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We present a gauged Lifshitz Lagrangian including second- and fourth-order spatial
derivatives of the scalar field and a Chern–Simons term, and study nontrivial solutions
of the classical equations of motion. While the coefficient β of the fourth-order term
should be positive in order to guarantee positivity of the energy, the coefficient α of the
quadratic one need not be. We investigate the parameter domains and find significant
differences in the field behaviors. Apart from the usual vortex field behavior of the
ordinary relativistic Chern–Simons–Higgs model, we find in certain parameter domains
oscillatory solutions reminiscent of the modulated phases of Lifshitz systems.
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1. Introduction

In their well-honored proposal to describe dual strings,1 Nielsen and Olesen stressed

the connection between the Abelian Higgs model and the Ginzburg–Landau theory

of superconductivity, relating the free energy in the latter with the action for static

configurations of the former. In this way, the vortex filaments of type-II super-

conductors were identified with string-like classical solutions in a gauge theory with

spontaneous symmetry breaking.

More than 30 years ago, Ginzburg proposed2 a generalization of the Ginzburg–

Landau functional by including higher derivative terms, this implying an anisotropic

coordinate scaling, in order to describe superdiamagnets — a class of materials

with strong diamagnetism but differing from conventional superconductors. Such

generalization was then used to analyze3 the properties of superconductors near a
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tricritical Lifshitz point, a point in the phase diagram at which a disordered phase,

a spatially homogeneous ordered phase and a spatially modulated ordered phase

meet.

The study of Lifshitz critical points has recently attracted much attention,

not only in connection with condensed matter systems (see Ref. 4 and references

therein) but also in the analysis of gravitational models in which anisotropic scal-

ing leads to improved short-distance behavior (see Ref. 5 and references therein).

A link between these two issues was established in Ref. 6 within the framework

of the gauge/gravity correspondence by searching gravity duals of nonrelativistic

quantum field theories with anisotropic scaling, dubbed in Refs. 7 and 8 as “Lifshitz

field theories.”

The question that we address in this work is whether one can find Nielsen–

Olesen-like solutions when anisotropic scaling is introduced in the Abelian Higgs

model through the addition of higher-order spatial derivatives. As a laboratory, we

consider a (2+1)-dimensional model with a complex Higgs scalar coupled to a U(1)

gauge field with a Chern–Simons (CS) action.9,10 The topological character of the

CS term avoids the possibility of including higher-order derivatives for the gauge

field action (as it would be the case for the Maxwell action).

When higher-order derivative terms in the scalar Lagrangian are absent, the

CS–Higgs model has vortex-like finite energy solutions carrying both quantized

magnetic flux Φ and nontrivial electric charge Q = −κΦ with κ the CS coeffi-

cient.11–13 Moreover, for an appropriate sixth-order symmetry breaking potential,

first-order BPS equations14–16 exist, which can be easily found by analyzing the

supersymmetric extension of the model.17 Our goal will be to determine whether

this kind of solutions also exists in a “Lifshitz Abelian Higgs” model and, in the

affirmative, how they depend on the parameters associated to the Lagrangian scal-

ing anisotropy.

The plan of the paper is the following: we introduce, in Sec. 2, a (2 + 1)-

dimensional Lifshitz–Higgs model with the gauge field dynamics governed by a CS

term. In order to solve the classical equations of motion, we make the same ansatz

leading to vortex solutions in the ordinary (relativistic) case. Then, in Sec. 3, we

analyze the asymptotic behavior of the gauge and scalar fields resulting from the

equations of motion, showing the existence of four regions according to the values

of the parameters of the model. We discuss in Sec. 4, the properties of the solutions

obtained numerically. Finally, we give a summary of the results and a discussion on

possible extensions of our work in Sec. 5. We briefly describe in an appendix the

linearized approximation we employed to determine the asymptotic behavior of the

solutions in different parameter regions.

