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This paper presents an approach to adaptive trajectory tracking of mobile robots which combines a
feedback linearization based on a nominal model and a RBF-NN adaptive dynamic compensation. For a
robot with uncertain dynamic parameters, two controllers are implemented separately: a kinematics
controller and an inverse dynamics controller. The uncertainty in the nominal dynamics model is
compensated by a neural adaptive feedback controller. The resulting adaptive controller is efficient and
robust in the sense that it succeeds to achieve a good tracking performance with a small computational
effort. The analysis of the RBF-NN approximation error on the control errors is included. Finally, the
performance of the control system is verified through experiments.
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1. Introduction

Real-time trajectory control of a mobile robot is a very impor-
tant issue in mobile robotics. Due to slippage, disturbance, noise,
robot-base interaction and sensor errors, it is very difficult to avoid
the errors between the desired and the actual robot position. How
to effectively control a mobile robot to precisely track a desired
trajectory is still subject to active research in robotics.

Several studies have been published regarding the design of
controllers to guide mobile robots during trajectory tracking. Some
of the controllers designed so far are based only on the kinematics
of the mobile robot, like the controllers presented in Kiinhe, Gomes,
and Fetter (2005), Scaglia, Rosales, Quintero, Mut, and Agarwal
(2010) and Wu, Chen, Wang, and Woo (1999). Other studies
present the design of controllers that compensate for the robot
dynamics. The work Das and Kar (2006) show an adaptive fuzzy
logic-based controller where the system uncertainty, which
includes mobile robot parameters variation and unknown non-
linearities, is estimated by a fuzzy logic system and its parameters
are tuned on-line. In Bahita and Belarbi (2006) it has been proposed
a direct adaptive controller for nonlinear systems using RBF-NN,
but the results shown in this paper are just based on simulations
and it is not applied to mobile robot.

In Fukao, Nakagawa, and Adachi (2000) it is presented the
design of an adaptive trajectory tracking controller to generate
torques based on a dynamic model whose parameters are
unknown. In that work, only simulation results are shown. Other
trajectory tracking controllers based on robot dynamics are
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developed in Bugeja and Fabri (2007), Liu, Zhang, Yang, and Yu
(2004), Dong and Guo (2005) and Dong and Huo (1999), but the
results are also based on simulations.

In Yang, Gu, Mita, and Hu (2004) it is presented a nonlinear
tracking controller that is designed using a dynamic feedback
linearization technique and implemented in a nonholonomic car-
like mobile robot. Kim, Shin, and Lee (2000) propose a robust
adaptive controller for a mobile robot, which is divided in two
parts. The first one is based on robot kinematics and is responsible
of generating references for the second one, which compensates for
the modeled dynamics. However, the adapted parameters are not
real parameters of the robot, and no experimental results are
presented. Additionally, the control actions are given in terms of
torques, while usual commercial robots accept velocity commands.
In Carelli and De La Cruz (2006) it is proposed a linear parameter-
ization of a unicycle-like mobile robot and the design of a trajectory
tracking controller based on its complete model. One advantage of
this controller is that its parameters are directly related to the robot
parameters. However, if the parameters are not correctly identified
or change with time due, for example, to load variation, the
performance of the controller will be severely affected. The work
Martins, Celeste, Carelli, Sarcinelli Filho, and Bastos Filho (2008)
implements an adaptive dynamic controller for autonomous
mobile robot trajectory tracking, with this methodology the
parameters are updating on-line to compensate the dynamical
variations. The theory of linear and nonlinear H_, is used in Hwang,
Chen, and Chang (2004) and Inoue, Siqueira, and Terra (2009) to
resolve the mobile robot tracking control. In Antonini, Ippoliti, and
Longhi (2006), a Neural Network based control methodologies are
further investigated within the context of multiple models control
of mobile robots in an adaptive and learning control framework. A
switching strategy among these models determines the best
possible control input at any given instant. Radial basis function
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networks have been used for identification and control in order to
avoid the nonlinear optimization techniques used in the learning
algorithm of the Multilayer Neural Networks (MNN). The work
Chen, Li, and Yeh (2009) proposes a complete control law compris-
ing an evolutionary programming based kinematic control (EPKC)
and an adaptive fuzzy sliding-mode dynamic control (AFSMDC) for
the trajectory-tracking control of nonholonomic wheeled mobile
robots (WMRs). The control gains for kinematic control (KC) are
trained by evolutionary programming (EP). The proposed AFSMDC
not only eliminates the chattering phenomenon in the sliding-
mode control, but also copes with the system uncertainties and
external disturbances.

