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The condition for invariance under a translation of the coordinate system of the Verdet tensor and the Verdet constant,
calculated via quantum chemical methods using gaugeless basis sets, is expressed by a vanishing sum rule involving a
third-rank polar tensor. The sum rule is, in principle, satisfied only in the ideal case of optimal variational electronic
wavefunctions. In general, it is not fulfilled in non-variational calculations and variational calculations allowing for the
algebraic approximation, but it can be satisfied for reasons of molecular symmetry. Group-theoretical procedures have been
used to determine (i) the total number of non-vanishing components and (ii) the unique components of both the polar tensor
appearing in the sum rule and the axial Verdet tensor, for a series of symmetry groups. Test calculations at the random-phase
approximation level of accuracy for water, hydrogen peroxide and ammonia molecules, using basis sets of increasing quality,
show a smooth convergence to zero of the sum rule. Verdet tensor components calculated for the same molecules converge
to limit values, estimated via large basis sets of gaugeless Gaussian functions and London orbitals.

Keywords: Faraday effect; Verdet tensor; Verdet constant; sum rule for origin independence; symmetry unique components

1. Introduction

The Faraday effect accounts for a magneto-optical phe-
nomenon, i.e. the interaction of light and magnetic field [1–
7]. It manifests itself in certain substances as the rotation of
the plane of polarisation of a light beam when a magnetic
field is applied parallel to it. The rotation angle, φ, is pro-
portional to the modulus of the magnetic flux density B, the
length l of the material in the field and its Verdet constant, v,
named after the French physicist Marcel Verdet (1824–66)
[8–11], who used the name ‘pouvoir rotatoire magnetique’
for the first time in 1858 [10,12]. The sense of rotation
with respect to the magnetic field’s direction does not de-
pend on the direction of light propagation, due to conser-
vation of parity [13,14]. Time reversal, implying inversion
of all the motions, leads exactly to the same phenomenol-
ogy observed from the opposite direction, therefore the
Faraday experiment is also characterised by reversality
[13,14].

Assuming that B is spatially uniform throughout a trans-
parent sample, the rotation of the polarisation angle is ex-
pressed by

φ = vBl. (1)

∗Corresponding author. Email: lazzeret@unimore.it
†This paper is dedicated to Prof. Trygve Helgaker on the occasion of his 60th birthday.

The Verdet constant, measured in rad T−1m −1 within the
Système International (SI) of units, is a scalar [2–4,15–33],
obtained by spatial averaging from a third-rank axial tensor
Vαβγ , hereafter referred to as Verdet tensor, also taken into
account to rationalise the inverse Faraday effect, in which
optical magnetisation is induced by applying circularly po-
larised light [34,35]. A tensor with analogous properties
has been considered to predict nuclear magnetic resonance
(NMR) chemical shift induced by a circularly polarised
laser beam [35–37].

Experimental values of v, as well as optically induced
NMR shifts [35–37] are independent of the laboratory ref-
erence system, but theoretical definitions of the former are
not explicitly invariant to a coordinate translation, unless
one uses exact eigenfunctions to a model Hamiltonian.

In quantum chemical calculations, London atomic or-
bitals (LAO) [38], also referred to as gauge including atomic
orbitals (GIAO) [39], are currently used to ensure origin
independence of theoretical estimates of v [27,30,32,33].
A few studies on the invariance of the molecular tensor
used to rationalise the Faraday effect, in a shift of origin
r ′ → r ′′ = r ′ + d of the coordinate system, have been re-
ported [5,40–42]. A hint was offered for the gauge-origin

C© 2013 Taylor & Francis
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Table 1. Non-vanishing components of the polar tensor �〈〈μ̂α; μ̂β, P̂μ〉〉ω,0 from finite basis set calculations, for
various molecular symmetries.a

Number of non-vanishing
components

Point group
︷ ︸︸ ︷
Total Unique Non-vanishing components

Ci, Cnh, n ≥ 2,
Dnh, n ≥ 2, D∞h,
S6, S8, D3d, D4d, D5d, D6d,
Th, Td, Oh, Ih, R3 0 0
C1 18 9 xyx = −yxx, yxy = −xyy,

xzx = −zxx, yzy = −zyy,
zxz = −xzz, zyz = −yzz,
xyz = −yxz, xzy = −zxy,
yzx = −zyx

