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1 Introduction

Relativistic effects are at the moment starting to be included routinely in calculations of magnetic

molecular properties on molecular systems that contain heavy atoms. That is because we are

aware of that they are very important in order to predict experimental results.

The usual treatment of molecular properties by theoretical methods is based on classical elec-

trodynamic theory, i.e without resorting to quantized fields. The reason is that most of the

relevant terms are included in the perturbed Hamiltonian just using classical fields. Given that

the experimental results for magnetic molecular properties have an increasing precision that is in

average less than a few percent of its total value it would be important to relax the limitation

of using classical fields in our calculations in order to include additional corrections. This is also

important from a formal point of view.

Then the next step for precise calculation of molecular properties is related with QED effects.

There were some preliminary studies for atomic systems by different groups. Labzowsky, Goidenko

and Pyykko found that the bound-state QED contributions to the g-factor of valence ns electrons

in alkali metal atoms is as large as 10 % for Rb and less for the other atoms of that series.1They

also showed that the radiative corrections for the heavy and superheavy atoms can rise up to 0.5%

of the ionization energy.2 They included QED derived potentials on usual perturbation theory to

calculate energy corrections.

Our aim in this paper is to go an step forward trying to describe in some detail a formalism

necessary to use when one wants to include QED effects on molecular magnetic properties; even

though we have recently worked on the NMR-J spectroscopic parameter by using a different

methodology.3 The new scheme presented here can be applied to both spectroscopic parameters

mentioned above and is more systematic than the previous one.

In order to include QED effects in calculation of atomic or molecular properties it is possible to

work with different formalisms. The formulation of QED we choose to work with is the adiabatic

S-matrix approach of Gell-Mann, Low4 and Sucher5 which was first applied to the bound-state

QED by Labzowsky6 and later on by Mohr.7 This formalism was applied very recently to atomic

and highly ionized systems.8,9 In our previous work on this field we worked out QED corrections

to the NMR-J spectroscopic parameter but without inclusion of radiative corrections which are

now treated properly from the outset.

In the next section we give a summary of quantum electrodynamics perturbation theory based

on S-matrix formalism. Then we apply that general formalism to the calculation of self-energy

corrections to NMR properties. Depending on the external potential we choose (arising from the

nuclear magnetic moment or the external static magnetic field) we arrive to J or σ.
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2 Quantum electrodynamics perturbation theory

We briefly outline in this section the theory for the calculation of level shifts of bound state

electrons interacting with quantized radiation. A more comprehensive description can be found

elsewhere.7 Bound state quantum electrodynamics is a reformulation of standard QED for free-

particles as described in textbooks.10 It is assumed that Dirac equation with a given classical

potential V [
cα · p + βmc2 + V

]
φi = εiφi (1)

can be solved. The factors α are the 4 × 4 Dirac matrices which, in the standard representation,

has the form

α =

(
0 σ

σ 0

)
, β =

(
1 0

0 −1

)
(2)

σ are the Pauli matrices, and 0 and 1 represent the null and unit 2× 2 matrices. It is convenient

to use the set of matrices γ0 = β and γ = βα in order to manifest explicitly the relativistic

covariance properties of the Dirac matrices.

The eigenfunctions φi are taken as the zeroth-order wave functions in terms of which the field

operators are built

ψ(x) =
∑
εi>0

aiφi(x) +
∑
εj<0

b†jφj, (3)

where ai (b†j) is the annihilation (creation) operator for an electron (a positron) in the state φi

(φj) of energy εi > 0 (εj < 0). The Fock operators satisfy the usual anti-commutation relations

[ai, a
†
j]+ = [bi, b

†
j]+ = δij, (4)

and zero otherwise.

The interaction between electrons and a quantized electromagnetic field is accounted for through

the interaction Hamiltonian

HI(x) =
∫
d3xjµ(x)Aµ(x), (5)

where jµ(x) = −eψ̄(x)γµψ(x) is the Dirac 4-current written in terms of the fermion fields and

the γ matrices γµ = (γ0,γ), Aµ is the electromagnetic 4-vector potential and x = (x0,x) is the

position 4-vector 1.