2. The Lagrangian

We consider a (2 + 1)-dimensional model with CS–Higgs Lagrangian

L = γ|D0[A]φ|2 − α|Di[A]φ|2 − β|Di[A]Di[A]φ|2 + V [|φ|] + κ

2
εµναAµ∂νAα (1)

1350025-2

In
t. 

J.
 M

od
. P

hy
s.

 A
 2

01
3.

28
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
IL

L
IN

O
IS

 A
T

 U
R

B
A

N
A

 C
H

A
M

PA
IG

N
 o

n 
05

/1
5/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.



April 3, 2013 9:36 WSPC/Guidelines-IJMPA S0217751X13500255

Gauged Lifshitz Model with Chern–Simons Term

with µ = 0, 1, 2 and i = 1, 2. The metric signature is (1,−1,−1). We consider space

and time coordinate units so that

[x]2 = [t] . (2)

Accordingly, γ, β and κ are dimensionless and α has length dimensions [α] = −2.

Concerning the dimensions of the complex scalar φ and U(1) gauge field Aµ, one

has [φ] = 0, [Ai] = −1, [A0] = −2.

The Lagrangian (1) is a generalization of the one considered in Refs. 14 and 15

incorporating higher (fourth)-order covariant derivative terms for the scalar fields.

For vanishing potential and at the “Lifshitz point” α = 0, the Lagrangian is in-

variant under anisotropic scaling with “dynamical critical exponent” z = 2

x → λx , t → λ2t . (3)

Note that the choice of a CS term ensures that the scale invariance is preserved even

in the presence of gauge fields (as opposed to what would happen with a standard

Maxwell term).

The covariant derivative Dµ acts on the scalar field φ according to

Dµ[A]φ = (∂µ + ieAµ)φ (4)

with [e] = 0. The potential V [φ] is to be specified below.

Given the Lagrangian (1), one gets Gauss’s law by differentiating with respect

to A0,

κε0ij∂iAj = j0 , (5)

where

j0 = ieγ(φ∗D0φ− φD0φ
∗) = −2e2γA0|φ|2 . (6)

Defining

B = −εij∂iAj (7)

one then has, using Eq. (5),

A0 =
κ

2e2γ

B

|φ|2 . (8)

Inserting this result in Eq. (6), one gets

j0 = −κB (9)

so that the usual CS–Higgs model relation between charge Q and magnetic flux Φ

holds

Q =

∫

d2x j0 = −κ

∫

d2xB ≡ −κΦ . (10)
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The energy density Ē associated to Lagrangian (1) is

Ē = α|Di[A]φ|2 + β|Di[A]Di[A]φ|2 +
1

4γe2
κ2B2

|φ|2 + V [|φ|] . (11)

A lower bound for the energy requires β to be positive while α can have any sign.

As stated before, in the β = 0, γ = 1 relativistic case and for a sixth-order sym-

metry breaking potential this theory is known to have, at the classical level, self-dual

vortex solutions both in the Abelian case14,15 and in its non-Abelian extension.16

In order to solve the Euler–Lagrange equations deriving from Lagrangian (1),

we consider the static axially symmetric ansatz

φ = f(r) exp(−inϕ) , (12)

Aϕ = −A(r)

r
, (13)

A0 = A0(r) , (14)

with n ∈ Z. Given this ansatz, the magnetic and electric fields read

B(r) =
1

r

dA(r)

dr
, E(r) = −dA0

dr
. (15)

The equations of motion take the form

−κ

r

dA(r)

dr
+ 2γe2A0(r)f

2(r) = 0 , (16)

κ
dA0

dr
+

4e2β

r

(

n

e
+ A

)

f

(

d2

dr2
+

1

r

d

dr
− e2

r2

(

n

e
+A

)

2
)

f

− α
2e2

r

(

n

e
+A

)

f2 = 0 , (17)

β

(

d2

dr2
+

1

r

d

dr
− e2

r2

(

n

e
+A

)

