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Within the fewest switches surface hopping (FSSH) formulation, a swarm of independent trajectories
is propagated and the equations of motion for the quantum coefficients are evolved coherently along
each independent nuclear trajectory. That is, the phase factors, or quantum amplitudes, are retained.
At a region of strong coupling, a trajectory can branch into multiple wavepackets. Directly following
a hop, the two wavepackets remain in a region of nonadiabatic coupling and continue exchanging
population. After these wavepackets have sufficiently separated in phase space, they should begin
to evolve independently from one another, the process known as decoherence. Decoherence is not
accounted for in the standard surface hopping algorithm and leads to internal inconsistency. FSSH is
designed to ensure that at any time, the fraction of classical trajectories evolving on each quantum
state is equal to the average quantum probability for that state. However, in many systems this in-
ternal consistency requirement is violated. Treating decoherence is an inherent problem that can be
addressed by implementing some form of decoherence correction to the standard FSSH algorithm.
In this study, we have implemented two forms of the instantaneous decoherence procedure where
coefficients are reinitialized following hops. We also test the energy-based decoherence correction
(EDC) scheme proposed by Granucci et al. and a related version where the form of the decoherence
time is taken from Truhlar’s Coherent Switching with Decay of Mixing method. The sensitivity of
the EDC results to changes in parameters is also evaluated. The application of these computation-
ally inexpensive ad hoc methods is demonstrated in the simulation of nonradiative relaxation in two
conjugated oligomer systems, specifically poly-phenylene vinylene and poly-phenylene ethynylene.
We find that methods that have been used successfully for treating small systems do not necessarily
translate to large polyatomic systems and their success depends on the particular system under study.
© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4809568]

I. INTRODUCTION

Molecular dynamics with quantum transitions (MDQT)
is a well tested, computationally efficient, conceptually sim-
ple, and accurate method for the simulation of nonadiabatic
processes in which the nuclear and electronic systems are
treated separately. Coupling the systems proves to be a non-
trivial task. In the fewest switches surface hopping (FSSH)
scheme, described by Tully,1, 2 the nuclei are treated classi-
cally while the electrons are treated within the quantum me-
chanical framework, and transitions between multiple cou-
pled excited states are allowed depending on the strength of
the nonadiabatic coupling. At any given time, the nuclei are
evolved according to forces governed by the potential energy
surface (PES) of a single adiabatic electronic excited state,
the “current state.” Meanwhile, the electron density evolves
according to the value of the nonadiabatic couplings and nu-
clear velocities, where the velocities depend on the accelera-
tions dictated by the current state.3 In recent years, we have
developed a nonadiabatic excited-state molecular dynamics
(NA-ESMD) framework3 capable of extending the FSSH for-
malism to large polyatomic molecules with many coupled

electronic states. Recently, we have investigated the depen-
dence of simulation results on convergence and parameters4

and the success of NA-ESMD in modeling photoinduced dy-
namics including nonradiative relaxation and energy trans-
fer has been demonstrated for a variety of large polyatomic
systems.5–10 In this paper, we continue to develop our NA-
ESMD methodology by analyzing the affect of various ad hoc
decoherence corrections.

MDQT is based on the independent trajectory approxi-
mation, that is, there is no interchange of information among
trajectories. Within the FSSH formulation, the equations of
motion for the quantum coefficients are propagated coher-
ently along each nuclear trajectory. That is, the phase factors,
or quantum amplitudes, are retained. At a region of strong
coupling, a wavepacket can branch into multiple subpackets
on each surface. Directly following a hop, the two subpackets
remain in a region of nonadiabatic coupling and, following the
FSSH prescription, they continue to undergo coherent time
evolution. However, these subpackets should begin to evolve
independently from one another after they have sufficiently
separated in phase space, the process known as electronic de-
coherence.
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Electronic decoherence is not accounted for in the stan-
dard Tully algorithm:1, 2 The interference between the quan-
tum amplitudes of branching subpackets is neglected, causing
the states to be more coherent than they should be. In prin-
ciple, decoherence can be included by running a swarm of
trajectories with the same initial conditions but with a differ-
ent random number sequence used to determine hops between
adiabatic states. Hops will occur at different times and the tra-
jectories will differentiate from one another. When averaged
together, the interference between the trajectoires provides the
quantum decoherence. However, this must be done for an en-
semble of different initial states requiring a double summation
which dramatically increases the computational cost. Further-
more, if one of the divergent wavepackets passes through a
region of strong coupling multiple times, the wavepacket may
undergo yet another branching event, compounding the origi-
nal decoherence problem.

Properly accounting for decoherence is an important ef-
fect which, in many cases, will influence the accuracy of the
simulated results. It is important to note that decoherence can
only be properly incorporated through a full density matrix
formulation.11 The FSSH formulation is designed to ensure
that at any time, the fraction of classical trajectories evolving
on each quantum state is equal to the average quantum prob-
ability for that state. However, in many systems this so-called
“internal consistency” requirement is violated.12, 13 In general,
the disagreement can be caused by classically forbidden tran-
sitions or by the divergence of independent trajectories fol-
lowing passage through a region of strong coupling. Classi-
cally forbidden transitions are the result of insufficient energy
in the nuclear coordinates (in the direction of the nonadiabatic
coupling) to conserve the total energy. Some improvements
to the basic MDQT procedure have been proposed to elimi-
nate classically forbidden transitions.13, 14 Diverging trajecto-
ries pose an inherent problem that can be addressed by imple-
menting some form of decoherence correction to the standard
Tully algorithm.13, 15–17

A variety of methods to account for divergent trajectories
by eliminating the coherence of the quantum amplitudes have
been proposed.12, 13, 16, 18–25 One of the simplest methods of
promoting internal consistency is resetting the quantum am-
plitude of the current state to unity after a classical trajectory
passes through a nonadiabatic coupling region, thus remov-
ing the coherence of the quantum coefficients. This method is
physically justified: at an avoided crossing a wavepacket will
generally branch into two subpackets carrying the electronic
populations. The subpackets, traveling on different surfaces,
will separate in phase space and, since they are unlikely to in-
teract again, the time average of their phase differences should
be zero.