For the level shifts calculations, it is convenient to replace the interaction Hamiltonian by an

adiabatically damped one

Hε
I(x) =

∫
d3xe−ε|x0|jµ(x)Aµ(x). (6)

1Einstein’s convention that two repeated Greek indices indicates summation from 0 to 3 is used throughout this
paper.
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In that case, Gell-Mann, Low4 and Sucher5 have shown that the energy shift of an unperturbed

state |0〉 is given by

∆E0 = lim
ε→0,λ→1

iελ

2

∂
∂λ

〈0|Sε,λ |0〉c
〈0|Sε,λ |0〉c

+ const. (7)

where Sε,λ is the S-matrix defined as

Sε,λ = 1 +
∞∑

k=1

(−iλ)k

k!

∫
d4x1 . . .

∫
d4xkT{Hε

I(x1) . . . H
ε
I(xk)}. (8)

T{Hε
I(x1) . . . H

ε
I(xk)} is the time-ordered product (i.e., x0

1 < x0
2 < . . . < x0

k) of the operators

Hε
I(x1) . . . H

ε
I(xk), and 〈. . .〉c represents connected diagrams corresponding to expectation values

on the state |0〉 and it will be implicitly understood in the following. Wick’s theorem11 allows

to express a T−product of any set of Fock operators A,B,C, . . . X, Y, Z in terms of their normal

ordered product and one, two, etc. contractions,

T{ABC . . .XY Z} = : ABC . . .XY Z : + : AB︸︷︷︸C . . .XY Z : + : ABC︸ ︷︷ ︸ . . . XY Z : + . . .

+ : ABC . . .XY Z︸ ︷︷ ︸ : + . . . (9)

i.e. product of Fock operators with the creation operators placed to the left of the annihilation

operators times photon and fermion propagators (represented by the underbraces) defined as

SF (x, y) = 〈T{ψ(x)ψ̄(y)}〉, (10)

DFµν(x, y) = 〈T{Aµ(x)Aν(y)}〉. (11)

The time dependence of the propagators can be made explicit if we write them as follows

SF (x, y) =
∫ dE

2πi
SF (x,y;E)e−iE(x0−y0), (12)

DFµν(x, y) = gµν

∫ dk0

2πi
DF (x,y; k0)e

−ik0(x0−y0). (13)

The fermion propagator SF (x,y;E) has the following spectral representation7

SF (x,y;E) =
∑
n

φn(x)φ̄n(y)

E − εn(1 − iδ)
, (14)

where δ is an infinitesimal positive quantity and n runs over the complete spectrum of eigenfunc-

tions. Expanding ∆E0 in power of λ, the energy formula can be written from first to fourth order

in the S-matrix as

∆E
(1)
0 =

iε

2
〈S(1)〉, (15)

∆E
(2)
0 =

iε

2

(
2〈S(2)〉 − 〈S(1)〉2

)
, (16)

∆E
(3)
0 =

iε

2

(
3〈S(3)〉 − 3〈S(1)〉〈S(2)〉 + 〈S(1)〉3

)
, (17)
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Figure 1: Basic self-energy Feynman diagram.

∆E
(4)
0 =

iε

2

(
4〈S(4)〉 − 4〈S(1)〉〈S(3)〉 − 2〈S(2)〉2 + 4〈S(1)〉2〈S(2)〉 − 〈S(1)〉4

)
. (18)

It has been shown7 that, for classical external potentials V and one-electron atoms in the state a,

the first and second order level shift formula reduces to the well known expressions from standard

perturbation theory

∆E(1)
a = Vaa (19)

∆E(2)
a =

∑
En �=Ea

Van
1

Ea − En

Vna. (20)

As an application of the third order formula, Blundell et al.8 calculated self-energy corrections in

atomic systems in the presence of an external potential. In the next section, we use the fourth

order energy expression ∆E
(4)
0 to obtain self-energy corrections to the NMR parameters.