C2 10 5 xzx = −zxx, yzy = −zyy,
xyz = −yxz, xzy = −zxy,
yzx = −zyx

Cs 8 4 xyx = −yxx, yxy = −xyy,
zxz = −xzz, zyz = −yzz

D2 6 3 xyz = −yxz, xzy = −zxy,
yzx = −zyx

C2v 4 2 xzx = −zxx, yzy = −zyy

C3, C4, C6 10 3 xzx = −zxx = yzy = −zyy,
xyz = −yxz,
xzy = −zxy = −yzx = zyx

S4 8 2 xzx = −yzy = −zxx = zyy
zxy = zyx = −yzx = −xzy

C3v, C4v, C6v 4 1 xzx = −zxx = yzy = −zyy

D2d 4 1 zyx = −yzx = zxy = −xzy

D3, D4, D6 6 2 xyz = −yxz,
xzy = −yzx = −zxy = zyx

T, O 6 1 xyz = zxy = yzx
=−xzy = −yxz = −zyx

aThe coordinate system is defined according to the Mulliken conventions [65,66]

invariance of the Verdet constant by considering third-order
expressions for, e.g. hyperpolarisabilities in systems pos-
sessing an inversion centre, by Parkinson and Oddershede
[25]. The present paper stems to provide a simple and
general proof of the origin independence of the Verdet ten-
sor Vαβγ (−ω; ω, 0). It is organised as follows.

Some definitions are recalled in Section 2, where it
is shown that the condition for origin independence of the
Verdet tensor Vαβγ (−ω; ω, 0) can be expressed via the van-
ishing sum rule [43] for a third-rank polar tensor,

Zαβγ (−ω; ω, 0) = −�
〈〈

μ̂α; μ̂β, P̂γ

〉〉
ω,0

= 0, (2)

involving the matrix elements of electric dipole and canoni-
cal momentum. Throughout this paper, the symbols � and �
imply taking the imaginary and real part of the propagator,
respectively.

The sum rule, Equation (2), is exactly satisfied us-
ing optimal variational wavefunctions [44], e.g. within the

Hartree–Fock method in the limit of a complete basis set of
expansion.

The natural optical activity is related to the trace of a
second-rank axial tensor. Within the velocity gauge for the
electric dipole, this trace, calculated via either variational
or non-variational electronic wavefunctions using gauge-
less basis sets, is invariant in a translation of the gauge
origin [45–47], but an origin-independent expression of the
Verdet constant cannot be obtained by an analogous choice
of the gauge, as shown in Section 2.1. On the other hand, the
sum rule (2) for invariance can be fulfilled owing to a com-
bination of spatial symmetry and permutational symmetry,

Zαβγ (−ω; ω, 0) = −Zβαγ (−ω; ω, 0), (3)

typical of antisymmetric polarisabilities, see, for instance,
Equation (12) of Ref. [36]. Thus Zαβγ (−ω; ω, 0) vanishes
identically for molecules belonging to symmetry groups
specified in Table 1. The Verdet tensor for molecules
of these symmetries is origin independent, irrespective
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Table 2. Non-vanishing components of the axial tensor �〈〈μ̂α; μ̂β, m̂γ (RCM)〉〉ω,0 for some molecular symmetries.a

Number of non-vanishing
components

Point group
︷ ︸︸ ︷
Total Unique Non-vanishing components

C1, Ci 18 9 xyx = −yxx, yxy = −xyy, xzx = −zxx,
yzy = −zyy, zxz = −xzz, zyz = −yzz,
xyz = −yxz, xzy = −zxy, yzx = −zyx

