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SUMMARY

In this work, a technique for simultaneous untangling and smoothing of meshes is presented. It is
based on an extension of an earlier mesh smoothing strategy developed to solve the computational mesh
dynamics stage in fluid-structure interaction problems. In moving grid problems, mesh untangling is
necessary when element inversion happens as a result of a moving domain boundary. The smoothing
strategy, formerly published by the authors, is defined in terms of the minimization of a functional
associated with the mesh distortion by using a geometric indicator of the element quality. This
functional becomes discontinuous when an element has null volume, making it impossible to obtain a
valid mesh from an invalid one. To circumvent this drawback, the functional proposed is transformed in
order to guarantee its continuity for the whole space of nodal coordinates, thus achieving the untangling
technique. This regularization depends on one parameter, making the recovery of the original
functional possible as this parameter tends to zero. This feature is very important, consequently,
it is necessary to regularize the functional in order to make the mesh valid, then, it is advisable to
use the original functional to make the smoothing optimal. Finally, the simultaneous untangling and
smoothing technique is applied to several test cases, including 2D and 3D meshes with simplicial
elements. As an additional example, the application of this technique to a mesh generation case is
presented.
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1. Introduction

Several scientific and industrial applications of computational mechanics problems involve
moving meshes. Examples of problems related to moving meshes include free surfaces, two-fluid
interfaces, fluid-object and fluid-structure interactions, and moving mechanical components.
In computation of fluid problems with moving boundaries and interfaces, either an interface-
tracking or interface-capturing technique can be used, depending on the complexity of the
interface as well as on other aspects of the problem. An interface-tracking technique requires
meshes that “track” the interfaces, then, the mesh needs to be updated as the flow evolves.
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2 E. LOPEZ ET.AL.

Besides, in an interface-capturing technique for two-fluid flows, the computations are based
on fixed spatial domains, where an interface function, marking the location of the interface,
needs to be computed to “capture” the interface within the resolution of the finite element
mesh covering the area where the interface is [1, 2].

In fluid-structure interaction (FSI) problems, one of the most popular interface tracking
techniques is the Arbitrary Lagrangian Eulerian (ALE) formulation [3, 4, 5] In this case,
the mesh is updated at every time step due to the motion of the domain boundary, causing
mesh quality deterioration and, in some situations, generating an invalid mesh where any
of the elements in the grid is inverted. It is well known that poor quality elements have
strong influence on stability, convergence and accuracy of the numerical methods used. In
Computational Mechanics, the strategies developed to solve the mesh motion are grouped in a
special topic named CMD (Computational Mesh Dynamics). Its importance may be assessed
simply inspecting the current bibliography [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17].

In this work, the main interest is the resolution of FSI problems. These type of applications
require the solution of two problems, coupled in the physical domain: the flow problem dictates
the generalized forces acting over the structure, while the structural problem determines the
geometry variation caused by its deformation and also its translational and rotational motion.
Nowadays, efficient solution of FSI problems with large displacement related to the boundary
is still a challenging problem in Computational Mechanics. Mainly, these problems are solved
in a partitioned fashion. First, the fluid solution is obtained using a CFD (Computational Fluid
Dynamics) code with structural displacements estimated by a predictor stage. The pressure
and possibly the viscous stresses are stored at each point of the fluid-structure interface.
After that, these time-dependent loads are transferred to a CSD (Computational Structure
Dynamics) code, which finds the deformation of the structure in time [18, 19]. Finally, a new
fluid solution is found with the updated position of the structure. Although the moving mesh is
only an artificial field in the coupled three-field FSI problem (CFD+CSD+CMD), it strongly
influences the performance, robustness and accuracy of the overall approach.