3 Self-energy effects on NMR properties

In this section, the S-matrix theory outlined in the previous section is applied to obtain expres-

sions for the self-energy corrections to the NMR parameters J and σ. The self-energy correction

corresponds to the level shifts due to the interaction of an electron with itself via one photon

exchange (Fig. 1). For the problem we are tackling, we need to consider this type of diagrams in

addition to the interaction with two external potentials, namely, those coming from the interaction

of an electron with the magnetic moments µ of two different nuclei (in the case of the tensor J) or

the electron with a nucleus and the external magnetic field B (in the case of the nuclear magnetic

shielding σ).

Hence, we consider the electromagnetic 4-potential as the sum of a quantized potential Aµ plus

a classical one (ϕ, 0, 0, 0) and take the Dirac-Fock ground state |DF 〉 as the unperturbed state

|0〉. Then, the interaction Hamiltonian splits in HI = HA
I +HB

I , where

HA
I = e

∫
d3xψ̄(x)γµAµψ(x), (21)

HB
I =

∫
d3xψ̄(x)V (x)ψ(x), (22)
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and V (x) = eγ0ϕ(x) = γ0U(x). In order to discuss simultaneously both J and σ we assume

V = VN + VB, where

VN(r) = −eγ · µN × rN

r3
N

(23)

VB(r) = −eγ·B × r

2
, (24)

such that the proper potential should be taken for the property of interest.

Since we are interested in properties quadratic in the external potential V , the ∆E
(4)
0 expression

can be written as

∆E
(4)
0 = 2iε

(
〈S(4)〉 − 〈S(2a)〉〈S(2b)〉 + 〈S(1)〉2〈S(2a)〉 − 〈S(1)〉〈S(3)〉

)
, (25)

where

〈S(1)
ελ 〉 = −iλ

∫
d4xe−ε|x0|〈T{(: ψ̄V ψ :)x}〉 (26)

〈S(2a)
ελ 〉 = −λ

2e2

2

∫
d4x

∫
d4ye−ε|x0|e−ε|y0|

×〈T{(: ψ̄γµAµψ :)x(: ψ̄γ
νAνψ :)y}〉 (27)

〈S(2b)
ελ 〉 = −λ

2

2

∫
d4x

∫
d4ye−ε|x0|e−ε|y0|

×〈T{(: ψ̄V ψ :)x(: ψ̄V ψ :)y}〉 (28)

〈S(3)
ελ 〉 =

iλ3e2

3

∫
d4x

∫
d4y

∫
d4ze−ε|x0|e−ε|y0|e−ε|z0|

×〈T{(: ψ̄γµAµψ :)x(: ψ̄γ
νAνψ :)y(: ψ̄V ψ :)z}〉 (29)

〈S(4)
ελ 〉 =

λ4e2

4

∫
d4w

∫
d4x

∫
d4y

∫
d4ze−ε|w0|e−ε|x0|e−ε|y0|e−ε|z0|

×〈T{(: ψ̄V ψ :)w(: ψ̄γµAµψ :)x(: ψ̄γ
νAνψ :)y(: ψ̄V ψ :)z}〉 (30)

Note that S(2a) and S(2b) represent the terms of the second order S-matrix containing only quan-

tized and classical potentials, respectively. It should be also stressed that even when we are treating

a many-electron system, the use of the approximation of independent particles and, hence, the

lack of dynamical correlation in the wave functions, allows us to use all the formal machinery

devised for one-electron calculations.