In this paper, the design of an adaptive trajectory tracking
controller based on a nominal robot dynamics and a compensation
neural controller is developed. The compensation neural controller
has the capacity to learn the difference between the nominal and
the actual dynamics of the robot. The whole control system is
designed in two parts: one including a kinematics controller and
another one with a dynamics controller, similar to Kim et al. (2000).
As a realistic assumption, it is supposed that model uncertainties
may appear in the robot dynamics alone. Therefore, the dynamic
controller is designed based on a nominal model and a RBF-NN
compensation controller with the capacity to learn the difference
between the nominal and the actual robot dynamics. As the RBF-NN
compensates only for a nominal model error dynamics, its compu-
tational cost is significantly reduced compared with a whole NN
inverse dynamics controller. An analysis is done to study the effects
of the RBF-NN approximation error on the control error when the
whole control system, the kinematics and the adaptive dynamics
controller working together, is applied to a tracking control task.

The paper is organized as follows: Section 2 presents a system
overview and shows the mathematical representation of the
complete unicycle-like robot model. The kinematics, dynamic and
neural controllers are discussed, respectively, in Sections 3-5,
and the corresponding error analysis is included in Section 6.
Finally, Section 7 presents some experimental results to show the
performance of the adaptive controller, and brief conclusions are
given in Section 8.

2. Robot model

In this section, the dynamic model of the unicycle-like mobile
robot presented in Fig. 1 is reviewed. Fig. 1 depicts the mobile robot,
with the parameters and variables of interest. There, v and w are,
respectively, the linear and angular velocities developed by the
robot, G is the center of mass of the robot, c is the position of the
castor wheel, h is the point of interest with coordinates ry, ry, in the
workspace plane, i is the robot orientation relative to the ry-axis,
and a is the distance between the point of interest and the central
point of the virtual axis linking the traction wheels. A coordinate
system fixed to the robot is denoted as r'y-r,.

The mathematical representation of the complete model (Carelli
& De La Cruz, 2006) is given by

Kinematics model

Fx cosy —asiny v [ O
fy | = |siny acosy {w}+ Ory (1)
v 0 1 | O
Dynamic model
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where v, and wy.r are the linear and angular velocity inputs or
control actions.

L

Fig. 1. Parameters of the unicycle-like mobile robot.

The vector of identified parameters and the vector of uncer-
tainties parameters associated to the mobile robot are, respec-
tively,

9=[% % 93 91 95 9"

8=[on Oy 0 5(0]’ 3)

where J,x and ¢, are functions of slip velocities and robot
orientation, ¢, and J,, are functions of physical parameters as
mass, inertia, wheel and tires diameters, motor and its servos
parameters, forces on the wheels, and others. These are considered
as disturbances.

The robot’s model is split in a kinematics and a dynamic part as
shown in Egs. (1) and (2), respectively, which is also represented in
Fig. 2. Therefore, two controllers are implemented, based on
feedback linearization, for both the kinematics and dynamic
models of the robot.

Using Euler, (1) and (2) are discretized with To=0.1s, by the
approximation v = (v(k+1)—v(k))/To, & = (cw(k+1)—w(k))/Ty and
in the same way with fx,fy,l/}:

Discrete kinematics model

re(k+1) cosy(k)y —asiny(k) vl rx(k) O
ry(k+1) | =Ty | siny(k) acosy(k) {w(k) + [ y®) | + | Oy
Yk+1) 0 1 k) 0
4)
Discrete dynamic model
v(k+1) & w?(k)+ g v(k)
ok+1) | | = Zvkmk) + gt (k)
g O|[vg)] [0
Q ref v
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Fig. 2. Adaptive control structure.
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The parameters have been identified for a Pioneer DX2 mobile
robot (Carelli & De La Cruz, 2006) obtaining: $;=0.3037 s; 9,=
0.2768 s; 93=—0.0004018 s m/rad?; 3,=0.9835; 95=—0.003818
s/m; 9¢=1.0725; Tp=0.1s.