In general, the CFD stage consumes most of the CPU time, adding restrictions to the time
step, specially in regions where the mesh is refined. Besides, the boundary motion may also
cause the inversion of some elements, giving rise to a forced reduction of the time step due
to CMD reasons. This is not desirable because the CMD problem is artificially introduced to
follow the moving boundary. In order to avoid this limitation, it is advisable to introduce the
possibility of fixing the inverted elements instead of reducing the time step. A mesh untangling
strategy makes this solution possible.

This paper contributes in that sense. The untangling makes the CMD implementation more
robust, showing no influence on the time step selection. Furthermore, the smoothing capability
is necessary to optimize the mesh quality, improving the solution accuracy.

Mesh smoothing methods adjust the positions of the nodes in the grid while preserving
its topology (graph connectivity). Most of them are based on local algorithms, i.e. the free
nodes are relocated one by one iteratively, keeping the remainder fixed until the convergence is
reached. Laplacian smoothing is the most commonly used strategy due to its low computational
cost and its simple implementation. This method moves the internal nodes towards the
geometrical center of their neighbors. However, this method does not always work unless a valid
mesh is guaranteed. Moreover, in cases where convergence is not reached, the final mesh may
depend on the nodal sequence ordering. This is frequently found in local smoothing techniques.
Other kind of smoothing related to the Laplacian technique is Winslow smoothing, which is
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SIMULTANEOUS UNTANGLING AND SMOOTHING OF MOVING GRIDS 3

more robust in terms of avoiding the inversion of the elements in the mesh. This method is
based on logical variables with the requirement that these variables are harmonic functions
[20]. Originally, this technique was presented for structured meshes, being lately extended

to unstructured meshes by Knupp [21]. There are several smoothing methods based on the
resolution of optimization problems having the common goal of improving the mesh quality in
terms of a quality indicator [22, 23, 24, 25, 26, 27, 28]. The main disadvantage of such methods

is their computational cost. Depending on the way in which the system is solved, there are
local and global methods. While the global methods update the nodal position simultaneously
for the whole set of nodes, the local counterpart applies its methodology over each subset of
nodes until the whole set of nodes is updated. Local methods are to global ones as explicit
schemes are to implicit schemes for the resolution of differential equations with preponderant
diffusive character. Furthermore, there is no guarantee that a solution for a global strategy
may always be reached for a local method.

The smoothing technique may encounter situations where the mesh is invalid, then an
untangling methodology should be used. These methods are normally based on the element
volume [29] and, in general, both procedures, smoothing and untangling, are treated separately.
This tedious task may be incorporated for mesh generation purposes where the user is
interactively looking for a good quality mesh. Thinking of FSI problems, the CMD method
should have the capability of solving the mesh motion even though inverted elements were
found, guaranteeing a smooth mesh at each time. Therefore, a simultaneous procedure of
smoothing and untangling is preferable [30, 31, 32, 33]. In this paper, a simultaneous mesh
untangling and smoothing technique is proposed, based on the optimization of the grid quality.
The strategy used arises from the regularization of a previously presented functional [28], which
is then applied to solve the mesh dynamics in FSI problems. The optimization problem is solved
in a global way in order to avoid the drawbacks that local methods present.

The proposed method can be useful for mesh generation. In this case, the topology is
generated in an auxiliary domain in which the mesh may be generated in a structured way.
Then, the boundary nodes in that mesh are relocated in the real boundary. This sharp
movement of the boundary nodes is similar to the situation faced in mesh dynamics. Using
the untangling and smoothing technique herein presented, a valid mesh is generated.

In this work, the mesh smoothing method formerly published [28] is briefly presented.
The modifications introduced to avoid the relaxation of the initial mesh, the functional
regularization and the strategy used for solving the optimization problem are discussed. Finally,
several results for CMD in 2D and 3D are included and a 2D mesh generation application of
this strategy is shown. At the end, some conclusions and future work are included.