Let us consider separately the different contributions to the S-matrix.
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3.1 First order

As an illustration of the use of the level shift formulas, let us consider in detail the calculations

of the first few orders of the S-matrix. To first order, writing explicitly the time dependence, and

taking into account that the state |0〉 has no positrons, we get

〈S(1)
ελ 〉 = −iλ∑

ij

∫
d3xφ̄i(x)V (x)φj(x)

×
∫
dx0e−ε|x0|ei(εi−εj)x

0〈: a†iaj :〉

= −iλ∑
ij

Uij
2ε

ε2 + (εi − εj)2
〈: a†iaj :〉 (31)

For the Dirac-Fock state |0〉, 〈: a†iaj :〉 = δij, where i must be an occupied state, say, α. Then,

〈S(1)
ελ 〉 = −2iλ

ε

occ∑
α

Uαα, (32)

that is, ∆E
(1)
0 =

∑occ
α Uαα, which is a generalization of the one-electron case.

3.2 Second order

In this section we shall consider in some detail the calculation of the terms S
(2a)
ελ and S

(2b)
ελ , because

their treatment involves some general procedures to be applied in the more complicate higher order

terms.

3.2.1 Term S
(2a)
ελ

Application of the Wick theorem to the product T{HA
Iε(x)H

A
Iε(y)} gives one- and two-electron

operators. The one-electron term 2γµDF (x, y)SF (x, y)γµ : ψ̄(x)ψ(y) : is related to the self-energy

of the DF-occupied states and is the only term to be included in S
(2a)
ελ . The two-electron term is

not relevant for the calculations involved here since it gives a contribution related to one-photon

exchange interaction between two-electrons, namely, the Coulomb-Breit interaction.

As in the first order case, the expectation value 〈: ψ̄(x)ψ(y) :〉 becomes a summation over occupied

states α. Integration over time variable x0 gives

∫
dx0e−ε|x0|e−i(k0+E−εα)x0

= ∆ε(k0 + E − εα) (33)

and a similar result for the integration over y0, where

∆ε(k0 + E − εα) =
2ε

ε2 + (k0 + E − εα)2
(34)
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is a function such that

∆ε(E)

{
= 2/ε = O(ε−1), E = 0,

� 2ε/E2 = O(ε), E �= 0.
(35)

Recalling that at the end of the calculations we take ε → 0, the roots u = 0 of the argument

of ∆ε(u) determine the most relevant energy regions for the integrals over E. So, for S
(2a)
ελ , the

energy denominator emphasize the region E = εα − k0 and we can approximate the integral over

E by evaluating the propagator S(x,y;E) at that energy value. Hereafter, this will be a general

strategy for the evaluation of those integrals. Hence,

〈S(2a)
ελ 〉 = λ2

occ∑
α

∫ dE

2πi

[
2ε

ε2 + (k0 + E − εα)2

]2

Σαα(εα), (36)

where the self-energy insertion Σmn(ε) is defined by

Σmn(ε) = −e2
∫
d3x

∫
d3y

∫ dk0

2πi
φ̄m(x)γµDF (x,y; k0)SF (x,y; ε− k0)γµφn(y). (37)

that is,

〈S(2a)
ελ 〉 =

λ2

iε

occ∑
α

Σαα(εα) (38)

3.2.2 Term S
(2b)
ελ

The time-ordered product T{HB
Iε(x)H

B
Iε(y)} has also contributions from one- and two-electron

operators

2
∑
ij

φ̄i(x)V (x)SF (x, y)V (y)φj(x)a
†
iaj

+
∑
ijkl

φ̄i(x)V (x)φj(x)φ̄k(y)V (y)φl(y)a
†
ia

†
kalaj. (39)

Inserting Eq. (39) into the expression (28) for S
(2b)
ελ , the integration over the time variables

gives

∆ε(E + k0 − εi)∆ε(E + k0 − εj) (40)

for the first (one-electron) term; while

∆ε(k0 + εj − εi)∆ε(k0 + εk − εl) (41)

for the two-electron one. Furthermore, for the DF ground state, 〈a†iaj〉 = δij and 〈a†ia†kalaj〉 =