QG _ 95 1
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3. Kinematics controller

The design of the kinematics controller is based on the robot’s
kinematics model. The proposed kinematics controller is given by

vigo] [ ol syl ey (k+ 1)+ tanh (k) )
D] | =3 EE | | gk D+l tanh (7 ()

rx(k)
- {ry(k)} @
where Fy(k) = Iyrer(K)—Tx(k), Fy(k)=Trye(k)—1y(k) are the position
errors and the tanh(.) function has been introduced to avoid
saturation of the control actions due to large position errors. By

replacing (7)in the upper part of (4) under an assumption of perfect
velocity tracking, vfef(k) =v(k), wfef(k) = w(k), the closed-loop

equation is
Ik 0 0
o - M

N . N T
By defining the position error vector h(k) = [rx(k) Ty(k)] ,(8)
can be now written as

tanh <% Fx(k))
tanh (’l% Fy(k)>

Fx(k+1)

Fy(k+1) ®)

T

R(k+1) = {lx tanh (57,00 Iytanh(¥7,(0) } ©)

By taking a Lyapunov candidate V(k)=h"(k)h(), and for

kuwk, <1, kyfl, < 1 and ky/l, < 1, then h(k)— 0 for k— oo. The perfect

velocity tracking assumption will be relaxed when analyzing the
stability of the whole control system.

4. Dynamic controller

The dynamic controller receives the references of linear and
angular velocities generated by the kinematics controller, and
produces another pair of linear and angular velocities commands to
be sent to the robot servos, as shown in Fig. 2.

First, a dynamic controller is designed based on a nominal robot
dynamics, which represents an estimated mean dynamics of the
robot. The inverse robot dynamics from (5) without considering the
uncertainties can be parameterized as follows:

Vrer(K) v(k+1) 0 —w?(k) (k) 0 0
{wref(k)} Tl 0 wk+1) 0 0 vk ok Q@
(10
with
Q=[Q 2 9 Q 95 Q] an
Eq. (10) can be rewritten as
[vref(k) } [91 0 } v(k+1)
Wr() | 7| 0 Q|| oo(k+1)
0 0 —wik vk 0 0
{O 0 0 0 v(kyw(k) w(k)} (12)
or in compact form
Vyer (k) = Dv(k+1) +1(k) (13)
where
Vyer (k) = [Vref(k) a)ref(k)]T, v(k) = [V(k) w(k)]T
0 0 —w?k) vk 0 0
"“1o00 o 0 vikw(k) w(k)}Q
and D=diag(£2;, ).
The proposed inverse dynamics control law is
Ve (k) = GV (k), 2 (K), Vs (K), 006 (K), VEgs (K + 1), 006, (k4 1) €2 (14)
where
3 {m(k) 0 —wilk) vk 0 0 }
10 aak) 0 0 vk k)
ai1(k)= vﬁef(k+ 1+ kv(vﬁef(k)—v(k))
oa(k)= wief(k'i' 1)+kw(w$ef(k)—w(k)) (15)
In matrix form:
6(k) = Vi (k+ 1)+ K(Vioe (k) —v(k)) (16)

T
where o(k)= | o1(k) 02(k) | , K=diag(k,, k)

Similarly to (13), the dynamic control law can now be expressed
as

Vier (k) = D) +M(k) a7
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In (14), Q is a parameter vector, which is constant. Due to
uncertainties in the nominal model (parameter errors £ and non-
modeled dynamics 8) the use of a RBF-NN compensation is
proposed. Now the complete control law may be expressed by

[Vrer (K),er ()] = [Da(k)+1(K)]
FVNVK), O(K), Vi (K), 7o (), Vior (K + 1), 0fop (K + 1))

Vrer (k) = Vi (k) + Vi (k) (18)

where vfef(k):[vﬁef(k),wfef(k)]T is the output of the kinematics
controller; vi(k) = [vé,.(k),wd:(k)]" is the output of the dynamic
controller; vy(k)=[vn(k),on(k)]" is the output of the RBF-NN
compensator, which learns the difference between the nominal
and the actual dynamics of the mobile robot. The complete

proposed control structure is shown in Fig. 2.

5. Neural adaptive controller

A neural compensation controller can be obtained using current
and past information of the system output vector vy(k), and control
input vector v. Since most NNs are implemented by digital computers,
the dynamic part of a nonlinear system is then obtained by means of
time delay operations. So RBF neural network (RBF-NN) implemented
in a digital computer can be considered as a time delay discrete time
control system (Haykin, 2001). This structure is shown in Figs. 2 and 3.
Fig. 3 shows the structure of a RBF-NN controller, where z~! is the
backward shift operator, vie{k+1) is the desired system output.