2
)(

d2f

dr2
+

1

r

df

dr
− e2

r2

(

n

e
+ A

)

2

f

)

− α

(

d2f

dr2
+

1

r

df

dr
− 1

r2
(n+ eA)2f

)

− γe2A2
0(r)f =

1

2

∂V

∂f
. (18)

The potential V is in general chosen so as to allow for spontaneous symmetry

breaking. In the relativistic (2 + 1)-dimensional case, the most general renormaliz-

able self-interacting scalar potential is sixth-order and in fact to find the first-order

BPS equations it should be of this order and take the form14,15

V =
e4τ

8κ2
f2(f2 − v2)2 (19)

with v the Higgs field vacuum expectation value (VEV) and the coupling constant

τ has length dimensions [τ ] = −4. In the relativistic model, the first-order self-dual
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equations exist at a certain value τ = τBPS which would correspond in the present

Lifshitz case to τBPS = 8α2γ. From here on, unless otherwise stated, we shall take

V as given in (19) and τ = τBPS in order to compare the Lifshitz model results

with those arising in the relativistic case.

3. Asymptotic Behavior

We start by discussing the conditions that we shall impose at the origin and at the

boundary. We choose as conditions at the origin those leading to regular solutions

in the relativistic case (see for example Ref. 14):

f(r) = f0r
|n| , A0(r) = a0 + c0r

2|n| , r → 0 , A(r) = d0r
2|n|+2 . (20)

Note that a constant term a0 in the A0(r) expansion is included in order to achieve

consistency of Eq. (16) at the origin. Coefficients a0 and d0 are related according to

d0 =
e2

κ(|n|+ 1)
a0f

2
0 . (21)

Concerning large r, we write

f(r) ≈ v + h(r) , (22)

A(r) ≈ −n

e
+ a(r) , r → ∞ , (23)

A0(r) ≈ a0(r) (24)

with h(r), a(r) and a0(r) small fluctuations. We then linearize the equations of

motion which reduce to

−β∇2
r∇2

rh(r) + α∇2
rh(r) − σh(r) = 0 , (25)

−1

r

da(r)

dr
+ γµa0(r) = 0 , (26)

da0(r)

dr
− αµ

r
a(r) = 0 , (27)

where

∇2
r =

d2

dr2
+

1

r

d

dr
, (28)

σ =
e4τv4

2κ2
, µ =

2e2v2

κ
. (29)

Equations (26) and (27) can be written as two decoupled second-order equations

d2a0
dr2

+
1

r

da0
dr

− αγµ2a0 = 0 , (30)

d2a

dr2
− 1

r

da

dr
− αγµ2a = 0 . (31)
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First, we deal with the scalar field behavior. After writing

h(r) =
h0

√
r
exp(qr) , (32)

with h0 a constant, the solutions are determined from the equation

q2± =
1

2β

(

α±
√

α2 − 4βσ
)

. (33)

The asymptotic behavior of the scalar field is then given by

f(r) ≈ v +
h0

√
r
exp(−q±r) . (34)

From the results, one can see that there is a critical value for β

βcrit =
α2

4σ
(35)

above which q2± become imaginary.

In the region α > 0 and β < βcrit, the solutions for q± are real. In particular,

for βσ ≪ α2

q2+ ≈ α

β
, q2− ≈ σ

α
. (36)

Note that q− coincides with the standard relativistic case solution where it plays

the role of the Higgs field mass.14

Concerning the region α ≥ 0 and β > βcrit, one has

q2± =
1

2β

(

α± 2i
√

βσ

√

1− α2

4βσ

)

(37)

which gives a complex solution. This region corresponds to underdamped oscilla-

tions of the Higgs field. We can write this as

q2± =
σ

β
e±iχ , (38)

where

tan(χ) =

√

4βσ − α2

α
. (39)