C2, Cs, C2h 10 5 xzx = −zxx, yzy = −zyy, xyz = −yxz,
xzy = −zxy, yzx = −zyx

D2, C2v, D2h 6 3 xyz = −yxz, xzy = −zxy, yzx = −zyx

C4, S4, C4h,
C3, S6, C3h,
C6, C6h 10 3 xzx = −zxx = yzy = −zyy,

xyz = −yxz,
xzy = −zxy = −yzx = zyx

D3, C3v, D3d,
D4, C4v, D2d,
D6, C6v, Dnh, n ≥ 3,
D∞h 6 2 xyz = −yxz,

xzy = −zxy = zyx = −yzx

T, Th, O, Td, Oh, Ih, R3 6 1 xyz = zxy = yzx
=−yxz = −xzy = −zyx

aThe coordinate system is defined according to the Mulliken conventions [65,66].

of basis set quality and approximate method employed
in the calculations. Moreover, group theoretical proce-
dures [48,49] recalled in Section 2.2 provide a priori
simple criteria to evaluate only the symmetry-unique,
non-vanishing tensor components of the Verdet tensor (see
Table 2).

In the attempt at investigating the effect of increas-
ing quality of gaugeless basis sets on convergence of
Vαβγ (−ω; ω, 0) and Zαβγ (−ω; ω, 0) to the limit values for
a complete basis, calculations have been carried out for
water, hydrogen peroxide, and ammonia molecules using
Dunning’s basis sets [50]. The results are reported in Sec-
tion 3 and concluding remarks in Section 4.

2. The Verdet tensor

We use the notation adopted in previous papers [45,46]. For
a molecule with n electrons and N nuclei, charge, mass,
position with respect to an arbitrary origin, canonical, and
angular momentum of the ith electron are indicated by −e,
me, r i , p̂i , l̂ i = r i × p̂i , i = 1, 2. . .n in the configuration
space. Corresponding quantities for nucleus I are indicated
by, e.g. ZIe, MI, RI . Capital letters denote total electronic
operators, e.g. R̂ = ∑n

i=1 r i , P̂ = ∑n
i=1 p̂i , L̂ = ∑n

i=1 l̂ i ,
etc. Throughout this article we use SI units and tensor nota-
tion, e.g. the Einstein convention of summing over two re-
peated Greek subscripts, and εαβγ denotes the Levi–Civita
third-rank skew tensor.

The third-rank tensors needed to rationalise contribu-
tions quadratic in the external fields and intramolecular
perturbations are expressed, within the quadratic response
scheme, by the response function

〈〈Â; B̂, Ĉ〉〉ω1,ω2=
1

�2

∑
P

∑
j,k �=a

〈a|Â|j 〉〈j |Ĉ|k〉〈k|B̂|a〉(
ωja − ωσ

)
(ωka − ω1)

,

(4)
using the notation of Bishop et al. [21,51,52] for the propa-
gator [43,53]. In this relationship ωσ = ω1 + ω2, and

∑
P

means the sum over all permutations of the pairs (Â/ − ωσ ),
(B̂/ω1), (Ĉ/ω2). Overlined operators are defined, e.g.

Â = Â − 〈a|Â|a〉.
In the following we will assume that a field of frequency
ω1 and one of frequency ω2 are applied to the molecular
system.

From definition (4) it follows

〈〈Â; B̂, Ĉ〉〉ω1,ω2 = 〈〈Ĉ; B̂, Â〉〉ω1,−ωσ
. (5)

From the equations of motion satisfied by the propagator,
Equation (4), for exact and optimal variational wavefunc-
tions [44], one has [43,53]

(ω1 + ω2) 〈〈Â; B̂, Ĉ〉〉ω1,ω2 = 〈〈[Â, Ĥ (0)]; B̂, Ĉ〉〉ω1,ω2

+〈〈[Â, B̂]; Ĉ〉〉ω2 + 〈〈[Â, Ĉ]; B̂〉〉ω1 . (6)
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4 M. C. Caputo et al.

Allowing for Equation (4), the Verdet tensor is defined
[21]

Vαβγ (−ωσ ; ω1, ω2) = −� 〈〈
μ̂α; μ̂β, m̂γ

〉〉
ω1,ω2

= − 1

�2

∑
P

∑
j,k �=a

�
(
〈a |μ̂α| j 〉

〈
j

∣∣∣μ̂β

∣∣∣ k
〉 〈

k
∣∣m̂γ

∣∣ a〉)
(
ωja − ωσ

)
(ωka − ω2)

.

