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Abstract

Despite recent advances in Large Language Models in
text processing, Sign Language Recognition (SLR) re-
mains an unresolved task. This is, in part, due to limita-
tions in the available data. In this paper, we investigate
combining 1D convolutions with transformer layers
to capture local features and global interactions in a
low-parameter SLR model. We experimented using
multiple data augmentation and regularization tech-
niques to categorize signs of the French Belgian Sign
Language. We achieved a top-1 accuracy of 42.7%
and a top-10 accuracy of 81.9% in 600 different signs.
This model is competitive with the current state of
the art while using a significantly lower number of
parameters.

Keywords: Deep Learning, Sequence Classification,
Sign Language Recognition, Unbalanced Data

Resumen

A pesar de los avances recientes en grandes modelos
de lenguaje para el procesamiento de texto, el Re-
conocimiento de Lenguas de Señas (SLR por sus si-
glas en inglés) aún es una tarea sin resolver. Esto
es, en parte, debido a las limitaciones en los datos
disponibles. En este artı́culo, investigamos cómo
combinar convoluciones 1d con capas transformer
para capturar las caracterı́sticas locales y las inter-
acciones globales utilizando un modelo de SLR de
pocos parámetros. Experimentamos usando múltiples
técnicas de aumento de datos y regularización para
categorizar señas de la lengua de señas belga-francesa.
Como resultado, obtuvimos una exactitud top-1 de
42.7% y top-10 de 81.9% en 600 señas diferentes. Este
modelo es competitivo con el estado del arte actual,
utilizando una cantidad significativamente menor de
parámetros.

Palabras claves: Aprendizaje Profundo, Clasificación
De Sequencias, Reconocimiento De Lenguas De
Señas, Datos Desbalanceados.

1 Introduction

Sign language is a visual language expressed through
hand movements, facial expressions, and body cues.
Deaf individuals primarily use it, but it is also utilized
by non-deaf people in certain contexts, such as medical
sign language. More than 300 different sign languages
exist worldwide [1]. These languages are usually not
mutually intelligible. For instance, a person fluent in
Argentinian Sign Language cannot communicate with
someone fluent in French Belgian Sign Language. Fur-
thermore, Sign Language is not commonly used by
individuals who are not part of the Deaf community
or do not regularly interact with it. This underscores
the importance of systems for SLR in facilitating com-
munication and interaction with technology for Sign
Language users.

There have been multiple approaches to SLR sys-
tems with promising results [2, 3, 4, 5, 6]. These works
mainly utilize deep learning through computer vision
or multi-modal processing with images, videos and
poses of the signers. However, the limited availability
and diversity of sign language data can constrain the
accuracy of these deep learning models, which require
a large quantity of high-quality samples. Compared
to voice recognition data, sign language data sources
are fewer, making data collection a challenging, time-
consuming, and expensive task. In addition, a unique
dataset must be created for each sign language due
to their lack of mutual intelligibility, which limits the
possibility of combining multiple data sources. While
speech processing models achieve human-like recog-
nition [7, 8] and generation [9, 10] using hundreds of
thousands of hours of voice recordings, sign language
datasets rarely surpass a hundred hours [11].
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In this paper, we explore various regularization and
data augmentation techniques to enhance the accu-
racy of deep learning SLR models1. We utilized pose
data from the French Belgian Sign Language Isolated
(LSFB-ISOL) dataset to train a compact 1D convolu-
tional neural network equipped with transformer lay-
ers, we call this model ConvAtt. Figure 1 shows a
graphical representation of our pipeline.

A description of the LSFB-ISOL dataset and the
preprocessing used is contained in Section 3. A de-
tailed definition of the model architecture is provided
in Section 4.1, while the hyperparameters used during
training are outlined in Section 4.2. We implemented
spatial and temporal data augmentations in conjunc-
tion with multiple regularization techniques. Sections
4.3 and 4.4 describe these data augmentation and regu-
larization techniques respectively. Section 5 elaborates
on the conclusions derived from the results obtained.