The solution is therefore

h =
h0 exp (−λr)√

r
cos(kr + δ) , (40)

where

λ =

√

σ

β

∣

∣

∣

∣

cos

(

χ

2

)∣

∣

∣

∣

, k =

√

σ

β

∣

∣

∣

∣

sin

(

χ

2

)∣

∣

∣

∣

, (41)

where δ is a constant phase.
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We now consider the case of α < 0. In this case for β < βcrit, we have that

q2± =
1

2β

(

−|α| ±
√

α2 − 4σβ
)

(42)

which is always negative leading to oscillatory solutions with wave numbers |q±|.
Finally, let us consider the β > βcrit region where the solutions become

q2± =
σ

β
e∓iχ (43)

leading for the scalar field behavior to a situation similar to the case of α > 0 with

β > βcrit.

Let us now study the asymptotic behavior of the gauge fields. For α > 0, the

consistent asymptotic behavior is

a0(r) ≈
a0∞√

r
exp(−k̄r) , a(r) ≈ a∞

√
r exp(−k̄r) . (44)

Notice that in this region the asymptotic field behavior ensures finite energy and

quantized magnetic flux as in the relativistic case

Φ =
2π

e
n , n ∈ Z . (45)

In the α = 0 case, linearization leading to Eqs. (30) and (31) is no longer valid.

Instead, writing a =
√
rg(r) and using the gauge field equations of motion one

gets a second-order nonlinear equation for g compatible with bounded solutions at

infinity. As will be discussed in the next section, we do find a bounded numerical

solution for α = 0.

Concerning the α < 0 region, one has

a0(r) ≈
a0∞√

r
sin(k̄r + ϕ̄) , a(r) ≈ a∞

√
r cos(k̄r + ϕ̄) (46)

with

k̄ =
√

|α|γµ , a∞ = −
√

γ

|α| a0∞ . (47)

The oscillatory behavior of configurations satisfying (46) will require the introduc-

tion of appropriate boundary conditions at a finite radius R.

4. Solutions

We shall present in this section numerical solutions of Eq. (18) satisfying the asymp-

totic condition discussed above. For definiteness, we take n = 1 and we shall fix

γ = 1 (since we are considering static solutions, changing gamma amounts to a

redefinition of the scalar field coupling with A0). In order to ensure positivity of the

energy, we shall take β > 0. We shall separately consider α ≥ 0 and α < 0 regions.

Following the discussion in the previous section, we shall distinguish regions with

β ≶ βcrit. The numerical procedure is based on a fourth-order finite differences

method applied in the interval (ǫ, R) with ǫ close to the origin and R large, in

combination with the behavior of fields close to the origin given by Eq. (20).

1350025-7

In
t. 

J.
 M

od
. P

hy
s.

 A
 2

01
3.

28
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
IL

L
IN

O
IS

 A
T

 U
R

B
A

N
A

 C
H

A
M

PA
IG

N
 o

n 
05

/1
5/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.



April 3, 2013 9:36 WSPC/Guidelines-IJMPA S0217751X13500255

G. S. Lozano, F. A. Schaposnik & G. Tallarita

1 2 3 4 5 6
r

-0.4

-0.2

0.0

0.2

0.4

0.6

Fig. 1. The electric (solid line) and magnetic (dashed line) fields in the region α > 0, β < βcrit,
with α = 1, βcrit = 0.0625 and β = 0.04. As in the relativistic CS–Higgs model, the magnetic and
electric fields form a ring surrounding the vortex core.

4.1. The α ≥ 0 region

We start by studying the α > 0, β < βcrit region. We give the results of our

numerical calculation for E and B in Fig. 1 and the scalar field in Fig. 2.

One can see that the profile of the fields in this region exhibit slight deviations

to the relativistic case, originated by the fourth-order derivative terms. It should

be noted that as β grows, we found numerically that the maximum magnitude of

the electric and magnetic fields decrease. Concerning the Higgs field, it reaches its

vacuum value exponentially according to Eq. (34), as can be seen in Fig. 2 with a

similar profile as that corresponding to the relativistic case as shown in Fig. 2.