(7)

The operators for the electric and magnetic dipole moment
of electrons are

μ̂α = −eR̂α (8)

and

m̂α = − e

2me

L̂α. (9)

Within the SI system, the Verdet tensor is measured in
Kg −2 s 3 C 3. In non-ordered phase it is expedient to make
molecular averages, defining the scalar quantity [3,21,26]

V(ω) = 1

6
εαβγVαβγ (−ω; ω, 0) . (10)

Introducing the multiplicative factor

C = 1

2c

N
ε0

(11)

with N the number density, the Verdet constant which ap-
pears in the definition of the rotation angle, Equation (1),
can eventually be expressed in the form [21,26]

v(ω) = ωCV(ω) (12)

for a given ω value. Within the SI, N is expressed in m−3,
C in m−3 s F−1 and v in rad m−1T−1.

2.1. Origin dependence of the Verdet tensor

In a change

r ′ → r ′′ = r ′ + d (13)

of the origin of coordinate system, which can be associated
to the change of gauge

AB(r − r ′) → AB(r − r ′′) = AB(r − r ′)
+∇[AB(r − r ′) · d], (14)

of the vector potential AB = (1/2)B × r , the magnetic
dipole operator changes according to

m̂γ (r ′′) = m̂γ (r ′) + e

2me

εγλμdλP̂μ. (15)

The diagonal matrix elements of pure imaginary Hermitian
operators vanish for non-degenerate electronic states, then

m̂α = m̂α and P̂ α = P̂α . For the electric dipole operator,

μ̂α(r ′′) = μ̂α(r ′) = μ̂α(r ′) − 〈a|μ̂α(r ′)|a〉. (16)

The isotropic natural optical activity and the Verdet
constant, calculated via approximate methods of quantum
chemistry using gaugeless basis sets, depend on the origin
of the coordinate system. However, origin-independent val-
ues of the former are obtained within the dipole velocity
gauge[45–47,54–56]. To the best of our knowledge, analo-
gous procedures have not been developed for the latter. The
state of affairs is briefly recalled hereafter.

The optical rotatory power tensor within the dipole
length gauge can be expressed in the form [45,47,57]

κ ′
αβ (−ωσ ; ω1) = �〈〈μ̂α; m̂β〉〉ω

≡ −1

�

∑
j �=a

2ω

ω2
ja − ω2

� (〈a|μ̂α|j 〉〈j |m̂β |a〉) . (17)

Allowing for Equations (15) and (16), its transformation
in the origin translation, Equation (13), is described by the
relationships [45]

κ ′
αβ(r ′′) = κ ′

αβ(r ′) − ω

2
εβγ δdδααγ ,

Tr{κ ′(r ′′)} = Tr{κ ′(r ′)}. (18)

Equation (18) is valid, and the trace of the tensor stays
the same, if the off-diagonal hypervirial Ehrenfest theorem
[44]

e

me

〈a|P̂α|j 〉 = iωja 〈a |μ̂α| j 〉 (19)

is fulfilled [45–47]. To satisfy this requirement within the
algebraic approximation, a complete basis set of gaugeless
functions should be used [44]. However, in any calcula-
tion adopting a truncated basis, the equations describing
the origin dependence of molecular tensors must be prop-
erly interpreted [45–47]. Thus, for instance, if the optical
activity tensor is defined within the electric dipole velocity
(P, L) formalism,

κ
′ (P,L)
αβ = − e2

2m2
e�

∑
j �=a

2ω

ωja(ω2
ja − ω2)

×�〈a|P̂α|j 〉〈j |L̂β |a〉, (20)
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Molecular Physics 5

then the electric polarisability in the (P, P) dipole velocity
gauge,

α
(P,P )
αβ = e2

m2
e�

∑
j �=a

2

ωja(ω2
ja − ω2)

�〈a|P̂α|j 〉〈j |P̂β |a〉,

(21)
must be used [45,46] in Equation (18). By all means, the
trace of the κ ′

αβ tensor in the velocity gauge is invariant
in any approximate calculation, which makes the (P, L)
formalism useful if only gaugeless basis sets are available
[46,47]. Such a procedure provides an interesting alterna-
tive to using LAO basis sets [58].