In Fig. 3, t,, t, are integers that relate to the system order. The RBF
vector is denoted by &; the input pattern vector is S(k); the hidden-to-
output weight matrixisw = [Wy W, |and M is RBF neurons number.

The output vp(k) of neural compensation is the system control

signal. Define vectors
S(k) = [vn(k—=1),.. . ,vn(k—ts+1),v(k),
V(k=1),.. ., V(k—tp+1),Vir(k+1)] (19)

where vﬁef(k):[vﬁef(k),wﬁef(k)]T, vn=[vn(k),on(k)]T and v=[v(k),
w(k)]"

Ei(S(k)) = p(S(k)—c;) (20)

Vet —_— 1

e
N
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Here, ¢ is a nonlinear exp activation function,

|[Stk)—ci| 2)

P(Sk)—c)) = exp( 52

where c; is the center of ¢(.), I' is a constant of function ¢(.), in this
case is equal to 1.
The neural output control action can be expressed by

Vn(k) =W (k)E(S(k))

The controller weights are adapted to minimize the cost
function

21

Jo= 2 (€ ety = 2 €2y +e2, ) @2

where  e(k)=[e,(k).eq(K)]7,
wﬁef(k)—a)(k).

The correction applied to a synaptic weight is proportional to
the negative gradient of J:

3J(k)
aw(k)

and ev(k)zvﬁef(k)—v(k), ew(k) =

Aw(k)=—n 23)

According to the chain rule method, this gradient is expressed as
d] ov ovy

AW = Ve oW 29
For the centers of RBF-NN
_ oV ovy g

Aci OV ovy 0E oc; 25)

Hence to effectively use these gradients, it is needed to know ov/
vy, which is difficult to calculate when the system model is
unknown. However, an approximation may be used:

ﬂ —sion ﬂ
oVn =518 AVN
The tuning of RBF-NN weights and centers can be described by

. Av
Aw(k) = —n.e(k)sign (A—VN) E(S(k))

. A
el = ~neqtsian - )W 500 | 26)
RBF Neural
functions Weigths

N

ﬁl Wy

g---
EE

Fig. 3. Dynamic neural net.
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The RBF-NN compensation controller can be trained by the
method presented in the preceding equations and it is expected to
provide a nonlinear mapping expressed by (20) and (21). For the
desired output viedk+1), the controller will produce the signal
vn(k):

Vn(k) = NN[vy(k—1),. .., vn (k—tq+ 1),v(k),
v(k—-1),...,v(k—t,+1 ),vﬁef(kJr 1)

The algorithm of this neural compensation scheme is described
by the following steps:

(a) Initialize randomly weights and centers of RBF neural com-
pensation controller w;(0), c;.
(b) Provide neural compensation input pattern at time k:

S(k) = [vn(k—1),.. .,.n(k—=ts+1),v(k),
V(k=1),.. ,W(k—ty+ 1),V (k+1)]

(c) Compute the output of the neural compensation controller
(21), as the system control input at time k.

(d) Take the output vn(k+1) and add v{k+1) at time k+1 of the
process model, then compute the system output error:
e(k+1)=Viek+1)—v(k+1); if |e(k+1)| <& (where ¢>0 is a
given constant) then go to (e); otherwise continue.

(e) Update the centers and the weights by (26).

(f) Let k=k+1, return to (b) for the next step.

6. Stability analysis

The inverse dynamics control law from (14) considering the
parametric errors £ can be expressed as
Vi (k) = G(k)Q +G(k)Q 27)

The complete control law including the neural compensation
(18) can now be expressed by

Vier (k) = Do (k) + G(k)Q + M+ vy (k) (28)
From (13), the dynamic model including the uncertainties is

Vier(k) =Dv(k+1)+m+8 (29)
Now, by equating (28) and (29), the closed loop system results:

Dv(k+1)+1+ 8 =Do(k)+ G(k)Q +n-+vy(k) (30)
Rearranging

D(k+1)—0(k))—(G(k)Q—8) = vy(k) 31

Recalling the velocity control error:
e(k) = v (k) —v(k) (32)
and the definition of ¢ in (16), Eq. (31) can be rewritten as
—D(e(k+1)+Ke(k)—(G(k)Q—8) = vn(k) 33)

Neural compensation tends to make the control error equal to
zero by compensating the model error and the uncertainties, but it
introduces its own compensation error expressed as vy(k)=
—wWT(k)ES(k)—WT(k)E(S(k)), with W(k) =w*—w(k). It is assumed
that there exists an unknown constant ideal weight vector w*
whose estimate w(k) is, and that the NN approximation errors w(k)
are bounded by