δijδkl − δilδkj, j and l being occupied orbitals, say, α and β. Hence, the ∆ε−functions emphasize,
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Figure 2: Feynman diagrams side left (L), side right (R), and vertex (V) for self-energy correction

corresponding to the S
(3)
ελ term.

respectively, the regions E = εα − k0 and k0 = εα − εβ of the integrals over E and k0. Then, S
(2b)
ελ

gives

S
(2b)
ελ = 2λ2ε2

∑
α �=β

UαβUβα

[ε2 + (εα − εβ)2]2
+ λ2

∑
αl

UαlUlα

∫ dE

2πi

1

E − εl(1 − iδ)

[
2ε

ε2 + (E − εα)2

]2

,

(42)

where we have replaced the fermion propagator by its spectral representation, Eq. (14). This is a

common technique used throughout this paper, and we use it repeatedly in the following sections,

for the calculation of higher order terms. It should be noted that the first term of the previous

Eq. is of order O(ε2) because α �= β. Therefore, it does not contribute to the energy shift and,

hereafter, it will be we disregarded.

Finally,

〈S(2b)〉 = −2
λ2

ε2
∑
αlα

UαlαUlαα

+λ2
∑
αl′α

Uαl′αUl′αα

[
sg(εl′α)

(εα − εl)
2 +

1

iε

1

εα − εl′α

]
. (43)

where lα (l′α) represents states degenerate (non-degenerate) with α.

3.3 Third order

Third order S-matrix, Eq. (29) produces one- and two-electron operators. The former comes from

the diagrams depicted in Fig. 2, while the later are product of S(1) times S(2a), i.e., a diagram

with two electron lines, one of them interacting with the external field and the other having a

self-energy graph (Fig. 1).

Diagrams of Fig. 2 have been previously considered8 in the calculation of self-energy corrections

in atomic systems in the presence of an external potential. They were named left-side (L), right-
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side (R) and vertex (V) terms. Following the same lines as the calculation of first and second

order terms, we get expressions which represent many-electron generalizations of those from Ref.8

〈S(3)
L 〉 = iλ3e2

occ∑
α

∫
d3x

∫
d3y

∫
d3z

∫ dk0

2πi

∫ dE1

2πi

∫ dE2

2πi

×φ̄α(x)V (z)SF (z,x;E1)γ
µDF (x,y; k0)

×SF (x,y;E2)γµφα(y)∆ε(E2 + k0 − E1)

×∆ε(E2 + k0 − εα)∆ε(E1 − εα) (44)

〈S(3)
R 〉 = iλ3e2

occ∑
α

∫
d3x

∫
d3y

∫
d3z

∫ dk0

2πi

∫ dE1

2πi

∫ dE2

2πi

×φ̄α(x)γµDF (x,y; k0)SF (x,y;E1)γµ

×SF (y,z;E2)V (z)φα(z)∆ε(E2 − εα)

×∆ε(E1 + k0 − E2)∆ε(E1 + k0 − εα) (45)

〈S(3)
V 〉 = iλ3e2

occ∑
α

∫
d3x

∫
d3y

∫
d3z

∫ dk0

2πi

∫ dE1

2πi

∫ dE2

2πi

×φ̄α(x)γµDF (x,y; k0)SF (x,y;E1)V (z)

×SF (z,y;E2)γµφα(y)∆ε(E1 + k0 − εα)

×∆ε(E2 + k0 − εα)∆ε(E1 − E2). (46)

The ∆ε-functions favor E1 = εα and E2 = εα in S
(3)
L and S

(3)
R , respectively. So, if we proceed,

as in the previous lower orders calculations, to replace the fermion propagators by its spectral

representations, the whole expression diverges. However, S
(3)
V does not suffer of this problem

because the arguments of the ∆ε-functions does not vanish at any energy eigenvalue εi. Then, a

special treatment must be given to the side terms, while S
(3)
V can be handled as before to give