This remarkable result is a mere consequence of
the symmetry of the polarisability tensor α

(P,P )
αβ = α

(P,P )
βα

within the velocity gauge and the antisymmetry of the Levi–
Civita tensor used in Equation (18) [46,47]. An analogous
result is not possible for the Verdet constant, as shown in
the following.

The origin independence of the Verdet propagator nec-
essarily implies that, in the coordinate translation, Equa-
tions (13)–(16), and in the resulting transformation

〈〈
μ̂α(r ′′); μ̂β(r ′′), m̂γ (r ′′)

〉〉
ω,0

= 〈〈
μ̂α(r ′); μ̂β(r ′), m̂γ (r ′)

〉〉
ω,0

+ e

2me

εγλμdλ〈〈μ̂α(r ′); μ̂β(r ′), P̂μ〉〉ω,0, (22)

the sum rule [43], Equation (2), must be satisfied for any
origin r ′, since the polar tensor on the right-hand side,
〈〈μ̂α; μ̂β, P̂μ〉〉ω,0, is origin independent. Relationship (2)
is easily proven via the off-diagonal hypervirial relationship
(19) allowing for Equation (5), so that

〈〈μ̂α; μ̂β, P̂μ〉〉ω,0 = 〈〈P̂μ; μ̂β, μ̂α, 〉〉ω,−ω

= ime

e�

〈〈[
μ̂μ,H (0)

]
; μ̂β, μ̂α,

〉〉
ω,−ω

,

(23)

which vanishes identically according to the equation of
motion (6).

It should be emphasised that the sum rule, Equations (2)
and (23), is satisfied only in the case of exact and optimal
variational wavefunction, for which the hypervirial theorem
(19) is fulfilled. In actual calculations, the constraint for
translational invariance is, in general, met only in the limit
of a complete basis set. The degree to which Equation (2)
is satisfied actually provides a measure of quality of the
basis set. For that reason, gauge including atomic orbitals
are usually adopted in the calculation of magneto-optical
activity [59] and Verdet constant [27,30,32–33].

2.2. Restrictions imposed by molecular symmetry

The sum rule (2) may simply be satisfied on account
of molecular point group symmetry and antisymmetry

Table 3. Non-vanishing components of the polar tensor
Zαβγ (−ω; ω, 0) of H2O from four basis sets.a

Component DZ(47) TZ(119) QZ(249) 5Z(461)

xzx = −zxx 0.16002 0.06514 0.01926 0.00895
yzy = −zyy 0.01588 0.00729 −0.00187 −0.00147

aIn au. The basis sets are specified in the text. Here and in the following
tables, the entries between parentheses specify the number of basis
functions. ω = 0.0345439 au.

under permutation of the first two indices of the tensor
Zαβγ (−ω; ω, 0), Equation (3). The situation is similar to
that of nuclear magnetic shieldings calculated within the
common origin approach via gaugeless basis sets [60].
Computed shielding tensors depend on the gauge origin
only for nuclear site symmetries C1, Cs, Cn, Cnv, n = 2,
3. . . They are origin independent if the nuclear site sym-
metry is higher [60].

Allowing for tables 4 a and 4e in the Birss book
[49], it is immediately found that the polar tensor

Table 4. Non-vanishing components of the axial tensor
Vαβγ (−ω; ω, 0) of H2O from four basis sets.a