‘ ‘W(k)‘ ‘ < Kmax
This way, (33) results as

—D(e(k+1)+Ke(k)—(G(k)Q—8) = W' (k)&(S(k)) +wW (k)E(S(K))
(34)

The ideal compensation is
—G()Q +8 =W (k)ES(k)) (35)

Now, rewriting (34), in the closed loop equation remains the
neural network approximation error

e(k+1) = —Ke(k)—D~" (W7 (k)-£(S(k))) (36)

This error equation can be expressed in terms of their compo-
nents:

(37

ey(k+1) = —kve, (k)— Q7 "W (K)E(S(K)
w(k+1) = —kpe,(k)— Q5 'WE (k)E(S(k))

Let us now consider the Lyapunov candidate function
V(k) = e2(k)+ €2 (k) + W (k)W (k) + W (k)W o (k) (38)
and the Lyapunovs difference equation:
AV(k) = e2(k+1)+ €2 (k+ 1)+ W (k+ )Wy (k+1)
+WE (k4 )W (k+ 1)—e2(k)—e2 (k) —W (k)W (k)
~WE (W (k) (39)
Replacing (37) in (39)
AV(k) = [K2e2 (k) +2e, (k)k, Q7 'WIES() + p, 1+ [K2, €2, (k)
+2e0,(k)ko 23 "WELESK) + o]+ W (k+T)W,y (k+1)
+WE (k4 D)W (k+ 1)—e2(k)—e2 (k) —WT (k)W (k)
—W (k)W (k) (40

The terms p, and p,, given as follows, do not depend on the
control error:

P, =& (S(k)W, Qy 2W]E(S(K))
Do = &1 (S(k)W e Q5 2WT E(S(K)) 41)
By taking k, ., < 1 then,
Q=K'K-1<0 (42)
where Q=diag[q,.q,]. Also, Wl(k+1)W,(k+1) can be expressed
from (26) as
W (k+ W] (k+1) = [Wy(k)—ne, (KESKN.[W, (k) —ne, (kES(K))]
= =WikWy(k)—2ne, (kW (K)ES(K))
+(—1ev(KES K (—ney (ES(K))) (43)
Similarly for the product W[ (k+1)We(k+1) and making, it
follows that (40) can be now written as
AV(k) = [~qve2 (k) +2e, (k)k, Q7 ' WIESK) +p,]
+[~que? (k) +2e0(kk, Q; ' WLESK) +p,,]
—2ne, (kW (K)ESK))+ (—nev(ESK)) (—ney (ESK)))
—21e4, (KWL (KESK)) + (—1ew(KESK)) (—neqw(k)ESK)))
(44)
A sufficient condition for (44) to be negative is

qved(k) > [2e,(k)k, Q7 'WIES(K) + p,1—2ne, ()W (K)ES(K))
+(—ney(ESK)) (—ne (WESK)))
€2 (k) = [2e,(k)ko Q3 'WELES(K) + p ]~ 2ne0 (W, (K)ES(K)
+(—new(K)ESK)) (—new(kESK)))
(45)
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Applying norm and replacing # by making

ka.Q_l =n
kT le’l =7 (46)
Eq. (45) can be written as
el = [p, | +n?| [ESK)|*e2k) .
G0l (= |py, | +17|[ESK))| €2 ()

Due to the boundedness of &(S(k)) components by 1, and
replacing p,,, from (41), condition (47) for negative AV implies
that e, (k) is ultimately bounded by

M N
R
M N
lew(h)| < @512 Ml 5,

That is, the error e(k)— Bs. with Bs. a ball of size:

(48)

5e = max(éel :5e2)

Now, go back to the control error analysis that is the behavior of
the trajectory control errors h(k). By relaxing the prefect velocity
tracking assumption of the kinematics controllers in Section 3,
Eq. (8) is now written as

ka1 [ o1[tanh(sm0) T g0 4o
fy(k+1) Tlo Ly tanh(%ﬂ(k)) 10 “9)

T
where the error vector g(k) = [81(k) Sz(k)} is a function of the
velocity tracking error and defined as He(k).