Different criteria for identifying coupling regions have
previously been applied. For example, the quantum ampli-
tudes can be reset when the magnitude of the nonadiabatic
coupling vector between two adiabatic states becomes smaller
than some specified tolerance after a maximum in the value of
the nonadiabatic coupling has been reached.13 Alternatively,
a decoherence time can be explicitly included and can be esti-
mated from the pure-dephasing time given by optical response
or Redfield theory.11 For times shorter than the decoherence

time, the interference between the wavefunctions is main-
tained by coherent evolution. After the decoherence time, the
trajectories diverge and the interference is eliminated by re-
setting the quantum amplitudes. However, implementation of
this approach is often impractical for large systems involv-
ing many coupled electronic states since the decoherence time
varies between each pair of states and is time dependent.11, 26

Despite this, the method has been applied quite successfully
in simulations involving only two states.27, 28 Alternatively, in
the presence of a strong external field, the electronic popula-
tions are re-initialized at the peaks of the field since most hops
occur near the nodes of the laser cycle.25 Here, we use hops to
identify regions of coupling. Indeed, the classical trajectory is
most likely to hop in a region of strong coupling. Therefore,
coefficients are reset following hopping events and the coeffi-
cient of the current state following a hop is assigned a value
of unity. We refer to this scheme as instantaneous decoher-
ence (ID) since it is based on the assumption that following
a hop, divergent wavepackets will instantaneously separate
in phase space and should immediately undergo independent
evolution.

Another method that has demonstrated its success in
treating decoherence29–31 while introducing little additional
computational effort is the energy-based decoherence correc-
tion (EDC) developed by Granucci et al.17, 18 in which the co-
efficients are rescaled at each classical time step. The size of
the scaling factor differs for each adiabatic state and is gov-
erned by the energy gap separating the state in question from
the current running state. The correction is designed to equate
the average quantum probability to the classical distribution
of trajectories in each electronic state thereby eliminating co-
herence effects and restoring internal consistency. The EDC
method is based on the decoherence time, τβα , proposed by
the Truhlar group24, 32 and used in the Coherent Switching
with Decay of Mixing method (CSDM). The CSDM decoher-
ence time and the parameters involved in the expression have
been applied to EDC with only a minor alteration to its func-
tional form. Therefore, it is important to evaluate the role of
parameters entering τβα when applied to EDC schemes. It has
previously been reported that “results are not very sensitive to
the particular form of τβα or to the values of the parameters,
provided only that τβα is large enough.”24 Further, the insen-
sitivity of the CSDM results to changes in parameters was
demonstrated for a three-dimensional atom-molecule system
with two electronic states.24 For large polyatomic systems, it
is less clear whether the simulation results are independent of
changes to the involved parameters.

In this study, we have implemented various practical
heuristic decoherence schemes in order to determine the ef-
fects of decoherence on the simulated photoinduced dynam-
ics in oligomer systems of poly-phenylene vinylene (PPV)
and poly-phenylene ethynylene (PPE). Here we focus on the
ID approach and the Granucci EDC algorithm (G-EDC). G-
EDC is compared to a modified version of the algorithm in
which the decoherence time has been replaced by the func-
tional form originally proposed by Truhlar (T-EDC). We also
demonstrate an alternative ID procedure in which coefficients
are reinitialized not only after successful hops, but at all at-
tempted hops as well, regardless of whether the hop is allowed
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or forbidden. We have compared these methods to the stan-
dard Tully surface hopping routine. We have also evaluated
the sensitivity of the G-EDC result to changes in the parame-
ters involved in calculating the decoherence time.

In Sec. II, we will briefly describe our nonadiabatic
excited-state molecular dynamics (NA-ESMD) approach and
simulation details, and a description of the decoherence algo-
rithms is also provided. Internal consistency is discussed and
the physical quantities that serve as indicators are defined. Fi-
nally, we present the results for the simulated photoinduced
dynamics of both PPV and PPE systems paying close atten-
tion to the choice of parameters used for G-EDC. The evo-
lution of the state populations, quantum wavepackets, and
quantum coefficients are analyzed to determine the effect of
decoherence on the simulated dynamics.

II. THEORETICAL METHODOLOGY

The NA-ESMD model combines the FSSH algorithm, as
it is used in the MDQT method,1, 33 with “on the fly” cal-
culation of the electronic energies, gradients, and nonadia-
batic coupling vectors for the excited states using a Collec-
tive Electronic Oscillator (CEO) package.34–37 The CEO code
is based on well-tested semiempirical models combined with
the Time-Dependent Hartree-Fock (TDHF) or the Configura-
tion Interaction singles (CIS) formalism to describe correlated
excited states. A detailed description of the CEO code and
NA-ESMD implementation can be found in Refs. 3, 34, 38,
and 39.

A. Standard Tully surface hopping

According to the standard Tully FSSH procedure,1 for
each trajectory, the forces acting on the classical subsystem
are determined by a single adiabatic state, the current state α.
Meanwhile, the total electronic wavefunction is a mixed state,
expanded in terms of the adiabatic basis functions, φi(r; R(t)),

�(x,R, t) =
∑

i

ci(t)φi(r; R(t)), (1)

where ci(t) are the time-dependent expansion coefficients, and
r represents the electronic degrees of freedom. The equation
of motion for the coefficients can be obtained by substituting
Eq. (1) into the time-dependent Schrödinger equation result-
ing in the following expression:

i¯
∂ci(t)

∂t
= ci(t)Ei − i¯

∑
j

cj (t)Ṙ · dij , (2)

where the nonadiabatic coupling vector is defined as dij

= 〈φi(R)|∇Rφj(R)〉 and the corresponding scalar value
is given by Ṙ · dij = 〈φi | ∂φj

∂t
〉. The diagonal elements of

the time-dependent density matrix with elements aij (t)
= c∗

i (t)cj (t) give the occupation probabilities of the adiabatic
states. The probability that the nuclear trajectory will hop
from the current electronic state α to some other state β dur-
ing the time interval �t is given by

gαβ = �t
bβα(t)

aαα(t)
, (3)

Ei 
t t

thopthop

Ei 

tstep tstep

rescale rescale
Ei 

(a) 

(b) 

(c) 

