fence() method. Passive target synchronization is more le-
nient, only the origin process calls the Lock()/Unlock()
methods.

3.4.3. Extended collective operations
In the MPI-1 specification, collective communications were

only defined for intracommunicators. The MPI-2 specification
introduces extensions generalizing many of the collective rou-
tines to intercommunicators. They can be really useful for col-
lective interaction between disjoint group of processes created
or connected as described in Section 3.4.1.

MPI for Python was enhanced in order to support these
extensions. The Barrier(), Bcast(), Gather(),
Scatter(), Allgather(), Alltoall(), Reduce(),
and Allreduce()methods are defined for both Intracomm
and Intercomm classes. They are able to collectively com-
municate general Python objects, as discussed in Section 3.1,
or memory buffers, as discussed in Section 3.2. Notably, scan
and exclusive scan operations as defined in MPI do not apply
to intercommunicators; that is, the Scan() and Exscan()
methods are only available for Intracomm instances.

3.4.4. Parallel I/O
POSIX provides a model of a widely portable file system.

However, the optimization needed for parallel I/O cannot be
achieved with this interface, and can only be if the parallel I/O
system provides a high-level interface supporting partitioning of
file data among processes and a collective interface supporting
complete transfers of global data structures between process
memories and files. Additionally, further efficiencies can be
gained via support for asynchronous I/O, strided accesses, and
control over physical file layout on storage devices.

The common patterns for accessing a shared file (broad-
cast, reduction, scatter, gather) is expressed using user-defined
MPI datatypes. Compared to communication patterns of point
to point and collective communications, this approach has the
advantage of added flexibility and expressiveness. Data access
operations (read and write) are defined for different kinds of
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positioning (using explicit offsets, individual file pointers, and
shared file pointers), coordination (non-collective and collec-
tive), and synchronism (blocking, non-blocking, and split col-
lective).

All these features are available in MPI for Python by using
instances of the File class. Parallel files are created by call-
ing method Open() at all processes within a communicator;
they can be closed or even destroyed by calling Close()
and Delete() methods, respectively. The data layout in
the file can be set and queried with the Set_view() and
Get_view() methods, respectively. Data access is provided
by many methods related to read and write operations, but
with different behavior regarding positioning, coordination,
and synchronism.

4. Testing

Some efficiency tests were run on the Beowulf class clus-
ter Aquiles [29] at CIMEC. Its hardware consists of 80 disk-
less single processor computing nodes with Intel Pentium 4
Prescott 3.0 GHz 2 MB cache processors, Intel Desktop Board
D915PGN motherboards, Kingston Value RAM 2 GB DDR
400 MHz memory, and 3Com 2000ct Gigabit LAN network
cards, interconnected with a 3Com SuperStack 3 Switch 3870
48-ports Gigabit Ethernet. MPI for Python was compiled on
a Linux 2.6.17 box using GCC 3.4.6 with Python 2.5.1. The
chosen MPI implementation was MPICH2 1.0.5p4. Communi-
cations between processes involved numeric arrays, they were
provided by NumPy 1.0.3.

The first test consisted in blocking send and receive opera-
tions (MPI_SEND and MPI_RECV) between a pair of nodes.
Messages were numeric arrays of double precision (64 bits)
floating-point values. The two supported communications
mechanisms, serialization and memory buffers, were compared
against compiled C code. A basic implementation of this test
using MPI for Python with direct communication of memory
buffers (translation to C or C + + is straightforward) is shown
below.

from mpi4py import MPI
from numpy import empty, float64

comm = MPI.COMM_WORLD
rank = comm.Get_rank()
array1 = empty(2**16, dtype=float64)
array2 = empty(2**16, dtype=float64)
sendbuf = [array1, 2**16, MPI.DOUBLE]
recvbuf = [array2, 2**16, MPI.DOUBLE]

wt = MPI.Wtime()
if rank == 0:

comm.Send(sendbuf, 1, tag=0)
comm.Recv(recvbuf, 1, tag=0)

elif rank == 1:
comm.Recv(recvbuf, 0, tag=0)
comm.Send(sendbuf, 0, tag=0)

wt = MPI.Wtime() - wt
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Fig. 2. Relative overhead in blocking send and receive.

Results are shown in Figs. 1 and 2. Throughput is computed
as 2S/�t , where S is the basic message size (in megabytes),
and �t is the measured wall-clock time. Clearly, the overhead
introduced by object serialization degrades overall efficiency;
the maximum throughput in Python is about 60% of the one
in C. However, the direct communication of memory buffers
introduces a negligible overhead for medium-sized to long
arrays.

