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This paper presents an approach to adaptive trajectory tracking of mobile robots which combines a

feedback linearization based on a nominal model and a RBF-NN adaptive dynamic compensation. For a

robot with uncertain dynamic parameters, two controllers are implemented separately: a kinematics

controller and an inverse dynamics controller. The uncertainty in the nominal dynamics model is

compensated by a neural adaptive feedback controller. The resulting adaptive controller is efficient and

robust in the sense that it succeeds to achieve a good tracking performance with a small computational

effort. The analysis of the RBF-NN approximation error on the control errors is included. Finally, the

performance of the control system is verified through experiments.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Real-time trajectory control of a mobile robot is a very impor-
tant issue in mobile robotics. Due to slippage, disturbance, noise,
robot-base interaction and sensor errors, it is very difficult to avoid
the errors between the desired and the actual robot position. How
to effectively control a mobile robot to precisely track a desired
trajectory is still subject to active research in robotics.

Several studies have been published regarding the design of
controllers to guide mobile robots during trajectory tracking. Some
of the controllers designed so far are based only on the kinematics
of the mobile robot, like the controllers presented in Künhe, Gomes,
and Fetter (2005), Scaglia, Rosales, Quintero, Mut, and Agarwal
(2010) and Wu, Chen, Wang, and Woo (1999). Other studies
present the design of controllers that compensate for the robot
dynamics. The work Das and Kar (2006) show an adaptive fuzzy
logic-based controller where the system uncertainty, which
includes mobile robot parameters variation and unknown non-
linearities, is estimated by a fuzzy logic system and its parameters
are tuned on-line. In Bahita and Belarbi (2006) it has been proposed
a direct adaptive controller for nonlinear systems using RBF-NN,
but the results shown in this paper are just based on simulations
and it is not applied to mobile robot.

In Fukao, Nakagawa, and Adachi (2000) it is presented the
design of an adaptive trajectory tracking controller to generate
torques based on a dynamic model whose parameters are
unknown. In that work, only simulation results are shown. Other
trajectory tracking controllers based on robot dynamics are
ll rights reserved.

Rossomando),

j.edu.ar (R. Carelli).

ndo).
developed in Bugeja and Fabri (2007), Liu, Zhang, Yang, and Yu
(2004), Dong and Guo (2005) and Dong and Huo (1999), but the
results are also based on simulations.

In Yang, Gu, Mita, and Hu (2004) it is presented a nonlinear
tracking controller that is designed using a dynamic feedback
linearization technique and implemented in a nonholonomic car-
like mobile robot. Kim, Shin, and Lee (2000) propose a robust
adaptive controller for a mobile robot, which is divided in two
parts. The first one is based on robot kinematics and is responsible
of generating references for the second one, which compensates for
the modeled dynamics. However, the adapted parameters are not
real parameters of the robot, and no experimental results are
presented. Additionally, the control actions are given in terms of
torques, while usual commercial robots accept velocity commands.
In Carelli and De La Cruz (2006) it is proposed a linear parameter-
ization of a unicycle-like mobile robot and the design of a trajectory
tracking controller based on its complete model. One advantage of
this controller is that its parameters are directly related to the robot
parameters. However, if the parameters are not correctly identified
or change with time due, for example, to load variation, the
performance of the controller will be severely affected. The work
Martins, Celeste, Carelli, Sarcinelli Filho, and Bastos Filho (2008)
implements an adaptive dynamic controller for autonomous
mobile robot trajectory tracking, with this methodology the
parameters are updating on-line to compensate the dynamical
variations. The theory of linear and nonlinear HN is used in Hwang,
Chen, and Chang (2004) and Inoue, Siqueira, and Terra (2009) to
resolve the mobile robot tracking control. In Antonini, Ippoliti, and
Longhi (2006), a Neural Network based control methodologies are
further investigated within the context of multiple models control
of mobile robots in an adaptive and learning control framework. A
switching strategy among these models determines the best
possible control input at any given instant. Radial basis function
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Fig. 1. Parameters of the unicycle-like mobile robot.
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networks have been used for identification and control in order to
avoid the nonlinear optimization techniques used in the learning
algorithm of the Multilayer Neural Networks (MNN). The work
Chen, Li, and Yeh (2009) proposes a complete control law compris-
ing an evolutionary programming based kinematic control (EPKC)
and an adaptive fuzzy sliding-mode dynamic control (AFSMDC) for
the trajectory-tracking control of nonholonomic wheeled mobile
robots (WMRs). The control gains for kinematic control (KC) are
trained by evolutionary programming (EP). The proposed AFSMDC
not only eliminates the chattering phenomenon in the sliding-
mode control, but also copes with the system uncertainties and
external disturbances.