FIG. 1. Cartoon depicting the evolution of the quantum amplitudes ci during
nonradiative relaxation. The wavefunction is initialized as a pure state. The
red state symbolizes the “current state.” (a) During the standard Tully pro-
cedure, the wavepacket continues to broaden but remains at relatively high
energy even as the system transitions to lower energy states. (b) Following
instantaneous decoherence the wavepacket is allowed to broaden, but the co-
efficients are reinitialized after each hop so that the new current state has a
probability of unity. In this way, the wavepacket center follows the relaxation
to lower energy. (c) In energy-based decoherence, the wavepacket broadens
slightly after each timestep and the coefficients are rescaled to narrow the
wavepacket before the next timestep. The damping factor is related to the en-
ergy separation from the current state. Population removed from other states
is deposited into the current state so that the center of the wavepacket follows
the relaxation to lower energy.

where bβα(t) = −2Re(a∗
αβṘ · dαβ) is related to the probabil-

ity flux.
Figure 1(a) demonstrates the internal inconsistency

which results from the decoherence problem in the standard
Tully FSSH formulation. The electronic wavefunction is ini-
tialized as a pure state. The coefficients are allowed to evolve
according to Eq. (2) and after some time �t the wavepacket
has broadened as some of the quantum amplitude is trans-
ferred to lower energy states and the classical system un-
dergoes hopping. As the classical system continues to relax
to lower energy, the quantum wavepacket gets “left behind.”
That is, the wavepacket remains centered at higher energy
with respect to the current state with only a small quantum
probability for the lowest energy state despite that it is the
classically occupied state.

In Secs. II B and II C, we will introduce practical heuris-
tic methods developed to include decoherence in a phe-
nomenological way.

B. Instantaneous decoherence

The evolution of the wavepacket using ID is illustrated
schematically in Fig. 1(b). Following the ID procedure, the
electronic wavefunction is again initialized as a pure state,
and coefficients are allowed to evolve according to Eq. (2).
The wavepacket broadens and some of the population is trans-
ferred to lower energy states allowing the classical system to
hop. However, after each successful hop, the quantum coef-
ficients are reinitialized and a coefficient of one is assigned
to the new current state, while the populations for all other
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states are erased. This routine is based on the assumption that
divergent wavepackets will instantly separate in phase space
and should immediately undergo independent evolution. Af-
ter resetting the coefficients, the standard coefficient evolu-
tion once again takes over and the wavepacket again broadens
until another hopping event occurs at which point the pro-
cess of resetting the coefficients will be repeated. Thus, the
wavepacket undergoes a series of broadening and collapsing
events mediated by the hopping frequency. In this way, after
each hop, the center of the wavepacket is realigned with the
current state and internal consistency is improved.

We call the above procedure ID-S, since the coefficients
are reinitialized only after successful hops. One can imagine
that all attempted hops should also be treated as decoherence
events, regardless of whether the hop is allowed or forbidden
due to energy constraints. We call the method of resetting the
coefficients after every attempted hop ID-A. If the hop is ac-
cepted, the wavepacket is collapsed to the new state using the
same procedure for ID-S. In addition, if the hop is forbidden,
the wavepacket is collapsed back to the current running state.
For example, suppose a hop from S1 → S2 is predicted. If the
hop is successful, the coefficient of S2 will be set to one and
the system will begin evolving on S2. If the hop is forbidden,
the coefficient of S1 will be set to one and the system will
continue evolving on S1.

C. Energy-based decoherence correction

The energy-based decoherence correction relies on
rescaling the quantum coefficients after each classical
timestep, as illustrated schematically in Fig. 1(c). The elec-
tronic wavefunction is again initialized as a pure state, and
coefficient evolution is governed by Eq. (2). However, the
wavepacket is not permitted to undergo the natural broaden-
ing. After each nuclear timestep, the coefficients are rescaled
(damped) and the wavepacket is narrowed before continuing
the evolution using the rescaled values.

In the G-EDC17, 18 formulation, rescaling is performed
according to the following procedure for all states β �= α

where α denotes the current state

c′
β(t) = cβ(t)e−�t/τβα(t). (4)

Here cβ(t) is the original expansion coefficient and c′
β(t) is

the damped coefficient that is used to continue the evolution
for the subsequent timestep. The decoherence time, τβα(t), is
given by

τβα(t) = ¯

|Eβ(t) − Eα(t)|
(

C + E0

Ekin(t)

)
, (5)

whose value is inversely proportional to the energy separation
between the current state α and some other state β given by
|Eβ(t) − Eα(t)|. C is a unitless parameter greater than or equal
to one, E0 is a positive parameter with units of energy, and
Ekin(t) is the total kinetic energy. In order to preserve detailed
balance and ensure that the center of the wavepacket follows
the current state, the population removed from all β �= α states

is deposited into the current state α,

c′
α(t) = cα(t)

[
1 − ∑

β �=α |c′
βt |2

|cα(t)|2
]1/2

. (6)

The decoherence time τβα(t) used above is a simplifica-
tion of the decoherence time introduced by Truhlar and co-
workers in the CSDM method.24, 32 The full expression for
the decoherence time is given by

τβα(t) = ¯

|Eβ(t) − Eα(t)|
(

C + E0

(P · ŝ)2/2μ

)
, (7)

where P is the momentum and ŝ is electron-nuclear coupling
vector. The term in the denominator of E0 can be interpreted
as the projection of the kinetic energy in the direction of the
nonadiabatic coupling vector. In G-EDC, this term is assumed
to be equivalent to the total kinetic energy for simplicity. The
expression used in G-EDC (Eq. (5)) is less computationally
demanding since it does not require the nonadiabatic coupling
vector to be evaluated at each nuclear timestep; In the standard
FSSH method, this term is usually evaluated only after a hop
when it is used for velocity rescaling.40 For T-EDC, we have
simply replaced the decoherence time from Eq. (5) used in
G-EDC with the original decoherence time given by Eq. (7).
The values of the parameters C and E0 are of considerable
interest here. C is a unitless parameter taken to be one, and E0

is assigned a value of 0.1 hartree in agreement with previous
studies.17, 18, 24, 32

D. Internal consistency

Internal inconsistency in FSSH simulations is manifested
as a discrepancy between the classical and quantum subsys-
tems. To check for internal consistency in our systems we
analyze the state populations. The population can be defined
within the nuclear (classical) or electronic (quantum) picture.
It is well known that in FSSH simulations, the state popula-
tions can be expressed as the fraction of trajectories evolving
on the state of interest at any given time or as the quantum
probability for the state averaged over the ensemble of trajec-
tories. The former is a classical representation, while the latter
provides a quantum description.