1.1 Contribution

Our research demonstrates that by using regularization
and data augmentation it is possible to develop a com-
pact Sign Language Recognition (SLR) model with
results similar to state-of-the-art. Specifically, our key
contributions are:

• Development of ConvAtt, a compact Sign Lan-
guage Recognition (SLR) model that combines
1D convolutions and self-attention mechanisms.
This model achieves competitive results (42.7%
top-1 accuracy and 81.9% top-10 accuracy on
the LSFB dataset) while using significantly fewer
parameters than other leading models.

• Implementation and evaluation of various regular-
ization techniques, including Dropout, DropPath
and OneCycle, to mitigate overfitting.

• Exploration of data augmentation techniques for
SLR, including affine transformations (flipping,
scaling, rotation) and masking methods (ran-
dom frame masking, random cutout). The paper
demonstrates that poorly tuned data augmentation
can actually harm model performance.

• Proposal of the ConvAtt model and associated
pipeline as a baseline for future SLR research,
with the code made publicly available.

2 Related Works

SLR involves the classification of individual sign lan-
guage gestures into written words or glosses. SLR
models are trained using various types of data, includ-
ing videos, images [12], depth maps [13], and poses of
the signer’s hands, body, and face [4, 14], typically in

1Code available at https://github.com/okason97/

HandCraft

a multi-modal approach [15]. SLR can be classified as
continuous, where sign language sentences are trans-
lated directly into text, or isolated, where a single sign
is classified [4].

Currently, state-of-the-art SLR and gesture recogni-
tion commonly employ models based on convolutional
neural networks [2, 3] and transformer architectures
[4, 5], although combinations of the two architectures
have been effectively implemented [6, 16]. These mod-
els are widely used in vision and natural language
processing [17, 18, 19]. However, due to the data limi-
tations of sign language datasets, innovative data rep-
resentation methods and training pipelines have been
developed to enhance these models. Pose information
extracted by pose recognition models like Mediapipe
[20] and Openpose [21] has shown great success in
improving performance [6]. This can be attributed
to a better representation of the input data, retaining
sufficient discriminative information to classify the
signs while removing task-irrelevant information [22].
Graph representation of sign sequences has also been
proposed, obtaining state-of-the-art results [2]. In ad-
dition to these methods, data augmentation has proven
to be an essential tool to increase the robustness of the
model and reduce overfitting [23]. Furthermore, data
augmentation can diminish the representation distance
between video and text data, easing data scarcity [24].

3 Dataset

The French Belgian Sign Language Isolated (LSFB-
ISOL) dataset [25] is built upon the LSFB Corpus.
It spans 25 hours of videos and poses of continuous
isolated signs performed by 85 different signers. An
example of a frame extracted from the dataset can be
seen in Figure 2.

In this paper, we focus solely on the poses, as they
reduce domain complexity and enable faster process-
ing times for models. Pose data was extracted using
the MediaPipe tool and subsequently normalized. This
resulted in 478 3D landmarks for the face, 33 for the
body, and 21 2D landmarks for the hands. We selected
a subset of 45 face landmarks of the eyes and mouth
to reduce data redundancy. This totals 99 landmarks
for our input.

After filtering out signs with less than 20 samples
or more than 60 frames, the dataset contained 52,350
sign poses across 610 classes. We isolated 10% of
the samples for testing. Since the dataset is highly
unbalanced, all classes were oversampled to contain
the same number of samples as the most numerous
class.

For processing, keypoints were formatted in a sin-
gle dimension as {xi,yi,zi|i = 0,1,2, ...,n} where n
represents the number of keypoints in each sample.
Additionally, each sample incorporates a temporal di-
mension, maintaining an equivalent count of keypoints.
To facilitate uniform input size, we randomly sam-
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Figure 1: Pipeline of the SLR process utilized. We first preprocess the data by removing samples and keypoints that
don’t meet our criteria, adjusting the data to a fixed frame length through cropping or padding, and normalizing
it. Next, we apply a series of data augmentation techniques to each sample. The data is then flattened to a single
dimension. Finally, this one-dimensional data is fed into the ConvAtt model, which makes the final prediction.

ple 30 contiguous frames from each clip. For clips
comprising fewer than 30 frames, we employ circular
padding to extend the sequence. This padding tech-
nique involves using the initial values of the dimension
to pad the terminal portion and vice versa, ensuring
continuity and completeness of the data.