In this paper, the design of an adaptive trajectory tracking
controller based on a nominal robot dynamics and a compensation
neural controller is developed. The compensation neural controller
has the capacity to learn the difference between the nominal and
the actual dynamics of the robot. The whole control system is
designed in two parts: one including a kinematics controller and
another one with a dynamics controller, similar to Kim et al. (2000).
As a realistic assumption, it is supposed that model uncertainties
may appear in the robot dynamics alone. Therefore, the dynamic
controller is designed based on a nominal model and a RBF-NN
compensation controller with the capacity to learn the difference
between the nominal and the actual robot dynamics. As the RBF-NN
compensates only for a nominal model error dynamics, its compu-
tational cost is significantly reduced compared with a whole NN

inverse dynamics controller. An analysis is done to study the effects
of the RBF-NN approximation error on the control error when the
whole control system, the kinematics and the adaptive dynamics
controller working together, is applied to a tracking control task.

The paper is organized as follows: Section 2 presents a system
overview and shows the mathematical representation of the
complete unicycle-like robot model. The kinematics, dynamic and
neural controllers are discussed, respectively, in Sections 3–5,
and the corresponding error analysis is included in Section 6.
Finally, Section 7 presents some experimental results to show the
performance of the adaptive controller, and brief conclusions are
given in Section 8.
2. Robot model

In this section, the dynamic model of the unicycle-like mobile
robot presented in Fig. 1 is reviewed. Fig. 1 depicts the mobile robot,
with the parameters and variables of interest. There, v and o are,
respectively, the linear and angular velocities developed by the
robot, G is the center of mass of the robot, c is the position of the
castor wheel, h is the point of interest with coordinates rx, ry in the
workspace plane, c is the robot orientation relative to the rx-axis,
and a is the distance between the point of interest and the central
point of the virtual axis linking the traction wheels. A coordinate
system fixed to the robot is denoted as r0x–r0y.

The mathematical representation of the complete model (Carelli
& De La Cruz, 2006) is given by
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where vref and oref are the linear and angular velocity inputs or
control actions.
The vector of identified parameters and the vector of uncer-
tainties parameters associated to the mobile robot are, respec-
tively,

W¼ W1 W2 W3 W4 W5 W6
� �T

d¼ drx dry 0 dv do
h iT

ð3Þ

where drx and dry are functions of slip velocities and robot
orientation, dv and do are functions of physical parameters as
mass, inertia, wheel and tires diameters, motor and its servos
parameters, forces on the wheels, and others. These are considered
as disturbances.

The robot’s model is split in a kinematics and a dynamic part as
shown in Eqs. (1) and (2), respectively, which is also represented in
Fig. 2. Therefore, two controllers are implemented, based on
feedback linearization, for both the kinematics and dynamic
models of the robot.