The classical population for some state i can be written
as

P C
i (t) = Ni(t)/Ntraj , (8)

where Ni(t) is the number of trajectories evolving on the ith
state at any given time and Ntraj is the total number of tra-
jectories in the ensemble. The familiar quantum populations
are given by the quantum probability for the state of interest
averaged over the ensemble of trajectories

P
Q
i (t) = 〈|ci(t)|2〉Ntraj

, (9)

where ci(t) is the appropriate expansion coefficient for the ith
electronic state.
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FIG. 2. The model molecular systems studied with the NA-ESMD ap-
proach: A 3-ring oligomer of PPV (PPV3), and a system composed of meta-
substituted linear PPE segments of 2-, 3-, and 4-rings (2-3-4 PPE).

III. RESULTS AND DISCUSSION

In order to investigate decoherence effects, we have per-
formed NA-ESMD simulations of the photoinduced dynam-
ics of the two model systems depicted in Fig. 2: A 3-ring
oligomer of PPV (PPV3), and a system composed of meta-
substituted linear PPE segments of 2-, 3-, and 4-rings (2-3-4
PPE). We implemented both the ID-S and ID-A procedures
in which the quantum coefficients are reinitialized either af-
ter each successful hop (ID-S) or after each attempted hop
(ID-A). Simulations were also performed using the G-EDC
algorithm as well as the modified T-EDC algorithm using the
full decoherence time. These decoherence schemes have been
compared to the standard Tully FSSH algorithm with no de-
coherence correction.

A. Molecular dynamics simulations

NA-ESMD simulations were performed on PPV3 and 2-
3-4 PPE to model the nonradiative relaxation following pho-
toexcitation to a high energy excited state at room tempera-
ture. For all simulations presented here, the AM1/CIS level of
theory has been used.

We start our simulations by running Born-Oppenheimer
(BO) molecular dynamics in the ground electronic state at
room temperature for 600 ps using a timestep of �t = 0.5 fs.
The systems are heated and allowed to equilibrate to a final
temperature of 300 K during the first 10 ps. The Langevin
thermostat41 was used to maintain constant temperature with
a friction coefficient γ = 2.0 ps−1. Following the equilibra-
tion period, snapshots were collected to provide the initial
positions and momenta for the subsequent excited state sim-
ulations. Each configuration corresponds to an independent
trajectory in NA-ESMD.

For the sampled configurations, excited state energies and
oscillator strengths were calculated. The initial state was cho-
sen according to a Frank-Condon window defined as

gi(r, R) = exp[−T 2(Elaser − 
i)
2], (10)

where Elaser represents the energy of a laser, and 
i repre-
sents the energy of the ith state (expressed in units of fs−1)
from the theoretical absorption spectrum. The laser shape is
assumed to be Gaussian f (t) = exp(−t2/2T 2), T2 = 42.5 fs
corresponding to a FWHM of 100 fs. The initial excitation is
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FIG. 3. (Top) Equilibrium absorption spectrum for PPV3 showing ab-
sorbance from the ground state (S0 → Sn), the lowest excited state (S1 → Sn)
and equilibrium density of states. (Bottom) Density of excited states for the
lowest 15 excited states at T = 300 K computed using all initial ground state
configurations. Sm is the state with the largest oscillator strength from S1,
and the excitation is performed using a simulated laser pulse centered at
λ = 245 nm with FWHM = 100 fs.

selected according to the relative values of gi(r, R) weighted
by the oscillator strengths of each state.

The top panel in Fig. 3 displays the calculated normalized
linear absorption spectrum (S0 → Sn) for PPV3 computed
at the ground state AM1 optimized geometry as well as the
equilibrium density of singlet excited states. The calculated
nonlinear absorption from the lowest energy excited state
(S1 → Sn) is also shown revealing a single strong ab-
sorbance feature which is not accessible from the ground
state due to symmetry. This state is assigned as the Sm

state and it is the state with the highest oscillator strength
from S1. The Sm excitation is one of the essential elec-
tronic states in conjugated polymers, which can be routinely
observed using time-resolved pump-probe or electroabsorp-
tion spectroscopies.42, 43 Snapshots were collected from the
ground-state MD at 500 fs intervals and all of the initial con-
figurations were used to construct the density of excited states
for the lowest 15 excited states shown in the bottom panel of
Fig. 3 where the height of the spectrum corresponds to the
number of configurations with a state at the given energy. Ex-
citation to Sm was performed according to Eq. (10) using a
laser centered at λlaser = 245 nm and the excited state en-
ergies and oscillator strengths from the theoretical S1 → Sn

absorption spectrum. We found that for the Sm state, m varied
from 8 to 12 due to conformational disorder. A swarm of 540
excited-state trajectories was propagated at T = 300 K for
1 ps, where 15 electronic excited states have been included
in the simulations. A classical time step �t = 0.1 fs with Nq

= 3 quantum steps between each classical step was used.

Downloaded 19 Jun 2013 to 147.162.172.10. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



224111-6 Nelson et al. J. Chem. Phys. 138, 224111 (2013)

0.00

0.03

0.06

300 325 350 375 400 425 450

 S
0
 → S

n
 

 DOS

λlaser=346 nm

no
rm

al
iz

ed
 a

bs
or

ba
nc

e

 

de
ns

ity
 o

f e
xc

ite
d 

st
at

es
 

(a
rb

. u
ni

ts
)

wavelength, nm

 S
1

 S
2

 S
3

 S
4

FIG. 4. (Top) Equilibrium absorption spectrum for 2-3-4 PPE showing ab-
sorbance from the ground state (S0 → Sn) and equilibrium density of states.
(Bottom) Density of excited states for the lowest 6 excited states at T = 300 K
computed using all initial ground state configurations. The excitation is per-
formed using a simulated laser pulse centered at λ = 346 nm with FWHM
= 100 fs.