Figure 2: Frame from the LSFB dataset with its ex-
tracted pose.

4 Model

This section outlines the ConvAtt model and its train-
ing process. We detail the model architecture and
compare the outcomes obtained with various hyperpa-
rameter configurations. Additionally, we assess each
regularization method and the enhancements each con-
tributes.

4.1 Model architecture

Our model, summarized in Figure 3, combines convo-
lutions and self-attention mechanisms to extract local
and global input information. We employ 1D depth-
wise convolutional layers to leverage the local informa-
tion of adjacent keypoints through its sliding window
operation. Conversely, a self-attention module [18] al-
lows our model to discern position-wise local features
and engage in content-based global interactions.

The initial processing of our model’s input is
through a linear encoding layer. This is followed by
a sequence of ConvAtt blocks, each comprising three
convolutional modules and a self-attention module.
Within each convolutional module, a depthwise con-
volutional layer is applied, along with an Efficient
Channel Attention (ECA) [26] module and Batch Nor-
malization [27]. The ECA module introduces channel
attention into the model efficiently. The inputs and
outputs of each convolutional module are managed
by fully-connected layers with Gaussian Error Linear
Unit (GELU) activation functions [28] and incorporate
residual connections.

Given the necessity for compact and rapid models
in real-life SLR tasks, our model is designed with
538,617 parameters. This model uses fewer param-
eters than other leading models, which often count
in the millions, yet it achieves comparable results
[5, 6, 4].

4.2 Setup configuration

For the optimization of our model, we employ RAdam
with 1×10−3 weight decay [29] complemented by the
lookahead strategy [30] which facilitates faster conver-
gence and reduced variance by using a second set of
parameters that are periodically updated using k future
steps. To achieve ”super-convergence” [31] we em-
ployed a one-cycle learning rate scheduler. We initiate
training with a high learning rate γ , escalating from
3× 10−3 to 1× 10−2 within a brief span of epochs.
Subsequently, γ is diminished post-peak to a nadir of
4× 10−4 in a singular cycle. The model undergoes
training over 50 epochs with a batch size of 1024. Re-
garding hyperparameters, we opt for an embedding
size of 32, 128 channels for the convolutional layers,
and a depth of 4 blocks. We initialize the weights us-
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Figure 3: Our model is composed of N ConvAtt blocks with 3 convolutional modules and a self-attention module.
These convolutional modules are structured as follows: a linear layer with GELU activation, succeeded by a
depthwise 1D convolution and batch normalization, and an ECA module, culminating in a linear layer that maintains
a residual connection.

ing orthogonal initialization. Throughout the training
phase, we apply categorical cross-entropy as our loss
function.

4.3 Regularization

The inherent low variance within the domain predis-
poses models to overfitting. To mitigate this, we have
implemented a variety of regularization techniques.
Dropout[32] and DropPath [33] are employed within
each convolutional module to inhibit the co-adaptation
of activations, thereby diminishing the likelihood of
the network’s reliance on a limited subset of weights
for its predictions.

4.4 Data augmentation

To enhance our training data, we implemented a series
of data augmentation techniques. Affine transforma-
tions were utilized to efficiently flip, scale, and rotate
the landmarks. Specifically, we applied horizontal
flips with a probability of 50%, simulating left-handed
and right-handed signers and accounting for poten-
tial mirror images in real-world applications. We also
implemented scaling by factors ranging from 0.95 to
1.05, and rotations within ±5 degrees, which helps the
model adapt to variations in signer size, camera an-
gle, and slight posture changes. These transformations
introduce variability and simulate different perspec-
tives and signer sizes, crucial for developing a robust
SLR system that can generalize across diverse signing
styles and recording conditions.