Component DZ(47) TZ(119) QZ(249) 5Z(461)

xyz = −yxz 0.6454 0.7224 0.7481 0.7542
0.7354 0.7716 0.7674 0.7596

xzy = −zxy −0.7542 −0.8171 −0.8424 −0.8495
−0.8186 −0.8583 −0.8618 −0.8564

yzx = −zyx 0.5852 0.6587 0.6789 0.6846
0.7117 0.7156 0.7013 0.6944

εαβγVαβγ 3.9693 4.3964 4.5389 4.5764
4.5315 4.6910 4.6609 4.6209

v × 109 4.1717 4.6206 4.7703 4.8097
4.7626 4.9301 4.8985 4.8565

aIn au. Here and in Tables 6 and 8, the conversion factor from au
to SI units is 1 v = ea0/� = 8.03961763 × 104 rad m−1 T −1 from
the CODATA compilation [67]. In au, the constant in Equation (11) is
C = 2πN /c = 4.585061844 × 10−2N . For an ideal gas at 273.15 K,
N = 3.98139 × 10−6a3

0 , from Ref. [32]. For each set of components,
results from gaugeless basis sets are given in the first line and correspond-
ing LAO results in the second line. The scalar V = (1/6)εαβγVαβγ and
the Verdet constant v are defined in Equations (10) and (12) respec-
tively. The origin of the coordinate system coincides with the centre of
mass. Nuclear coordinates: O (0.0, 0.0, 0.124144), H1 (0.0, 1.431530,
−0.985266), in bohr. ω = 0.0345439 au.

Table 5. Non-vanishing components of the polar tensor
Zαβγ (−ω; ω, 0) of H2O2 from four basis sets.a

Component DZ(72) TZ(188) QZ(388) 5Z(712)

xzx = −zxx −0.06249 −0.02143 −0.00561 −0.00271
xyz = −yxz −0.01258 −0.01183 −0.00444 −0.00299
yzy = −zyy −0.07718 −0.02370 −0.00534 −0.00261
xzy = −zxy 0.00664 0.00078 −0.00122 −0.00023
yzx = −zyx 0.03145 0.01714 0.00434 0.00333

aIn au, ω = 0.0345439 au.
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6 M. C. Caputo et al.

Table 6. Non-vanishing components of the axial tensor
Vαβγ (−ω; ω, 0) of H2O2 from four basis sets.a

Component DZ(72) TZ(188) QZ(388) 5Z(712)

xzx = −zxx 0.1194 0.0556 0.0267 0.0177
yzy = −zyy 0.0598 0.0447 0.0370 0.0346
xyz = −yxz 0.5814 0.6991 0.7475 0.7585

0.7149 0.7604 0.7688 0.7676
xzy = −zxy −0.7854 −0.8453 −0.8617 −0.8642

−0.8345 −0.8708 −0.8692 −0.8668
yzx = −zyx 0.5243 0.6515 0.7185 0.7373

0.7087 0.7320 0.7467 0.7496
εαβγVαβγ 3.7822 4.3918 4.6555 4.7202

4.5161 4.7265 4.7694 4.7679
v × 109 3.9751 4.6157 4.8928 4.9609

4.7464 4.9675 5.0126 5.0109

aIn au. See footnote to Table 3 for the conventions used. The origin
of the coordinate system coincides with the centre of mass. Nuclear
coordinates:
O1 (0.0, 1.3824839, −0.06604896),
H1 (1.4219547, 1.6931360, 1.0482451), in bohr.
ω = 0.0345439 au.

Table 7. Non-vanishing components of the polar tensor
Zαβγ (−ω; ω, 0) of NH3 from four basis sets.a

Component DZ(56) TZ(144) QZ(304) 5Z(566)

xzx = −zxx = yzy 0.01493 −0.00536 −0.00561 −0.00285
= −zyy

aIn au, ω = 0.0345439 au.

�〈〈μ̂α; μ̂β, P̂μ, 〉〉ω,0 vanishes for, e.g. Ci, C2h, D2h, C4h,
D4h, S6, D3d, C6h, D6h, Th and Oh groups. The symmetry-
unique components of the axial Verdet tensor can also be
obtained from the Birss compilation [49,61,62].

At any rate, the Birss tables provide the tensor com-
ponents which are unique due to spatial symmetry alone.

According to Equation (3),

�〈〈μ̂α; μ̂β, P̂μ〉〉ω,0 = −�〈〈μ̂β ; μ̂α, P̂μ〉〉ω,0, (24)

so that, e.g. α = x = β,

�〈〈μ̂x ; μ̂x, P̂μ〉〉ω,0 = 0.