For the 2-3-4 PPE system, the normalized linear absorp-
tion spectrum for the AM1 optimized geometry and equilib-
rium density of states is shown in the top panel of Fig. 4.
Snapshots were collected from the ground-state MD at 1 ps
intervals and used to construct the density of excited states
spectrum for the lowest 6 excited states in the bottom panel
of Fig. 4 where the contribution of each state is shown. Ex-
citation to the highly excited Sn state localized on the 2-ring
segment was performed according to Eq. (10) using a laser
centered at λlaser = 346 nm where the energies and oscillator
strengths for the lowest 10 excited states have been consid-
ered. Because of the strong overlap between the absorbance of
individual states, Sn corresponds to a range of states including
S4, S5, S6, and S7. A swarm of 490 excited-state trajectories
was propagated at T = 300 K for 200 fs where 10 electronic
excited states have been included in the simulations. A classi-
cal time step �t = 0.2 fs with Nq = 4 quantum steps between
each classical step was used.

B. Effective energy gaps

The two systems vary greatly in terms of the energy spac-
ing between excited states, and coupling between states. From
a general inspection of the density of states (DOS) and ex-
cited state spectra shown in Figs. 3 and 4, PPV3 contains
larger gaps in its density of states, while the PPE system has
only two relatively smaller gaps and has more pronounced
overlap in the contributions to its spectrum. This is expected
since our PPE system is composed of linear segments of
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FIG. 5. Histograms of the energy gap between S1 and S2 are shown for PPV3
(top) and 2-3-4 PPE (bottom), while the system is evolving on S1 (�E

S1
12 ) and

S2 (�E
S2
12 ) as well as the energy gap for the final effective hop to S1 (�E

S1
hop)

during Standard Tully dynamics and for G-EDC. Energy gaps are smaller
in 2-3-4 PPE and the final effective hop corresponds to the most probably
energy gap for S2. In PPV3, energy gaps are large, and the final effective
hop can only be made from lower energies, which are infrequent in the S2
spectrum.

varying lengths allowing the total absorption spectrum to be
interpreted as the sum of the contributions from each frag-
ment with strong overlap between the component absorption
spectra.5, 10

During our dynamics, we investigate the energy gap be-
tween S1 and S2. Figure 5 displays histograms of the en-
ergy gap �E12 while nuclei are moving on S2 (�E

S2
12) and

S1 (�E
S1
12), and the energy gap for the final effective hop to

S1 (�E
S1
hop). The average values of the energy gaps are pro-

vided in Table I. First, the gaps for 2-3-4 PPE are smaller

TABLE I. Energy gaps between states S1 and S2 for the AM1 optimized
structures and averaged during dynamics while running on S1, S2, and the
final effective hop to S1.

2-3-4 PPE (eV) PPV3 (eV)

�Eo
12 0.18 0.57

�E
S1
12 0.38 0.82

�E
S2
12 0.15 0.52

�E
S1
hop (Tully) 0.10 0.36

�E
S1
hop (G-EDC) 0.09 0.11
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than for PPV3 as expected based on the density of states
for the optimized geometry (�Eo

12). In both systems, we ob-
serve evidence of “shishiodoshi” type unidirectional transfer
recently demonstrated by our group in phenylene ethynylene
dendrimers5 where the energy gap increases once the system
transfers to the lower energy surface. That is, while the sys-
tem is evolving on S2, the energy gap between S2 and S1 re-
mains small, and the energy flows between them. Once the
electronic population has been substantially transferred to the
lower energy state, the nuclear motion on the new surface de-
couples these states and the surfaces separate from each other
such that �E

S2
12 < �E

S1
12, thereby reducing successful transi-

tions to higher energy.
Based on the relative energy gaps, we can expect relax-

ation to be faster in 2-3-4 PPE than in PPV3. Also, the energy
gap associated with the final effective hop to S1 indicates that
for 2-3-4 PPE, the most probable hopping energy coincides
very well with the most probable gap when the system is
evolving on S2, that is �E

S1
hop ≈ �E

S2
12, so the gap does not

impose any limitations on hopping. However, the situation is
drastically different for PPV3. Here �E

S1
hop < �E

S2
12 meaning

that hops occur at a much lower energy gap coinciding with
values of �E

S2
12 that are relatively improbable. During Stan-

dard Tully dynamics, only a small portion of hops occur at
the most probable �E

S2
12. In G-EDC dynamics, no hops oc-

cur at larger energy gaps. Indeed, it is very unlikely for the
system to overcome the large energy gap between S1 and S2

and it can only do so when the surfaces move close together,

a rare event. Because S2 acts as a bottleneck in the dynamics
of PPV3, we use the combined state populations from S1 and
S2 in our analyses.

C. Relaxation rates and internal consistency

Figure 6 shows the combined population rise of the two
lowest energy states (S1+S2) in the top panels, and the rise
of the lowest energy S1 state in the bottom panels for both
PPV3 and 2-3-4 PPE. Populations for the classical system are
depicted as solid lines, while the corresponding dashed lines
give the quantum probabilities. The classical population rep-
resents the fraction of trajectories evolving on a given state
(Eq. (8)) and the average quantum probability gives the quan-
tum populations for that state (Eq. (9)).

Looking first at the rise of the classical populations, the
rate of relaxation is slower for all decoherence methods com-
pared to the Standard Tully algorithm, as expected. Decoher-
ence corrections remove population from lower energy states,
either by collapsing the quantum wavefunction to a pure state
or by rescaling the quantum coefficients. Population buildup
in lower energy states is a requirement for a nonzero hop-
ping probability according to Eq. (3) where gαβ(t) ∼ cβ(t).
Resetting or reducing the coefficients restricts the population
buildup and the transition probabilities are reduced, hence,
relaxation becomes slower.44 For G-EDC, we use the previ-
ously recommended17, 18, 24, 32 parameters (C = 1; E0 = 0.1
hartree). For both systems, G-EDC results in much slower

0.0

0.2

0.4

0.6

0.8

1.0

0 200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

 

S
1+

S
2 

po
pu

la
tio

n 

 Standard Tully
 ID-S
 ID-A
 G-EDC (C=1; E

0
=0.1)

 

 

S
1 

po
pu

la
tio

n

time, fs

 

FIG. 6. (Top) Combined population rise of the two lowest energy states (S1 + S2) and (bottom) population rise of the lowest energy S1 state. Results are shown
for ID-S, ID-A, and G-EDC using the recommended parameters (C = 1; E0 = 0.1 hartree) compared to the Standard Tully algorithm. Populations for the
classical system are depicted as solid lines while the corresponding dashed lines represent the average quantum probabilities.
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dynamics compared to the other methods, and this difference
is enhanced in PPV3. This can be understood by the fact that
PPV3 has larger gaps in its density of states, that is, there are
large energy gaps separating the current state from the states
below so that coefficients of states below the large gap will
experience a larger damping factor than in a system, such as
2-3-4 PPE, where the energy gaps are small. This can be seen
from the form of τβα in Eq. (5) where the decoherence time
is inversely proportional to the energy separation. For large
energy gaps, the decoherence time is smaller and the expo-
nent in Eq. (4) becomes large leading to a smaller portion
of the original population being maintained in the rescaled
coefficients.