Using Euler, (1) and (2) are discretized with T0¼0.1s, by the
approximation _v ¼ ðvðkþ1Þ�vðkÞÞ=T0, _o ¼ ðoðkþ1Þ�oðkÞÞ=T0 and
in the same way with _rx, _ry, _c:

Discrete kinematics model
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Discrete dynamic model
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Fig. 2. Adaptive control structure.
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The parameters have been identified for a Pioneer DX2 mobile
robot (Carelli & De La Cruz, 2006) obtaining: W1¼0.3037 s; W2¼

0.2768 s; W3¼�0.0004018 s m/rad2; W4¼0.9835; W5¼�0.003818
s/m; W6¼1.0725; T0¼0.1 s.
3. Kinematics controller

The design of the kinematics controller is based on the robot’s
kinematics model. The proposed kinematics controller is given by
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where ~rxðkÞ ¼ rxref ðkÞ�rxðkÞ, ~ryðkÞ ¼ ryref ðkÞ�ryðkÞ are the position
errors and the tanh(.) function has been introduced to avoid
saturation of the control actions due to large position errors. By
replacing (7) in the upper part of (4) under an assumption of perfect
velocity tracking, vc

ref ðkÞ � vðkÞ, oc
ref ðkÞ �oðkÞ, the closed-loop

equation is
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By defining the position error vector ~hðkÞ ¼ ~rxðkÞ ~ryðkÞ
h iT

, (8)
can be now written as

~hðkþ1Þ ¼ lx tanh kx

lx
~rxðkÞ

� 	
ly tanh ky

ly
~ryðkÞ

� 	� �T

ð9Þ

By taking a Lyapunov candidate VðkÞ ¼ ~hT
ðkÞ ~hðkÞ, and for

kx,kyo1, kx/lxo1 and ky/lyo1, then ~hðkÞ-0 for k-N. The perfect
velocity tracking assumption will be relaxed when analyzing the
stability of the whole control system.
4. Dynamic controller

The dynamic controller receives the references of linear and
angular velocities generated by the kinematics controller, and
produces another pair of linear and angular velocities commands to
be sent to the robot servos, as shown in Fig. 2.
First, a dynamic controller is designed based on a nominal robot
dynamics, which represents an estimated mean dynamics of the
robot. The inverse robot dynamics from (5) without considering the
uncertainties can be parameterized as follows:
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Eq. (10) can be rewritten as
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or in compact form

vref ðkÞ ¼Dvðkþ1ÞþgðkÞ ð13Þ

where
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and D¼diag(O1, O2).
The proposed inverse dynamics control law is

vd
ref ðkÞ ¼GðvðkÞ,oðkÞ,vc

ref ðkÞ,o
c
ref ðkÞ,v

c
ref ðkþ1Þ,oc

ref ðkþ1ÞÞX ð14Þ

where

G¼
s1ðkÞ 0 �o2ðkÞ vðkÞ 0 0

0 s2ðkÞ 0 0 vðkÞoðkÞ oðkÞ

" #

s1ðkÞ ¼ vc
ref ðkþ1Þþkvðvc

ref ðkÞ�vðkÞÞ

s2ðkÞ ¼oc
ref ðkþ1Þþkoðoc

ref ðkÞ�oðkÞÞ ð15Þ

In matrix form:

rðkÞ ¼ vc
ref ðkþ1ÞþKðvc

ref ðkÞ�vðkÞÞ ð16Þ

where rðkÞ ¼ s1ðkÞ s2ðkÞ
h iT

, K¼diag(kv, ko)
Similarly to (13), the dynamic control law can now be expressed

as
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In (14), X is a parameter vector, which is constant. Due to
uncertainties in the nominal model (parameter errors ~X and non-
modeled dynamics d) the use of a RBF-NN compensation is
proposed. Now the complete control law may be expressed by

½vref ðkÞ,oref ðkÞ�
T ¼ ½DrðkÞþgðkÞ�
þvNðvðkÞ,oðkÞ,vc
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c
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vref ðkÞ ¼ vd
ref ðkÞþvNðkÞ ð18Þ

where vc
ref ðkÞ ¼ ½v

c
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c
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T is the output of the kinematics
controller; vd

ref ðkÞ ¼ ½v
d
ref ðkÞ,o

d
ref ðkÞ�

T is the output of the dynamic
controller; vN(k)¼[vN(k),oN(k)]T is the output of the RBF-NN

compensator, which learns the difference between the nominal
and the actual dynamics of the mobile robot. The complete
proposed control structure is shown in Fig. 2.
5. Neural adaptive controller