To further prevent overfitting and bolster the
model’s robustness—thereby reducing its dependence
on specific keypoints or frames—we employed ran-
dom frames masking and random cutout [34]. Random
masking involves randomly removing entire frames
from the input sequence, forcing the model to learn
temporal coherence and reducing its reliance on spe-

cific frames. The random cutout technique, applied to
blocks of 9 adjacent keypoints, simulates occlusions
or tracking errors that might occur in real-world sce-
narios, such as when parts of the signer’s body are
temporarily obscured. Each of these transformations
was applied with a probability of 20%, with the goal
that the model learns to recognize signs even with
partial occlusions or missing information.

5 Results

We conducted multiple experiments to analyze the
performance of our model and the effect of our data
augmentation pipeline. Table 1 displays the results of
these experiments. All experiments were conducted
using the same model backbone and hyperparameters.
Also, the experiments share the same data preprocess-
ing, using the same held-out test set for evaluation. We
utilized Top-1 and Top-10 accuracy metrics to evalu-
ate our model’s effectiveness and compare it with the
current state-of-the-art. To calculate the efficiency of
each model we divided its accuracy by the number of
parameters.

In 300 epochs, our baseline model achieved a top-
1 accuracy of 35.2% and top-10 accuracy of 77.0%.
With the addition of the one-cycle learning rate sched-
uler, our results improved to 42.7% top-1 and 81.9%
top-10 accuracy. This also lets us reduce the train-
ing time significantly, requiring 50 epochs to reach
convergence. These results are comparable to the cur-
rent state-of-the-art while using a lower amount of
model parameters and training epochs. This could
be attributed to the regularizing property of higher
learning rates used by the scheduler. Our best model
showed higher efficiency than the state of the art, with
a Top-1 efficiency of 79.3 and a Top-10 efficiency of
152.2.

We also conducted experiments with multiple data
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Table 1: Comparison of SLR results on the LSFB-ISOL dataset. The table details each model’s parameter count,
their Top-1 and Top-10 scores, and the efficiency of each models calculated as the division between the accuracy
and parameter number. It contrasts the ConvAtt model with the one-cycle learning rate scheduler (OneCycle) and
data augmentation (DA) methods.

Model Parameters Top-1 Top-10 Top-1/#Par Top-10/#Par

ConvAtt [Ours] 538k 35.2 77.0 65.4 143.1
ConvAtt + OneCycle [Ours] 538k 42.7 81.9 79.3 152.2
ConvAtt + OneCycle + DA [Ours] 538k 31.6 74.0 58.7 137.5

LSFB classifier [4] 782k 54.4 83.4 69.5 106.6

augmentation techniques reaching a top-1 accuracy of
31.6% and top-10 accuracy of 74.0%. This is lower
than the accuracy obtained by our models trained with-
out data augmentation, which shows that poorly de-
fined data augmentation hyperparameters can be detri-
mental to the model training. This reflects the difficulty
in the tuning of these hyperparameters in this domain.

6 Conclusion

We introduced ConvAtt, a model that merges 1D depth-
wise convolutions with self-attention layers for se-
quence classification. Despite using fewer parameters
and training epochs, ConvAtt achieved comparable
results with the current state-of-the-art SLR on the
LSFB-ISOL dataset. We illustrated that improperly
tuned data augmentation can negatively impact test
accuracy. We propose the ConvAtt model and the as-
sociated pipeline as baselines for future SLR research,
and have made the code publicly available.

7 Future Work

In our future work, we aim to develop a sign language
generation model capable of creating new sequences
of input poses. The goal is to train this model with both
generated and real data to enhance its generalization
capabilities and address the dataset’s data imbalance.
We plan to incorporate new regularization techniques
and refine the data augmentation methods presented in
this study to further boost the model’s accuracy.
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