Comparing the population rise of S1+S2 to S1 alone, the
large energy gap between S2 and S1 in PPV3 creates a bot-
tleneck where population builds up in S2 and is not able to
transfer to S1. Using Standard Tully, the coefficient evolution
is not restricted and population is quickly transferred to S1.
Whereas for G-EDC, S1 population comprises only a small
fraction of the combined population as the system is restricted
from overcoming the gap. However, in 2-3-4 PPE, there is no
bottleneck; the majority of the combined population is in S1,
signifying that S2 is a fast intermediate state and population
is quickly transferred to S1. This can also be seen in the en-
ergy gap histograms in Fig. 5 for the final effective hop to S1

(�E
S1
hop). In PPV3, Standard Tully propagation produces a bi-

modal energy gap distribution with a small portion of hops to
S1 occurring at larger energy separations whereas in G-EDC,
all of the hops occur at the lowest energy separation because
the system cannot overcome the large �E

S2
12 energy gap. In

PPE, the hopping energy is not affected by G-EDC because
�E

S2
12 is small.
Next we consider internal inconsistency, which is appar-

ent in the population curves. The growth of the average quan-
tum probability is “lagging behind” their classical partners in-
dicating that part of the quantum amplitude remains in higher
energy states despite that the classical system has transitioned
to lower energy. The most severe example is the Standard
Tully algorithm, where the quantum probability remains very
low indicating that the wavepacket is “trapped” in higher en-
ergy states throughout the dynamics, even after all of the tra-
jectories have reached S1 or S2. All of the decoherence cor-
rections offer some improvement in the internal consistency
between the quantum and classical subsystems. For both sys-
tems, we find that G-EDC (using the recommended parame-
ters) produces excellent agreement between the quantum and
classical populations. This should not come as a surprise since
G-EDC damps the coefficients of states other than the current
state and deposits the remaining population into the current
running state at each timestep. By continuously transferring
population to the current state from all other states, internal
consistency is maintained throughout the dynamics.

The ID-S procedure produces a peculiar effect, that is at
short times internal consistency seems to be improved, while
for long times the classical and quantum subsystems begin
to diverge. This is especially pronounced in 2-3-4 PPE. For
both of the ID algorithms, we expect some level of internal
inconsistency simply due to the fact that hops are separated
by some finite time interval, during which the coefficients un-

dergo standard evolution. We first consider the results of ID-S,
where there are two sources of internal inconsistency which
lead to a problematic divergence of the quantum and classical
subsystems. First, after the system has made the final effec-
tive hop, the coefficients will no longer be reset and they will
undergo standard evolution causing the quantum and classical
systems to diverge. Second, in systems with large energy gaps
in the density of excited states, a similar (but less profound)
divergence can also occur due to infrequent hops separated
by long time intervals; in the intervals between hops, the co-
efficients will again evolve according to the Standard Tully
procedure. We find that 2-3-4 PPE is largely affected by the
former mechanism, while PPV3 shows the latter effect. In 2-
3-4 PPE, there is a reasonably good agreement between the
classical and quantum subsystems at short times. This good
agreement at early times can be attributed to the small en-
ergy gaps (see the density of states in Fig. 4) and frequent
hops. However, at later times the classical and quantum sub-
systems dramatically diverge; ultimately, the quantum prob-
ability even begins to decrease! Relaxation in 2-3-4 PPE is
very fast and, in addition, it is unidirectional where the sur-
faces separate after the last effective hop making it virtually
impossible to transition back to higher energy. The system
quickly reaches S1 and is then restricted from hopping. For
the rest of the dynamics, the coefficients evolve according to
Standard Tully resulting in divergence. In PPV3, relaxation is
slow and states are separated by large energy gaps, thus lead-
ing to a prolonged period of hopping where each hop is well
separated in time.

In order to overcome these deficiencies, we have im-
plemented the ID-A algorithm where all attempted hops are
treated as decoherence events regardless of whether the hop
is allowed or forbidden. Again, we expect some level of in-
ternal inconsistency simply due to the fact that there is still
some finite time interval between attempted hops. The re-
sults in Fig. 6 show a dramatic improvement in the internal
consistency of ID-A compared to ID-S due to the increased
frequency of wavepacket collapsing events which allow the
quantum wavepacket to be periodically “realigned” with the
current running state. The agreement between the classical
and quantum systems is qualitatively much better, and the di-
vergence at long times has been eliminated. In 2-3-4 PPE,
there are numerous attempted hops from S1 → S2 at the end
of the dynamics that are forbidden due to insufficient kinetic
energy to overcome the increased S2-S1 energy gap. Using the
ID-A method, these hops have been accounted for. In PPV3,
attempted hops throughout the relaxation effectively reduce
the interval between hops, leading to improved agreement.