A neural compensation controller can be obtained using current
and past information of the system output vector vN(k), and control
input vector v. Since most NNs are implemented by digital computers,
the dynamic part of a nonlinear system is then obtained by means of
time delay operations. So RBF neural network (RBF-NN) implemented
in a digital computer can be considered as a time delay discrete time
control system (Haykin, 2001). This structure is shown in Figs. 2 and 3.
Fig. 3 shows the structure of a RBF-NN controller, where z�1 is the
backward shift operator, vc

ref(k+1) is the desired system output.
In Fig. 3, ta, tb are integers that relate to the system order. The RBF

vector is denoted by n; the input pattern vector is S(k); the hidden-to-
output weight matrix is w¼ wv wo

� �
and M is RBF neurons number.

The output vN(k) of neural compensation is the system control
signal. Define vectors

SðkÞ ¼ ½vNðk�1Þ,. . .,vNðk�taþ1Þ,vðkÞ,
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Fig. 3. Dynamic
Here, j is a nonlinear exp activation function,

jðSðkÞ�ciÞ ¼ exp
99SðkÞ�ci99

2

2:G2

 !

where ci is the center of j(.), G is a constant of function j(.), in this
case is equal to 1.

The neural output control action can be expressed by

vNðkÞ ¼wT ðkÞnðSðkÞÞ ð21Þ

The controller weights are adapted to minimize the cost
function
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1

2
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where e(k)¼[ev(k),eo(k)]T, and evðkÞ ¼ vc
ref ðkÞ�vðkÞ, eoðkÞ ¼

oc
ref ðkÞ�oðkÞ.

The correction applied to a synaptic weight is proportional to
the negative gradient of J:
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According to the chain rule method, this gradient is expressed as
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For the centers of RBF-NN
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Hence to effectively use these gradients, it is needed to know qv/
qvN, which is difficult to calculate when the system model is
unknown. However, an approximation may be used:

@v
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The tuning of RBF-NN weights and centers can be described by

DwðkÞ ¼�Z:eðkÞsign
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neural net.
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The RBF-NN compensation controller can be trained by the
method presented in the preceding equations and it is expected to
provide a nonlinear mapping expressed by (20) and (21). For the
desired output vc

ref(k+1), the controller will produce the signal
vN(k):

vNðkÞ ¼NN½vNðk�1Þ,. . .,vN,ðk�taþ1Þ,vðkÞ,

vðk�1Þ,. . .,vðk�tbþ1Þ,vc
ref ðkþ1Þ

The algorithm of this neural compensation scheme is described
by the following steps:
(a)
 Initialize randomly weights and centers of RBF neural com-
pensation controller wi(0), ci.
(b)
 Provide neural compensation input pattern at time k:

SðkÞ ¼ ½vNðk�1Þ,. . .,vNðk�taþ1Þ,vðkÞ,
vðk�1Þ,. . .,vðk�tbþ1Þ,vc

ref ðkþ1Þ�
(c)
 Compute the output of the neural compensation controller
(21), as the system control input at time k.
(d)
 Take the output vN(k+1) and add vref(k+1) at time k+1 of the
process model, then compute the system output error:
e(k+1)¼vc

ref(k+1)�v(k+1); if 9e(k+1)9oe (where e40 is a
given constant) then go to (e); otherwise continue.
(e)
 Update the centers and the weights by (26).