2 4 6 8 10
r0.0

0.2

0.4

0.6

0.8

1.0
f

Fig. 2. The Higgs field profile in the region corresponding to α > 0, β < βcrit (α = 1, βcrit =
0.0625 and β = 0.04).
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2 4 6 8 10
r0.0

0.2

0.4

0.6

0.8

1.0
f

3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
r0.999

1

1.0005
f

Fig. 3. The Higgs field profile in the region α > 0, β > βcrit. We have chosen α = 1, βcrit = 0.0625
and β = 0.2. The inset shows a zoom of the region where f overshoots its VEV and comes back
to it, as is characteristic of an underdamped behavior.

Let us now consider β > βcrit range where the roots q± are complex (37), thus

giving rise to underdamped oscillations in the Higgs profile, as shown in Fig. 3.

For a given value of α, the magnetic and electric field solutions for β > βcrit are

qualitatively the same as those shown in Fig. 1 for β < βcrit.

We then conclude that in the α > 0 region the electric and magnetic field

behavior is very similar to the ordinary relativistic CS–Higgs model. Concerning

the scalar field, as one crosses from β < βcrit to β > βcrit, it changes from the usual

to an underdamped approach to its VEV.

We have studied the β-dependence of the energy in this region finding a linear

behavior for small β. As an example, we show in Fig. 4, a numerical calculation of

the energy E as a function of β for α = 1, βcrit = 0.0625. We find that E behaves

approximately as E ≈ E0 + 0.25β.

We end this subsection by discussing the α = 0 case for which, for vanish-

ing potential (σ = 0), the Lagrangian is invariant under anisotropic scaling with

“dynamical critical exponent” z = 2. As in this case there is no length scale, we do

not expect a localized solution. On the other hand, if we consider α = 0 but σ 6= 0

(and then τ 6= τBPS), one has βcrit = 0. So, for any β > 0, the Higgs field shows an

underdamped behavior. We have numerically confirmed this result and also found

bounded solutions for the gauge fields. The field profiles are qualitatively similar to

those found for α > 0, β > βcrit.

4.2. The α < 0 region

One expects in this region a clearly different behavior compared to the relativistic

CS–Higgs system since the negative sign of α in the |Diφ|2 energy term implies not
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E E ≈ E

0.02 0.04 Βcrit 0.08 0.1
Β

1.000

1.005

1.010

1.015

1.020

E

Fig. 4. The energy as a function of β for α = 1, βcrit = 0.0625.

only a change of sign in the |∇φ|2 term but also in the gauge field “mass term”

that now has the “wrong” sign.

We start by studying the β > βcrit region where the fields asymptotic behavior

is given by Eqs. (43)–(47). This behavior leads to an oscillatory energy density (and

consequently to an, in general, unbounded energy). For example, the third term in

expression (11) for the energy density takes the asymptotic form

E3 =
1

4γe2
κ2B2

|φ|2 ≈ |α|a20∞e2v2
sin2(k̄r + ϕ̄)

r
. (48)

We show in Fig. 5 the electric and magnetic fields in the α < 0, β > βcrit region.

Their profiles show the asymptotic oscillatory damped behavior consistent with

Eq. (46). The behavior of the scalar field is presented in Fig. 6. A zoom outside the

vortex core shows damped oscillations consistent with Eqs. (34)–(43).