D. Energy-based decoherence correction

In this section, we will take a closer look at how the form
and value of the decoherence time, τβα , affects the internal
consistency and the overall rate of relaxation in the G-EDC
results. Figure 7 shows a comparison between G-EDC and
T-EDC results using the recommended parameters (C = 1;
E0 = 0.1 hartree). For PPV3, the populations are shown for
S1, S2, and the initial Sm state. Populations for S1, S2, and S3

Downloaded 19 Jun 2013 to 147.162.172.10. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



224111-9 Nelson et al. J. Chem. Phys. 138, 224111 (2013)

0.0

0.2

0.4

0.6

0.8

1.0

0 200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0  S
1

 S
2

 S
3

T-EDC (C=1; E
0
=0.1)

G-EDC (C=1; E
0
=0.1)

T-EDC (C=1; E
0
=0.1)

G-EDC (C=1; E
0
=0.1)  S

1

 S
2

 S
m

 
 

 

po
pu

la
tio

n

time, fs

 

FIG. 7. Comparison of (top) G-EDC and (bottom) T-EDC populations using the recommended parameters (C = 1; E0 = 0.1 hartree). For PPV3, the populations
are shown for S1, S2, and the initial Sm state. Populations for S1, S2, and S3 are shown for 2-3-4 PPE. Classical populations and average quantum probabilities
are depicted as solid and dashed lines, respectively.

are shown for 2-3-4 PPE. The classical populations and av-
erage quantum probabilities are depicted as solid and dashed
lines, respectively. In both cases, we find that replacing the
approximate form of τβα used in the G-EDC implementation
(Eq. (5)) with the full expression used in T-EDC (Eq. (7)) does
not produce any change in either the rate or internal consis-
tency of the simulated results. Therefore, we confirm that the
kinetic energy in the direction of the nonadiabatic coupling
vector can be approximated by the total kinetic energy for the
systems studied in this work. This approximation allows us to
avoid the computation of the nonadiabatic coupling vector at
every timestep. However, for regions of phase space at which
the states are not strongly coupled, it is expected that the nu-
clear motion in the direction of the nonadiabatic coupling vec-
tor is not particularly active, and this is more pronounced at
low temperatures.

Let us consider the value of τβα . We can imagine that at
each timestep of G-EDC, the wavepacket is being “squeezed,”
or narrowed, around the current state. The amount of “squeez-
ing” is in proportion to the size of τβα . For small values of
τβα , the damping term becomes large and the wavepacket
will be very narrow. For larger values of τβα , coefficients ex-
perience less damping and the wavepacket is not squeezed
as much. The narrowing of the wavepacket has two effects:
first, it slows relaxation as population is removed from low en-
ergy states. Second, by adding population removed from other
states to the current state, internal consistency is maintained.

The value of τβα , which determines the amount of damping,
should have a huge effect on the overall dynamics. Intuitively,
as the decoherence time approaches infinity, the damping ef-
fect will disappear and the Standard Tully result should be
recovered.

We have already seen that for systems with large energy
gaps, more population is removed from states with larger en-
ergy separation from the current state. Likewise, the value of
τβα can be increased or decreased by varying the parameters
C and E0. Figure 8 displays the population curves for relax-
ation in PPV3 and 2-3-4 PPE using G-EDC with various sets
of parameters. Starting from the recommended parameters
(C = 1; E0 = 0.1 hartree), we simultaneously increased both
C and E0 up to (C = 10 000; E0 = 1000 hartree) to represent
“infinite” decoherence time. As usual, the classical population
(fraction of trajectories) is represented by the solid lines, and
the dashed lines represent the corresponding average quantum
probabilities. As τβα is increased, coefficients experience less
damping and the overall relaxation rate increases as popula-
tion buildup in lower energy states becomes less hindered. At
the same time, internal consistency gets worse since not as
much population is being redistributed into the current state,
that is the wavepacket is not forced to be centered there.

The curves look very different for the two different sys-
tems. In 2-3-4 PPE, the classical population does not change
very much with changes in parameters, the results seem rel-
atively stable. In the case of PPV3, however, the dependence
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FIG. 8. Combined population rise for the lowest two excited states (S1 + S2)
using G-EDC algorithm with varying parameters (C, E0) for (top) PPV3 and
(bottom) 2-3-4 PPE. Classical populations are shown as solid lines and the
corresponding dashed lines represent the average quantum probabilities.

of the results on the value of τβα is significant, and there is no
stable region until we reach the largest (infinite) decoherence
times. Meanwhile, the internal consistency shows less agree-
ment as the parameters are increased for both systems, as ex-
pected. Again, PPV3 shows a greater dependence on the pa-
rameters because of the larger energy gaps in the excited state
spectrum. When the decoherence time is small, the damping is
so great that states below any of the 3 large gaps in the density
of states (see Fig. 3) are essentially cutoff from the coefficient
evolution and do not build up sufficient population. The sys-
tem can only overcome the gaps when the states become very
close in energy (a rare event) causing the dynamics to become
very slow. On the other hand, the gaps in the spectrum of 2-3-
4 PPE are relatively small so that the system is not prevented
from hopping even for the smallest values of τβα .

E. Electronic wavepackets

The width of the electronic wavepackets can be used to
demonstrate the effect of the tested decoherence correction
on coefficient evolution and on the overall simulated dynam-
ics. We have constructed quantum wavepackets by plotting
the square of the coefficient for each state, |cβ |2, versus the
energy separation from the current state, �Eβα = Eβ − Eα ,

where α denotes the current state. The wavepackets for Stan-
dard Tully, ID-S, ID-A, and G-EDC (with recommended pa-
rameters) can be seen in Figs. 9 and 10 for PPV3 and 2-3-
4 PPE, respectively. For PPV3, the wavepacket evolution is
plotted with 2 fs intervals for a total length of 100 fs, and for 2-
3-4 PPE the evolution is plotted using 1 fs intervals for a total
length of 50 fs. The current state (β = α) is always located at
�Eβα = 0, states below the current state are plotted at nega-
tive energy separations, while states at higher energy appear
at positive values.

For both systems, Standard Tully propagation results in a
broad wavepacket. Lower energy states are immediately pop-
ulated and gradually grow as they become the new current
state. However, most of the population remains in the original
higher energy states. The wavepacket of ID-S looks very sim-
ilar to Standard Tully at short times where a small amount of
the population is immediately transferred to the lower energy
states. In PPV3, the ID-S wavepacket is much narrower than
its Standard Tully counterpart. Yet there is a distinct region
where the wavepacket becomes broader as population builds
up in higher energy states. This region corresponds to the
time between hops when coefficients are evolved according
to Standard Tully propagation. Ultimately, the wavepacket be-
comes narrower again when the coefficients are reset. In con-
trast, the ID-S wavepacket in 2-3-4 PPE is initially narrow and
becomes increasingly wider. The widening to higher energy
states occurs after the final effective hop to S1 after which the
coefficients are never again reset. In both cases, ID-A narrows
the wavepacket and prevents excessive population buildup in
the higher energy states by resetting their coefficients to zero
once sufficient population has built up there for an attempted
hop to occur. Meanwhile population transfer to the lower en-
ergy states does not appear to be disrupted. For both systems,
G-EDC produces a very narrow wavepacket with respect to
the other methods, the population is tightly constrained to the
current state even at early times, any broadening is quickly
narrowed in the subsequent steps by the rescaling procedure.