(f)
 Let k¼k+1, return to (b) for the next step.
6. Stability analysis

The inverse dynamics control law from (14) considering the
parametric errors ~X can be expressed as

vd
ref ðkÞ ¼GðkÞXþGðkÞ ~X ð27Þ

The complete control law including the neural compensation
(18) can now be expressed by

vref ðkÞ ¼DrðkÞþGðkÞ ~XþgþvNðkÞ ð28Þ

From (13), the dynamic model including the uncertainties is

vref ðkÞ ¼Dvðkþ1Þþgþd ð29Þ

Now, by equating (28) and (29), the closed loop system results:

Dvðkþ1Þþgþd¼DrðkÞþGðkÞ ~XþgþvNðkÞ ð30Þ

Rearranging

Dðvðkþ1Þ�rðkÞÞ�ðGðkÞ ~X�dÞ ¼ vNðkÞ ð31Þ

Recalling the velocity control error:

eðkÞ ¼ vc
ref ðkÞ�vðkÞ ð32Þ

and the definition of r in (16), Eq. (31) can be rewritten as

�Dðeðkþ1ÞþKeðkÞÞ�ðGðkÞ ~X�dÞ ¼ vNðkÞ ð33Þ

Neural compensation tends to make the control error equal to
zero by compensating the model error and the uncertainties, but it
introduces its own compensation error expressed as vNðkÞ ¼

�wT ðkÞnðSðkÞÞ� ~wT ðkÞnðSðkÞÞ, with ~wðkÞ ¼w��wðkÞ. It is assumed
that there exists an unknown constant ideal weight vector wn

whose estimate w(k) is, and that the NN approximation errors ~wðkÞ
are bounded by

99 ~wðkÞ99rkmax

This way, (33) results as

�Dðeðkþ1ÞþKeðkÞÞ�ðGðkÞ ~X�dÞ ¼ ~wT ðkÞnðSðkÞÞþwT ðkÞnðSðkÞÞ

ð34Þ
The ideal compensation is

�GðkÞ ~Xþd¼wT ðkÞnðSðkÞÞ ð35Þ

Now, rewriting (34), in the closed loop equation remains the
neural network approximation error

eðkþ1Þ ¼�KeðkÞ�D�1
ð ~wT ðkÞUnðSðkÞÞÞ ð36Þ

This error equation can be expressed in terms of their compo-
nents:
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: ð37Þ

Let us now consider the Lyapunov candidate function

VðkÞ ¼ e2
v ðkÞþe2

oðkÞþ ~wT
v ðkÞ ~wvðkÞþ ~wT

xðkÞ ~wxðkÞ ð38Þ

and the Lyapunov�s difference equation:
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T
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Replacing (37) in (39)

DVðkÞ ¼ ½k2
v e2

v ðkÞþ2evðkÞkvO�1
1
~wT
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v ðkÞ�e2
oðkÞ� ~w

T
v ðkÞ ~wvðkÞ

� ~wT
xðkÞ ~wxðkÞ ð40Þ

The terms rv and ro given as follows, do not depend on the
control error:

rv ¼ nT
ðSðkÞÞ ~wvO�1 2 ~wT

vnðSðkÞÞ

ro ¼ nT
ðSðkÞÞ ~wxO�2 2 ~wT

xnðSðkÞÞ ð41Þ

By taking kv,oo1 then,

Q ¼KT K�Io0 ð42Þ

where Q¼diag[qv,qo]. Also, ~wT
v ðkþ1Þ ~wvðkþ1Þ can be expressed

from (26) as

~wT
v ðkþ1Þ ~wT

v ðkþ1Þ ¼ ½ ~wvðkÞ�ZevðkÞnðSðkÞÞ�T :½ ~wvðkÞ�ZevðkÞnðSðkÞÞ�

¼ � � � ¼ ~wT
v ðkÞ ~wvðkÞ�2ZevðkÞ ~w

T
v ðkÞnðSðkÞÞ

þð�ZevðkÞnðSðkÞÞÞT ð�ZevðkÞnðSðkÞÞÞ ð43Þ

Similarly for the product ~wT
xðkþ1Þ ~wxðkþ1Þ and making, it

follows that (40) can be now written as

DVðkÞ ¼ ½�qve2
v ðkÞþ2evðkÞkvO�1

1
~wT

vnðSðkÞÞþrv�

þ½�qoe2
oðkÞþ2eoðkÞkoO�1

2
~wT

xnðSðkÞÞþro�
�2ZevðkÞ ~w

T
v ðkÞnðSðkÞÞþð�ZevðkÞnðSðkÞÞÞT ð�ZevðkÞnðSðkÞÞÞ

�2ZeoðkÞ ~w
T
xðkÞnðSðkÞÞþð�ZeoðkÞnðSðkÞÞÞT ð�ZeoðkÞnðSðkÞÞÞ

ð44Þ

A sufficient condition for (44) to be negative is

qve2
v ðkÞZ ½2evðkÞkvO�1

1
~wT

vnðSðkÞÞþrv��2ZevðkÞ ~wT
v ðkÞnðSðkÞÞ

þð�ZevðkÞnðSðkÞÞÞT ð�ZevðkÞnðSðkÞÞÞ

qoe2
oðkÞZ ½2eoðkÞkoO�1

2
~wT

xnðSðkÞÞþro��2ZeoðkÞ ~wT
xðkÞnðSðkÞÞ

þð�ZeoðkÞnðSðkÞÞÞT ð�ZeoðkÞnðSðkÞÞÞ

8>>>>><
>>>>>:

ð45Þ



Fig. 4. The mobile robot Pioneer 2-DX.
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Applying norm and replacing Z by making

kT
vO
�1
1 ¼ Z

kT
oO
�1
2 ¼ Z

ð46Þ

Eq. (45) can be written as

qve2
v ðkÞZ9rv9þZ299nðSðkÞÞ992

e2
v ðkÞ

qoe2
oðkÞZ9ro9þZ299nðSðkÞÞ992

e2
oðkÞ

8<
: ð47Þ

Due to the boundedness of n(S(k)) components by 1, and
replacing rv,o from (41), condition (47) for negative DV implies
that ev,o(k) is ultimately bounded by

9evðkÞ9rO�1
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM

i ¼ 1
9 ~wviðkÞ9

qv�Z2

r
¼ de1

eoðkÞ
�� ��rO�1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM

i ¼ 1
9 ~wxiðkÞ9

qo�Z2

r
¼ de2

8>>><
>>>:

ð48Þ

That is, the error e(k)-Bde with Bde a ball of size:

de ¼maxðde1,de2Þ

Now, go back to the control error analysis that is the behavior of
the trajectory control errors ~hðkÞ. By relaxing the prefect velocity
tracking assumption of the kinematics controllers in Section 3,
Eq. (8) is now written as

~rxðkþ1Þ

~ryðkþ1Þ

" #
þ

lx 0

0 ly

" # tanh kx

lx
~rxðkÞ

� 	
tanh ky

ly
~ryðkÞ

� 	
2
64

3
75¼ e1ðkÞ

e2ðkÞ

" #
ð49Þ

where the error vector eðkÞ ¼ e1ðkÞ e2ðkÞ
h iT

is a function of the

velocity tracking error and defined as He(k).

eðkÞ ¼
e1ðkÞ

e2ðkÞ

" #
¼ T0

coscðkÞ �asincðkÞ
sincðkÞ acoscðkÞ

" #
evðkÞ

eoðkÞ

" #
¼HeðkÞ

Rewriting (49), for small values of control error, Lð ~hðkÞÞ �
Kxy

~hðkÞ with Kxy¼diag(kx,ky)