〈S(3)
V 〉 =

2iλ3

3ε

occ∑
α

Λαα(εα), (47)

where the vertex insertion Λnm(ε) is defined by

Λnm(ε) = −e2
∫
d3x

∫
d3y

∫
d3z

∫ dk0

2πi
φ̄m(x)γµDF (x,y; k0)SF (x,z; ε

−k0)V (z)SF (z,y; ε− k0)γµφn(y). (48)

Inserting those terms of the spectral representation of the fermion propagators, Eq. (14), which

are non degenerate with the state α, the calculations follows the same steps of the vertex term
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and we get

〈S(3a)
L 〉 =

2iλ3

3ε

occ∑
α

∑
εl �=εα

Uαl
1

εα − εl

Σlα(εα).

(49)

A similar expression for the right term is

〈S(3a)
R 〉 =

2iλ3

3ε

occ∑
α

∑
εl �=εα

Σαl(εα)
1

εα − εl

Ulα

(50)

To handle those terms of Eq. (14) corresponding to states degenerates with α, we expand the

second propagator in power series around E = εα − k0 to first order; for example, in the left side

term

SF (x,y;E2) � SF (x,y; εα − k0)

+ (E2 − εα + k0) × S ′
F (x,y; εα − k0),

(51)

where

S ′
F (x,y; εα − k0)

= −
∫
d3wSF (x,w; εα − k0)γ

0SF (w,y; εα − k0). (52)

The first term of Eq. (51), combined with the part of the spectral representation of the propagator

(14) containing states α′ degenerate with α (εα′ = εα) divergent at E = εα − k0, gives

〈S(3b)
L 〉 = −iλ

3

ε2

occ∑
α

∑
α′
Uαα′Σα′α (53)

〈S(3b)
R 〉 = −iλ

3

ε2

occ∑
α

∑
α′

Σαα′Uα′α (54)

Finally, the last term of the expansion (51), together with those from the representation (14)

corresponding to states α′, give rise to the so-called derivative terms7

〈S(3c)
L 〉 =

iλ3e2

3ε

occ∑
α

∑
α′
Uαα′

∫
d3w

∫
d3x

∫
d3y

∫ dk0

2πi

×DF (x,y; k0)φ̄α′(x)γµSF (x,w; εα − k0)γ
0

×SF (w,y; εα − k0)γµφα(y), (55)
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and

〈S(3c)
R 〉 =

iλ3e2

3ε

occ∑
α

∑
α′

∫
d3w

∫
d3x

∫
d3y

∫ dk0

2πi

×DF (x,y; k0)φ̄α(x)γµSF (x,w; εα − k0)γ
0

×SF (w,y; εα − k0)γµφα′(y)Uα′α (56)

It is worth to mention the symmetry between both side terms.

3.4 Fourth order

Following the same procedure as before, we get the following contributions to S(4)

S(4) = S
(4)
V V + S

(4)
LV + S

(4)
V R + S

(4)
LR + S

(4)
LL + S

(4)
RR, (57)

corresponding to the Feynman diagrams of Fig. 3, where

〈S(4)
i 〉 = λ4e2

∑
α

∫
d4w

∫
d4x

∫
d4y

∫
d4z

×e−ε|w0|e−ε|x0|e−ε|y0|e−ε|z0|Mi, (58)

and Mi (i = V V, LV, V R,LR,LL,RR) is defined as follows

MV V = φ̄α(x)γµDF (x, y)SF (x,w)V (w)SF (w, z)V (z)SF (z, y)γµφα(y).

MLV = φ̄α(w)V (w)SF (w, x)γµDF (x, y)SF (x, z)V (z)SF (z, y)γµφα(y)

MV R = φ̄α(x)γµDF (x, y)SF (x,w)V (w)SF (w, y)γµSF (y, z)V (z)φα(z)

MLR = φ̄α(w)V (w)SF (w, x)γµDF (x, y)SF (x, y)γµSF (y, z)V (z)φα(z)

MLL = φ̄α(w)V (w)SF (w, z)V (z)SF (z, x)γµDF (x, y)SF (x, y)γµφα(y)

MRR = φ̄α(x)γµDF (x, y)SF (x, y)γµSF (y, w)V (w)SF (w, z)V (z)φα(z) (59)

The subscripts (L), (R) and (V) have the same meaning as those from third order terms S(3).