Another indication of the coefficient evolution to the
lower energy states is to track the ratio of the coefficients
of the current state and the state directly below in energy,
〈|cα − 1/cα|〉, averaged over the swarm of trajectories. The evo-
lution of this coefficient ratio is shown in the top and bottom
panels of Fig. 11 for PPV3 and 2-3-4 PPE, respectively, and
is compared for the tested decoherence methods. To calcu-
late this quantity, trajectories are removed from the average
once they reach the lowest energy S1 state. For both PPV3
and 2-3-4 PPE, the values initially increase, as the quantum
wavepacket undergoes broadening from the initial pure state
at very early times. In both systems, the ratio is largest for the
Standard Tully model and decreases for the various decoher-
ence methods where this decrease corresponds to the decreas-
ing rate of relaxation (see Fig. 6). That is, for large values
of 〈|cα − 1/cα|〉, population buildup in the state directly below
the current state is not restricted; in this case, the quantum
wavepacket is broad and relaxation is fast. On the other hand,
smaller values indicate a narrow wavepacket and slower re-
laxation dynamics. In general, the ratios are larger for 2-3-4
PPE than for PPV3, reflecting the faster relaxation in the PPE
system.
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FIG. 11. Time evolution of the ensemble averaged ratio of coefficients for the
current state, α, and the state directly below in energy, α − 1, is compared for
the different decoherence methods in (top) PPV3 and (bottom) 2-3-4 PPE.

The ratios are reduced in ID-A compared to ID-S, since
the quantity cα−1 is reset more often in the case of the former,
bringing the ratio to zero (although a nonzero ratio when av-
eraged over the swarm of trajectories). G-EDC produces the
lowest ratio where the majority of the population is confined
to the current state (cα � cα − 1). At long times, the G-EDC
value saturates to some minimum value (〈|c1/c2|〉) which is
lower in PPV3 than in 2-3-4 PPE because, as we have previ-
ously seen, the S2 to S1 energy gap is larger in PPV3 leading
to a stronger damping of c1 compared to 2-3-4 PPE.

IV. CONCLUSIONS

We have demonstrated the importance of incorporating
decoherence schemes in MDQT simulations applied to large
extended conjugated molecules. Standard Tully surface hop-
ping is an ad hoc approach which does not include electronic
decoherence. As a result, artifacts appear in simulations as
the divergence of the quantum and classical subsystems. De-
coherence has a large effect on the accuracy of the simulated
dynamics both in terms of time scales for nonradiative relax-
ation and in promoting internal consistency. We have applied
two varieties of instantaneous decoherence procedures (ID-S
and ID-A) as well as the energy-based decoherence correc-
tion algorithm of Granucci et al.17, 18 (G-EDC) to the sim-

ulation of photoinduced dynamics in PPV3 and 2-3-4 PPE
at room temperature (300 K). Fifteen excited states were in-
cluded in the simulation of PPV3, and 10 states were included
for 2-3-4 PPE. Compared to the Standard Tully surface hop-
ping algorithm with no decoherence correction, the tested ID
and EDC methods restore the internal consistency while at the
same time causing the relaxation dynamics to become slower.
We have found that, for realistic polyatomic molecules,
the simulated results may vary dramatically depending on
which decoherence method is used and the corresponding
parameters.

At the same time that internal consistency is improved,
the overall rate of dynamics becomes slower. This can be un-
derstood as a consequence of forcing the electronic coeffi-
cients to follow the current state in nuclear propagation. For
ID methods, the electronic wavepacket is periodically col-
lapsed to a single electronic state and the quantum coefficients
of the divergent wavepackets are erased. Before a hop can oc-
cur, a coherent superposition between the two states must be
formed. That is, some electronic population must be trans-
ferred to states other than the current state. The process of
resetting (as in instantaneous decoherence) or rescaling (as in
the energy-based algorithms) the quantum amplitudes in or-
der to incorporate decoherence restricts the buildup of elec-
tronic population in lower energy states. As a consequence,
the transition probabilities are reduced. Ultimately, trajectory
hopping becomes less frequent leading to slower dynamics.

All decoherence implementations cause dynamics to
slow with respect to the fully coherent Standard Tully propa-
gation, which can be thought of as assigning an infinite deco-
herence time. At the other end of the spectrum, instantaneous
decoherence assumes that divergent wavepackets are imme-
diately decoupled. Standard Tully coherence is maintained in
both ID methods before a hop is attempted, and while the co-
herence is not eliminated in EDC, it is decreased even before
any hop is attempted leading to slower transfer. In the case of
G-EDC, we found that the recommended parameters (C = 1;
E0 = 0.1 hartree) restrict the population buildup in lower en-
ergy states by narrowing the quantum wavepacket. We have
tested various parameters for the calculation of the decoher-
ence time used in G-EDC and found that the results vary dra-
matically depending on this choice. For PPV3, large gaps in
the density of the excited states produces a strong dependence
on the value of τβα . For both of the systems investigated here,
the choice of parameters had a large effect on the internal
consistency.

In summary, ID provides a simple and low cost method
of including decoherence in nonadiabatic molecular dynamics
simulations. The results improve internal consistency while
at the same time providing a result that does not depend on
external parameters and maintains physical relevance. On the
other hand, the G-EDC result seems more reliable for systems
such as 2-3-4 PPE, with small energy gaps in its spectrum.
In this case, the simulated dynamics was relatively stable to
changes in parameters, and only the internal consistency was
affected. For systems such as PPV3, with multiple large en-
ergy gaps, there was no region of stability in the results. In
the end, there is no clear recipe for choosing the G-EDC pa-
rameters in advance and while the method may be successful
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for some systems, it may not work in other cases. The physi-
cal relevance of imposing a posteriori corrections to include
decoherence remains questionable, instead effort should be
invested in developing methods in which decoherence effects
can be accounted for a priori.45, 46 In general, methods that
have proven successful for treating small systems do not nec-
essarily translate to larger systems and their success depends
on the system under study.
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