~hðkþ1ÞþKxy
~hðkÞ ¼HeðkÞ ð50Þ

Considering the Lyapunov candidate function

VðkÞ ¼
1

2
~hT
ðkÞ ~hðkÞ40 ð51Þ

Its discrete difference is

DVðkÞ ¼ Vðkþ1Þ�VðkÞ ¼ ~hT
ðkþ1Þ ~hðkþ1Þ� ~hT

ðkÞ ~hðkÞ

¼ eT ðkÞHT HeðkÞ�2eT ðkÞHT Kxy
~hðkÞ

þ ~hT
ðkÞKT

xyKxy
~hðkÞ� ~hT

ðkÞ ~hðkÞ ð52Þ

A sufficient condition for DV to be negative is

99I�K2
xy99

~hðkÞ992
Z99H99299eðkÞ992

þ299H99 99Kxy9999eðkÞ9999 ~hðkÞ99

ð53Þ

Then, calculating the square roots,

99 ~h994
�299H99 99Kxy99 99eðkÞ997

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
499H99299Kxy99

299eðkÞ992
þ499e kð Þ99299H992

p
299I�K2

xy99

¼
�299H9999Kxy9999eðkÞ997299H9999eðkÞ99

299I�K2
xy99

ð54Þ

This condition forDVo0 implies that ~h is ultimately bounded by

99 ~h99r
ð1�99Kxy99Þ99H9999eðkÞ99

99I�Kxy
299
For large errors:

Lð ~hðkÞÞ ¼
lx tanh kx

lx
~rxðkÞ

� 	
ly tanh ky

ly
~ryðkÞ

� 	
2
64

3
75¼ lx

ly

" #
ð55Þ

Now considering (51) and (55) with L¼ lx ly
h iT

DVðkÞ ¼ eT ðkÞHT HeðkÞ�2eT ðkÞHT LþLT L� ~hT
ðkÞ ~hðkÞ ð56Þ

a sufficient condition for DVo0 is

99 ~hðkÞ992
Z99eðkÞ992 99H992

þ299eðkÞ9999H9999L99þ99L992
ð57Þ

from (57) the following equation is obtained:

99 ~hðkÞ99Zð99eðkÞ9999H99þ99L99Þ ð58Þ

which sets the final size for the control error ~hðkÞ. Both, (54) and
(58) allows to state that the control error is bounded in terms of the
NN approximation error.
7. Experimental results

The proposed controller was implemented on a Pioneer 2-DX
mobile robot (Fig. 4), which admits linear and angular velocities as
input reference signals. The controller was initialized with the
dynamic parameters of the robot, which were obtained via
identification, as proposed in Carelli and De La Cruz (2006).

In the experiment, the robot starts at (rx, ry)¼(0, 0) m, and a
disturbance load of about 6 kg was placed on it. The robot must
follow a circular reference trajectory:

rxref ¼ 0:75sinð0:03pkT0Þ

ryref ¼ 0:75cosð0:03pkT0Þ

(
ð59Þ

After 83 s, the neural compensation controller is switched-on
and the error trajectory decreases alternating between 0.02 and
0.04 m. Figs. 5 and 6 depict the speeds of the robot and the control
actions produced by the controller, and the references and output
positions of the mobile robot, respectively.

Fig. 7 shows the trajectory followed by the mobile robot without
neural compensation, and with adaptive neural compensation after
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Fig. 5. Speeds of the robot and control actions by the RBF adaptive controller.
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the first 83 s of the run. Fig. 8 depicts the distance errors defined as
the instantaneous distance between the reference and robot
position. From the experimental results, and comparing the initial
phase and the period during which the adaptive compensator is
active, it remains clear the advantage of using the neural compen-
sation. The controller is capable to compensate the dynamic
uncertainties, which could be produced simply by changing the
load or its position on the robot.
8. Conclusions

In this paper, a trajectory tracking controller for a unicycle-like
mobile robot, including a neural adaptive compensator, is pro-
posed. The controller is capable of generating smooth and con-
tinuous velocity commands to the robot. The tracking control
errors are shown to be ultimately bounded, and the bounds are
calculated as a function of the RBF-NN approximation errors. The
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RBF-NN controller compensates the difference between a known
nominal dynamics and the actual dynamics of the robot. Therefore,
the computational effort is significantly smaller than a NN learning
the complete inverse model of the robot. Experimental results
show the good performance of the proposed tracking controller and
its capacity to adapt to the actual robot dynamics. The controller
was designed in discrete time, which allows a direct implementa-
tion on a digital processing system.
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