Owing to Equation (24), it is easily verified that the Verdet
tensor is origin independent also for molecules with Td

symmetry. From the Birss tables [49], one finds that the
six non-vanishing components of Zαβγ (−ω; ω, 0) obtained
from permuting x, y, z are all equal. Therefore they vanish
because of permutational symmetry, i.e. by Equation (24).
Analogously, allowing for D3h point group symmetry and
using the notation of Birss [49], the unique tensor compo-
nents are xxx and yyx(3) = −xxx, which vanish on account
of Equation (24). The same conclusion is, e.g. arrived at
for the C3h point group. Then, in these cases, the sum rule
(2) is exactly satisfied for both spatial and permutational
symmetry.

The change of the Verdet scalar, Equation (10), in the
coordinate transformation, Equation (13), is given by

V(r ′′) = V(r ′) + e

6me

dαZαββ(−ω; ω, 0), (25)

allowing for the permutational symmetry, see Equation
(24). According to this relationship, an extension of the
dipole velocity formalism, used to define an invariant
isotropic optical activity via Equations (20) and (21), to
the Verdet tensor, Equation (7), does not seem practical,
since the Zαββ(−ω; ω, 0) vector does not vanish in general.
On the other hand, the symmetry considerations expounded
above can be used to predict the origin independence of the
Verdet constant, Equation (12).

Table 8. Non-vanishing components of the axial tensor Vαβγ (−ω; ω, 0) of NH3 from four basis sets.a

Component DZ(56) TZ(144) QZ(304) 5Z(566)

xyz = −yxz 0.9085 1.0439 1.0685 1.0751
1.0319 1.0753 1.0749 1.0795

xzy = −zxy = zyx = −yzx −1.2219 −1.4191 −1.4784 −1.5011
−1.4235 −1.4834 −1.4991 −1.5103

εαβγVαβγ 6.7044 7.7642 8.0505 8.1545
7.7579 8.0844 8.1464 8.2000

v × 109 7.0462 8.1600 8.4610 8.5703
8.1534 8.4966 8.5617 8.6183

aIn au. See footnote to Table 3 for the conventions used. The origin of the coordinate system coincides with the centre of mass.
Nuclear coordinates: N (0.0, 0.0, 0.11898517),
H1 (1.7624493, 0.0, −0.55107391 ), in bohr. ω = 0.0345439 au.
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Figure 1. Water molecule. Convergence Zxzx(−ω; ω, 0) → 0
for basis sets of increasing quality.

3. Calculations

The calculations were carried out for the equilibrium geom-
etry of water, ROH = 0.9584 Å and ĤOH = 104.45◦. The
molecular geometries of hydrogen peroxide and ammonia
have been optimised using the GAUSSIAN code [63] at the
Hartree–Fock level of accuracy. The geometrical parame-
ters are, respectively, ROH = 0.9700 Å, ROO = 1.4632 Å and
ÔOH = 99.76◦, for hydrogen peroxide, and RNH = 0.9978
Å and ĤNH = 108.09◦ for ammonia.

Woon–Dunning aug-cc-pCVXZ basis sets, X=D, T, Q,
5 of increasing size and flexibility [64], have been used
to calculate the 〈〈μ̂α; μ̂β, P̂μ〉〉ω,0 and 〈〈μ̂α; μ̂β, m̂γ 〉〉ω,0

propagators. The results are reported in Tables 3–8.
Smooth convergence to a null value of the sum rule

for origin independence, Equation (2), is observed for
some components of the Zαβγ (−ω; ω, 0) tensor, on in-
creasing size and quality of the basis sets, in Tables 3–8 and
Figures 1–4. The Verdet tensor was also calculated via LAO
basis sets constructed by the same gaugeless basis sets from

Figure 2. Hydrogen peroxide molecule. Convergence
Zxzx(−ω; ω, 0) → 0 for basis sets of increasing quality.

Figure 3. Hydrogen peroxide molecule. Convergence
Zyzy(−ω; ω, 0) → 0 for basis sets of increasing quality.