Integration over time variables gives products of ∆ε-functions emphasizing the energy regions

detailed in Table 1. As it is shown there, the relevant point for the energy landscape in the V V

term correspond to the value εα − k0 which is not a pole for any of the propagators. Hence,

the term S
(4)
V V becomes fairly convergent. The contributions S

(4)
LV and S

(4)
V R, however, contain one

fermion propagator diverging at the relevant point εα. Finally, the contributions S
(4)
LR, S

(4)
LL and

S
(4)
RR have two divergent propagators at the occupied orbital energies. Then, the term S

(4)
V V can be
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Figure 3: Fourth order Feynman diagrams vertex-vertex (VV), left-vertex (LV), vertex-right (VR),

left-right (LR), left-left (LL) and right-right (RR) contributing to self-energy correction quadratic

in the external field corresponding to the S
(4)
ελ term.

Table 1: Energy regions emphasized by the ∆ε-functions after integration over time variables in

the contributions to S(4). See text after Eq. (58)

Term Leading energy regions

V V E1 = E2 = E3 = εα − k0

LV E2 = E3 = εα − k0, E1 = εα

V R E1 = E2 = εα − k0, E3 = εα

LR E2 = εα − k0, E1 = E3 = εα

LL E3 = εα − k0, E1 = E2 = εα

RR E1 = εα − k0, E2 = E3 = εα
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calculated after some long but straightforward manipulations, to give

〈S(4)
V V 〉 =

ie2λ4

2ε

∑
α

∫
d3w

∫
d3x

∫
d3y

∫
d3z

∫ dk0

2πi

× φ̄α(x)γµDF (x,y; k0)SF (x,w; εα − k0)V (w)

× SF (w,z; εα − k0)V (z)SF (z,y; εα − k0)γµφα(y) (60)

The other contributions, however, require the use of the power expansion (51) for the propaga-

tors converging at εα, while separating the states degenerate with α in the spectral representation

(14) for those propagators diverging at εα.

So, we have a term arising from the states l non-degenerate with α

〈S(4)
LV 〉non−deg = −iλ

4

2ε

occ∑
α

∑
εl �=εα

Uαl
1

εα − εl

Λlα(εα), (61)

plus a term derived from states α′ degenerate with α,

〈S(4)
LV 〉deg = −2λ4

3ε2

occ∑
α

∑
εα=εα′

Uαα′Λα′α(εα), (62)

with the non divergent (at εα) propagators evaluated at εα −k0 in both cases. On the other hand,

taking the derivative term (51) from one propagator and evaluating the other at εα − k0 it gives

〈S(4)
LV 〉deriv = −iλ

4e2

3ε

∑
αα′

∫
d3w

∫
d3x

∫
d3y

∫
d3z

∫ dk0

2πi
Uαα′

× φ̄α′(x)γµDF (x,y; k0)
[
SF (x,w; εα − k0)γ

0

× SF (w,z; εα − k0)V (z)SF (z,y; εα − k0)

+ SF (x,z; εα − k0)V (z)SF (z,w; εα − k0)γ
0

× SF (w,y; εα − k0)γµ]φα(y). (63)

Finally, there is also a term arising from the derivative term in both propagators. However, that

term becomes of the order O(ε0), so it does not give any level shift and can be disregarded. The

S
(4)
V R contribution can be split similarly, too.