&1 (k)] {cos Y(k)y —asin 1//(k)] [ ey(k)
=To

wlo= Lz(k) sinyy(k) - acosyi(k) | | ew(k)

} =He(k)
Rewriting (49), for small values of control error, L(h(k)) ~
Kyyh(k) with K, =diag(k.k,)
h(k+1)+Kyyh(k) = He(k) (50)
Considering the Lyapunov candidate function
V(k) = %ﬁT(k)ﬁ(k) >0 (51)
Its discrete difference is
AV(k) = V(k+1)-V(k) =h"(k+ Dh(k+1)—h" (khk)
= e’ (k)H He(k)—2e” (k)HK,,h(k)
+h" (K], Ky h(k)—h' (khk) (52)
A sufficient condition for AV to be negative is

1=K, | (B [* = [[H] *|edo|[*+2| [H]| | [Ky] | edo)] || Bk

(33)
Then, calculating the square roots,
i 2| [H|[[ Ky || [[etk)]| £ /4 H[[*[ [ Koy |[*[Jeth)| > +4[[eco)|[*| [ H]
[[]> ) 2G|
_ 2[[H[[[[Ky [ |ledk)|| + 2|[H][ ||edk)]| (54)
2[[1-K3 ||

This condition for AV < 0 implies that h is ultimately bounded by

(—[[Ky|D[[H]| |[edo]|

h|| <
H H HI_nyZH

For large errors:
I tanh (’,‘— Fx(k)>

L(h(k)) =
(ko Iy tanh (7 (k) )

L
-

y

Now considering (51) and (55) with L= [lx ly]T
AV (k) = eT(kyH He(k)—2eT ()H'L+L"L—h" (k)h(k) (56)
a sufficient condition for AV <0 is
1Bk |* = [[ed)| | [H]|*+2] ledo] | [|H| | |[L][+][L]|” (7)
from (57) the following equation is obtained:
[[hdo|| = (| |edo| | K[| +[[L]]) (58)

which sets the final size for the control error h(k). Both, (54) and
(58) allows to state that the control error is bounded in terms of the
NN approximation error.

7. Experimental results

The proposed controller was implemented on a Pioneer 2-DX
mobile robot (Fig. 4), which admits linear and angular velocities as
input reference signals. The controller was initialized with the
dynamic parameters of the robot, which were obtained via
identification, as proposed in Carelli and De La Cruz (2006).

In the experiment, the robot starts at (r,, 1,)=(0, 0) m, and a
disturbance load of about 6 kg was placed on it. The robot must
follow a circular reference trajectory:

{ T'ref = 0.755in(0.03 7k Ty)

Tyrer = 0.75€0s(0.037kTo) 69

After 83 s, the neural compensation controller is switched-on
and the error trajectory decreases alternating between 0.02 and
0.04 m. Figs. 5 and 6 depict the speeds of the robot and the control
actions produced by the controller, and the references and output
positions of the mobile robot, respectively.

Fig. 7 shows the trajectory followed by the mobile robot without
neural compensation, and with adaptive neural compensation after

Fig. 4. The mobile robot Pioneer 2-DX.
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Fig. 5. Speeds of the robot and control actions by the RBF adaptive controller.

position reference X [m]

position reference Y [m]

Time [sec.]

Fig. 6. References and output positions of the mobile robot.

the first 83 s of the run. Fig. 8 depicts the distance errors defined as
the instantaneous distance between the reference and robot
position. From the experimental results, and comparing the initial
phase and the period during which the adaptive compensator is
active, it remains clear the advantage of using the neural compen-
sation. The controller is capable to compensate the dynamic
uncertainties, which could be produced simply by changing the
load or its position on the robot.

8. Conclusions

In this paper, a trajectory tracking controller for a unicycle-like
mobile robot, including a neural adaptive compensator, is pro-
posed. The controller is capable of generating smooth and con-
tinuous velocity commands to the robot. The tracking control
errors are shown to be ultimately bounded, and the bounds are
calculated as a function of the RBF-NN approximation errors. The
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Fig.7. Reference and actual trajectory of the mobile robot. The neural compensation
is activated after 83 s as indicated in the figure.
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Fig. 8. Distance error without and with compensation controller.

RBF-NN controller compensates the difference between a known
nominal dynamics and the actual dynamics of the robot. Therefore,
the computational effort is significantly smaller than a NN learning
the complete inverse model of the robot. Experimental results

show the good performance of the proposed tracking controller and
its capacity to adapt to the actual robot dynamics. The controller
was designed in discrete time, which allows a direct implementa-
tion on a digital processing system.
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