Refs [50,64]. Tests of convergence for values from gauge-
less basis sets were made for two different origins. As can
be observed in Figure 5 for the water molecule, the results
for the Vzxy(−ω; ω, 0) component, computed by taking the
gauge-origin on the centre of mass and a hydrogen nucleus,
approach the same limit, estimated via the coinciding val-
ues from the gaugeless aug-cc-pCV5Z and LAO basis cal-
culations. The predictions obtained for hydrogen peroxide,
Figure 6, and ammonia, Figure 7, are virtually the same
for two different origins. From the results displayed in the
tables, and from the figures, we can observe that LAO re-
sults from smaller basis sets are, as a rule, much closer to
the limit than those from the corresponding gaugeless basis
sets. At any rate, fully converged results can be arrived at
only by adopting large basis sets, at least of aug-cc-pVQZ
quality. If basis sets of this size are used, including gauge
phase-factors seems unnecessary.

Figure 4. Ammonia molecule. Convergence Zxzx(−ω; ω, 0) →
0 for basis sets of increasing quality.
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8 M. C. Caputo et al.

Figure 5. Water molecule. Convergence of the Vzxy (−ω; ω, 0)
component for two different origins, RCM and RH1 , and corre-
sponding LAO results.

Figure 6. Hydrogen peroxide molecule. Convergence of the
Vzxy (−ω; ω, 0) component for two different origins, RCM and
RO1 , and corresponding LAO results.

Figure 7. Ammonia molecule. Convergence of the
Vzxy (−ω; ω, 0) component for two different origins, RCM

and RH1 , and corresponding LAO results.

4. Concluding remarks

The constraint for independence of calculated Verdet tensor
and Verdet constant in a translation of coordinate system is
given by a sum rule exactly fulfilled by optimal variational
electronic wavefunctions satisfying a momentum theorem,
i.e. the Ehrenfest off-diagonal hypervirial relationship for
the electric dipole operator. This condition is ideally met,
for instance, in the limit of a complete basis set for the
self-consistent field approximation to the Hartree–Fock ap-
proach. Within the algebraic approximation, the nearness
to zero of the sum rule yields a measure of origin inde-
pendence of computed Verdet tensor and basis set quality.
Calculations for some reference compounds, water, hydro-
gen peroxide and ammonia, using basis sets of increasing
size and flexibility, show a smooth convergence to null
values. However, it is found that often the sum rule will
be fulfilled simply for reasons of spatial symmetry, and/or
permutational symmetry of tensor components: the Verdet
tensor calculated by gaugeless sets of atomic functions is
origin independent for the symmetry groups Ci, Cnh, n ≥ 2,
Dnh, n ≥ 2, D∞h, S6, S8, D3d, D4d, D5d, D6d, Th, Td, Oh, Ih,
R3. There is no need to use gauge-including atomic orbitals
for systems having these symmetries.
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funds, from CONICET(PIP0369) and UBACYT(W197) is grate-
fully acknowledged.

References
[1] R. Serber, Phys. Rev. 41, 489 (1932).
[2] M. Groenewege, Mol. Phys. 5, 541 (1962).
[3] A.D. Buckingham and P. Stephens, Ann. Rev. Phys. Chem.

17, 399 (1966).
[4] P.J. Stephens, J. Chem. Phys. 52, 3489 (1970).
[5] D.J. Caldwell and H. Eyring, The Theory of Optical Activity

(Wiley-Interscience, New York, 1971).
[6] D.J. Caldwell and H. Eyring, Adv. Quantum Chem. 6, 143

(1972).
[7] P.J. Stephens, Ann. Rev. Phys. Chem. 25, 201 (1974).
[8] M. Verdet, Ann. Chim. Phys. [iii] 41, 370 (1854).
[9] M. Verdet, Ann. Chim. Phys. [iii] 43, 37 (1855).

[10] M. Verdet, Ann. Chim. Phys. [iii] 52, 129 (1858).
[11] M. Verdet, Ann. Chim. Phys. [iii] 69, 415 (1863).
[12] ‘. . . Il convient donc de lui donner un nom, et celui de pouvoir
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