The second test consisted in a small variation of the first
one. The interchange of messages consisted in a bidirectional
send/receive operation (MPI_SENDRECV). Results are shown
in Figs. 3 and 4. In comparison to the previous test, the over-
head introduced by object serialization is lower (the maximum
throughput in Python is about 75% of the one in C) and the
overhead communicating memory buffers is similar (and again,
it is negligible for medium-sized to long arrays).
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The third test consisted in an all-to-all collective operation
(MPI_ALLTOALL) on 16 nodes. As in previous tests, messages
were numeric arrays of double precision floating-point values.
Results are shown in Figs. 5 and 6. Throughput is computed
as 2(N − 1)S/�t , where N is the number of nodes, S is the
basic message size (in megabytes), and �t is the measured wall-
clock time. The overhead introduced by object serialization is
notably more significant than in previous tests; the maximum
throughput in Python is about 40% of the one in C. However,
the overhead communicating memory buffers is always below
1.5%.

Interested readers should review previous results from a sim-
ilar set of tests [6], but obtained with older hardware compo-
nents and software distributions.

Finally, some remarks are worth to be done on the implemen-
tation of the previous tests and the obtained efficiency results.
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The snippet of code shown in the discussion above was in-
cluded just for reference. The actual implementation took into
account memory preallocation (in order to avoid paging effects)
and parallel synchronization (in order to avoid asynchronous
skew in the start-up phase). Timings were measured many times
inside a loop over each single run and the minimum were taken.

All the tests involved communications of one-dimensional,
contiguous NumPy arrays. For those kind of objects, serializa-
tion and deserialization with the pickle protocol is implemented
quite efficiently. The serialization step is accomplished with
memory copying into a raw string object. The deserialization
step reuses this raw string object, thus saving from extra mem-
ory allocations and copies. These optimizations are possible
because the total amount of memory required for serialization
is known in advance and all items have a common data type
corresponding to a C primitive type. For more general Python
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objects, the serialization approach is expected to achieve lower
performance than the previously reported.

5. Use cases

MPI for Python is a general purpose package. Currently, it
does not provide other functionalities than those defined in the
MPI-2 standard. However, MPI for Python is able to effectively
support parallel applications written in Python, especially in
those making use of external parallel libraries and routines writ-
ten in compiled languages. This was the main motivation for
starting its development and guides its evolution. Some projects
taking advantage of MPI for Python are commented below.

PETSc-FEM [28,30] is a parallel multi-physics finite ele-
ments code in active development at CIMEC. PETSc-FEM is
built around MPI and PETSc libraries, targeting computational
fluid dynamics simulations on dedicated Beowulf class clus-
ters. MPI for Python is used in conjunction with Python wrap-
pers to PETSc libraries and PETSc-FEM core functionalities
to support Python-driven large-scale simulations.

The Synergia project [1] is developed by the Advanced Ac-
celerator Modelling team at the Fermilab Computing Division.
The software simulates the behavior of particles in an accelera-
tor, emphasizing three-dimensional models of collective beam
effects. This project uses Python-driven Fortran 90 and C + +
libraries to create beam dynamics simulations. The individual
beam dynamics libraries were designed to use MPI to support
parallel computation. MPI for Python is used from the Python-
driven simulations to support communication within MPI at the
Python level.

IPython [26,25] is a well established open source project
providing an interactive shell far superior to Python’s default
one. The next-generation IPython, currently being developed,
will provide facilities for interactive parallel and distributed
computing. MPI for Python will support IPython to be used in
a fully interactive manner.

6. Conclusions

MPI for Python provides a base layer for applying the
message-passing paradigm in parallel applications written in
Python. It makes use of any available MPI implementation
retaining the syntax and semantics of the standard MPI specifi-
cation. It is specially suited for integration of other MPI-based
libraries and assist in the development of complex Python-
driven applications targeted to run on parallel environments.

MPI for Python can communicate general Python objects as
well as any Python object exposing a memory buffer. In the later
case, efficiency tests have shown that performance degradation
is negligible, even for medium-sized numeric array objects. In
fact, the introduced overhead is far smaller than the normal one
associated to the use of interpreted versus compiled languages.

Future work will be directed towards the improvement of
MPI for Python by adding some currently unsupported MPI
functionalities like datatype decoding, attribute catching and in-
teroperability with Fortran libraries. Additionally, an automatic
mapping between MPI datatypes and NumPy datatypes will be

provided in order to simplify the parallelization of demanding
applications involving multidimensional array processing.
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