In the β < βcrit region, the roots we found in Sec. 3, Eq. (42), lead to pure oscil-

latory solutions with no damping. The assumption of h in Eq. (22) being asymp-

totically a small perturbation to the scalar VEV v is then not self-consistent. We

have not been able to find stable solutions of our 2 + 1 model with the ansatz (12)

and (13). We indeed know that in the absence of dynamical gauge fields this range

of parameters corresponds to the modulated ordered Lifshitz phase associated to

spontaneous breaking of translations.19,20 We then conclude that in this region a

more detailed numerical study allowing the implementation of more general ansatz

would be necessary.
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5 10 15 20
r

-0.2

-0.1

0.1

Fig. 5. The electric (solid line) and magnetic (dashed line) fields in the region α < 0, β > βcrit,
with α = −0.2, βcrit = 0.0025 and β = 0.25.

2 4 6 8 10
r0.0

0.2

0.4

0.6

0.8

1.0

f

Fig. 6. The Higgs field profile in the region α < 0, β > βcrit, with α = −0.2, βcrit = 0.0025 and
β = 0.25.

5. Summary and Discussion

We have proposed a gauged Lifshitz Lagrangian with higher (fourth)-order spatial

derivatives of the scalar field and a CS term, and studied numerically nontrivial

solutions of the classical equations of motion. Notice that contrary to previous

analysis of Lifshitz theories with CS term18 with z = 2, we considered higher

derivatives for the scalar field rather than for the gauge fields. As a consequence,

the classical solutions of our model have a different character of the ones resulting

from such model.22
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Coming back to the model we analyzed, let us recall that β, the coefficient of

the fourth-order derivatives term, was taken positive in order to ensure positivity

of the energy. In contrast, the α coefficient multiplying the ordinary second-order

derivative term could take both positive and negative values being α = 0 the

Lifshitz point at which the model exhibits z = 2 anisotropic scaling in the absence

of a potential term.

In order to solve the equations of motion, we have made the static axially sym-

metric ansatz that leads to vortex solutions in the relativistic case. For α > 0, we

have found solutions with magnetic and electric fields qualitatively similar to those

of the ordinary relativistic model. The magnetic flux is quantized and the usual rela-

tion between electric charge and magnetic field in CS systems holds. The difference

with the standard relativistic case manifests more pronouncedly in the Higgs field

behavior which for β > βcrit approaches its VEV with underdamped oscillations.

The critical value is given by formula (35), βcrit = α2/4σ2, showing a dependence

on the coefficient of the quadratic derivative coefficient and on the parameters of

the model (the value v of the Higgs field at the minimum, the gauge coupling e, the

CS coefficient κ and the Higgs field self-interaction coupling constant τ). For α = 0

and σ 6= 0, the numerical solutions that we found are qualitatively similar to those

found for α > 0, β > βcrit.

The situation for the α < 0 region radically changes basically because of the

change in sign of the gauge field mass term. The ansatz led to pure oscillatory

solutions for the gauge fields with no damping. Concerning the scalar field, one

can again distinguish two situations depending on whether β is larger or smaller

than βcrit. In the former case, we were able to find solutions exhibiting electric and

magnetic field profiles with an asymptotic oscillatory behavior while the Higgs field

profile shows damped oscillations. This behavior leads, in general, to an oscillatory

energy density and an unbounded energy. In the β < βcrit region, the proposed

ansatz led to pure oscillatory solutions with no damping.

We think that in the region α < 0, other terms in the Lagrangians as those con-

sidered by Ginzburg for the free energy of superdiamagnets and superconductors2

might become relevant. Also, more general ansatz, not purely relying in cylindrical

symmetry should be considered in order to incorporate the possibility of asymptotic

breaking of translational symmetry which is characteristic of modulated Lifshitz

phases. We hope to come back to this problem in a future work.
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Appendix. The Fröbenius Method

In this section, we wish to apply Fröbenius’s method to the linearized Higgs field

equation of motion in order to determine its behavior close to r = 0, where f is

1350025-12

In
t. 

J.
 M

od
. P

hy
s.

 A
 2

01
3.

28
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
IL

L
IN

O
IS

 A
T

 U
R

B
A

N
A

 C
H

A
M

PA
IG

N
 o

n 
05

/1
5/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.