In the treatment of the terms S
(4)
LR, S

(4)
LL and S

(4)
RR, we separate the degenerate states α′ and α′′

from the spectral representation of the two propagators which diverge at εα, and expand the other

one according to (51). We shall not give here the details of the resulting terms which are rather
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involved; but, as an illustration, we can consider, for example, those parts of the propagators

depending on the states l and n having energies εl �= εα �= εn. Then,

〈S(4)
LL〉non−deg =

λ4

2iε

∑
α

∑
l,n

Uαl
1

εα − εl

Uln
1

εα − εn

Σnα(εα),

(64)

and similar terms for 〈S(4)
LR〉non−deg and 〈S(4)

RR〉non−deg.

4 Discussion

We derived in the previous section the various terms of the S−matrix contributing to the energy

shifts given by Eq. (25). It should be noted that some of them (e.g., 〈S(4)
V V 〉, 〈S(4)

LV 〉non−deg or

〈S(4)
LL〉non−deg) are of order O(1/ε), what gives ε−independent energies. Others, however, have a

ε−dependence faster than O(1/ε); e.g., 〈S(4)
LV 〉deg. These terms diverge as ε approaches zero. The

same happens with those terms of Eq. (25) containing products, like 〈S(1)〉〈S(3)〉. In fact, those

terms cancel out the ε−divergences from the ones coming from 〈S(4)(1/εn)〉 such that n > 1.

Hence, finally, we are left with energy expressions which does not diverge at the limit ε→ 0.

In order to gain insight about the final expressions, let us discuss the energy contributions from

the terms 〈S(4)
V V 〉, 〈S(4)

LV 〉non−deg and 〈S(4)
LL〉non−deg. The level shift formula Eq. (25) gives

∆EV V = −e2
occ∑
α

∫
d3w

∫
d3x

∫
d3y

∫
d3z

∫ dk0

2πi

× φ̄α(x)γµDF (x,y; k0)SF (x,w; εα − k0)V (w)

× SF (w,z; εα − k0)V (z)SF (z,y; εα − k0)γµφα(y) (65)

∆ELV =
occ∑
α

∑
εl �=εα

Uαl
1

εα − εl

Λlα(εα), (66)

and

∆ELL =
occ∑
α

∑
l,n

Uαl
1

εα − εl

Uln
1

εα − εn

Σnα(εα). (67)

The last two formulas are relatively simple and easy to interpret. ∆ELV can be thought as a

second order perturbation theory, written in terms of orbital energies and one-electron matrix

elements, between the perturbation U and the self-energy corrected perturbation Λ. However, Λ

can not be given in a closed form and it is only defined through its matrix elements already defined

in Eq. (48). From its definition, we see that Λlα contains the external potential V = γ0U such
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that the whole expression ∆ELV becomes quadratic in U , as we expected. Furthermore Λlα has

contributions from the complete spectrum of photon frequencies k0.

On the other hand, the energy ∆ELL shows explicitly its quadratic dependence on V , and

it has a form resembling third order perturbation theory with the self-energy insertion Σnα as

an additional perturbation. Both ∆ELV and ∆ELL are feasible to be implemented in currently

existing computational codes.

Finally, the two-vertex contribution ∆EV V cannot be written as a perturbation theory-like

expression, showing its intrinsic QED origin. Terms like this cannot be derived from standard

perturbative methods, and illustrate the usefulness of the theory presented in this work.

5 Concluding Remarks and Perspectives

We have given in this paper a theory for the inclusion of self-energy corrections to the nuclear

magnetic parameters J and σ. It is based on the S−matrix formulation of bound-states quantum

electrodynamics. Explicit expressions were given for first up to fourth order S−matrix terms.

Divergent terms at the limit ε→ 0 cancel out each other and ε−independent energy contributions

are obtained. The resulting expressions have standard perturbation theory forms with new QED-

derived perturbation operators added.

Some work remains to be done to get formulas computationally implementable in widely used

relativistic electronic structure computational codes. Particularly, a regularization scheme must

be applied in order to render our final formulas ultraviolet and infrared convergent. In previous

works, dimensional regularization have proven to be effective. It should also be noted that we have

not considered here other QED radiative effects like vacuum polarization, which are expected to

be of the same order than those included in this work.
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