April 3, 2013 9:36 WSPC/Guidelines-IJMPA S0217751X13500255

Gauged Lifshitz Model with Chern–Simons Term

assumed to be small (see Eq. (20)) and the equation has a regular singular point.

Following Ref. 21, we recast the equation of motion (17) for the Higgs field close to

r = 0 in simplified form as

−βf ′′′′ − 2β

r
f ′′′ +

(3β + αr2)

r2
f ′′ +

(−3β + αr2)

r3
f ′

+

(

σ

4
v4 + γe2a20

)

f +
(3β − αr2)

r4
f = 0 , (A.1)

where we take the vorticity n = 1 and ignore the contribution from A(r) given

that this vanishes at the origin. Note that the higher-order terms in f coming from

the potential are to be ignored in the linearized analysis. We proceed to make a

Fröbenius ansatz for the behavior close to the origin of the form

f(λ) =

∞
∑

m=0

Fm(λ)rm+λ . (A.2)

Upon substituting this ansatz in Eq. (A.1) and looking at the lowest order in r, one

obtains the indicial equation of the system, hence we look at the equation at order

rλ−4 where we obtain

(λ− 3)(λ− 1)2(λ + 1) = 0 . (A.3)

Therefore, we have three distinct roots λ = 3, 1, −1 with multiplicities 1, 2, 1,

respectively. We proceed to determine the coefficients am by looking at higher-

orders in r. The equation at order rλ−3 implies that F1 = 0. The order rλ−2

equation leads to

F2(λ) =
−αF0

β(1 + λ)(3 + λ)
(A.4)

which gives solutions for both roots λ = 1 and λ = 3 as

f(1) = r
∞
∑

m=0

Fm(1)rm , f(3) = r3
∞
∑

m=0

Fm(3)rm , (A.5)

where a2 and b2 are coefficients extracted from Eq. (A.4) with the appropriate

choice for λ, and an ill-defined solution for λ = −1 which we will return to later.

The solution f2 corresponds to the behavior used in Eq. (20) at n = 1. Both

these solutions and their derivatives are well behaved at the origin. The next order

coefficients can be extracted from the order rλ equation as

F4(λ) = −F0

(

α2(1 + 3λ+ λ2)− γe2a20β(3 + 4λ+ λ2)
)

β2(1 + λ)(3 + λ)2(7 + 17λ+ 8λ2 + λ3)
(A.6)

with higher-order Fm’s for odd m vanishing. Being λ = 1 a multiplicity 2 root, we

know that the λ derivative of this solution is also a solution of the equations of

motion. In general, if f(λ) is a solution of the form Eq. (A.2), then

df(λ)

dλ
= ln rf(λ) + rλ

∞
∑

m=0

dFm(λ)

dλ
rm (A.7)

1350025-13

In
t. 

J.
 M

od
. P

hy
s.

 A
 2

01
3.

28
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
IL

L
IN

O
IS

 A
T

 U
R

B
A

N
A

 C
H

A
M

PA
IG

N
 o

n 
05

/1
5/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.



April 3, 2013 9:36 WSPC/Guidelines-IJMPA S0217751X13500255

G. S. Lozano, F. A. Schaposnik & G. Tallarita

which means that an independent solution is of the form

f̄(1) =
df(1)

dλ
= r

∞
∑

m=0

Fm(1)rm ln r + r

∞
∑

m=0

dFm(1)

dλ
rm . (A.8)

This solution has a singular derivative at the origin.

The solution of the linearized problem for λ = −1 takes the form

f(−1) =
1

r

∞
∑

m=0

Bmrm + r

∞
∑

m=0

Cmrm ln r , (A.9)

where as before the sum extends over even m and one finds that B0 and C0 are

nonvanishing. This solution of the linearized problem diverges at r = 0 and, hence,

should not be taken into account for searching physically acceptable solutions.
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