2. Original mesh smoothing strategy

In a previous work, the authors have presented a mesh smoothing technique useful for CMD
problems [28]. The technique is based on an optimization problem solved in a global way, where
the functional indicates the mesh distortion. Such a functional was defined in the following
way

Fx) = Y Fu(x) (1)
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with
Fe(x) = ¢ (2)
being ¢. some element quality indicator and n a negative integer.
Written in this way, the functional allows its application for any kind of elements properly

defining the quality indicator. In this work, the following geometric quality indicators are
proposed:

e Simplicial elements:

q=Cqgs (3)
where
\%4
s = = Jnd (4)
5,

being [; the length of the j—edge, V the volume and nd the number of spatial dimensions.
C = 4+/3 for triangles and C' = 36+/2 for tetrahedra.

e Non-simplicial elements:

M
g=0C H 4s.i (5)
i=1

where C' is a normalization constant such that 0 < ¢ < 1, M is the total number of
possible subdivision of the element in simplicial ones and gg is given by equation (4).

Due to the fact that the quality indicator for non-simplicial elements is based on those
defined for simplicial ones, only the simplicial element case is analyzed.

The proposed functional is continuous if g. # 0 for all the elements in the mesh, but F,(x)
tends to infinity when ¢, tends to zero. This last situation happens when there is at least
one element in the mesh with Vo — 0 and }_; l;“l is bounded below (i.e. the simplex is not
collapsed to a single point). Therefore, the application of this technique is restricted only to
valid meshes, since infinite barriers arise when the element volume tends to zero, making it
impossible to recover a valid mesh starting from an invalid one. In FSI problems, this limitation
is sometimes by-passed decreasing the time step size and, thus, avoiding the tangling of the
grid caused by the motion of the boundary. However, the computational cost suffers a large
increase, specially if some clustering of nodes is used close to the moving boundary to capture
fluid dynamics details like boundary layers. It is in this sense that the CMD strategy, enhanced
with simultaneous untangling and smoothing, is useful, providing a way to recover a valid mesh
despite starting with an invalid one.

Another approach to solve the mesh dynamics in FSI problems is to move the mesh for as
long as it is possible, and remesh when it is tangled or too distorted. It is possible to go back to
the previous time step (or a few time steps before the mesh is tangled) to generate a (fully or
partially) new mesh, project the solution from the old mesh to the new one, and keep on moving
the new mesh. The projection introduces an error over the solution and it must be properly
designed in order to conserve some physical quantities. Then, it is remarkable that one of the
main disadvantages of remeshing lies on its inherent non-compliance of some conservation laws
for the solution of FSI problems. In some sense, simultaneous mesh untangling and smoothing
is a procedure that allows the minimization of the amount of remeshing that can be done during
a simulation. With this feature, the error introduced by the projection needed for remeshing
may be bounded to a minimum.
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SIMULTANEOUS UNTANGLING AND SMOOTHING OF MOVING GRIDS 5

2.1. Awvoiding the relazation of the initial mesh

Pseudo-elastic CMD strategies have the property that they do not move the initial mesh unless
the domain boundary is deformed. This may be justified by using elastic energy minimization
arguments.

This property is not shared by the proposed functional (1), because sometimes the initial
mesh introduced by the user is not the optimal mesh with respect to this functional. Consider,
for instance, the structured mesh M1 shown in figure 1. The mesh is composed of 200 triangular
elements. Even if the mesh has a good quality, the optimization strategy tends to bring each
element to a regular (equilateral) shape, so that after a relaxation stage the mesh M3 is
obtained. In this case, during the relaxation process the nodes on sides AB, C'D are fixed,
whereas those on BC, AD are left to slide on the horizontal direction. As a consequence of the
optimization problem, the elements near vertexes A and C tend to shrink, whereas those near
vertexes B and D tend to grow. This effect is caused by the particular way in which the squares
have been split up into triangles. Note how the elements tend to reach the equilateral shape
in the relaxed mesh. After the mesh has relaxed, subsequent displacements of the boundary
nodes produce displacement of the internal nodes, as described before.

This initial “relaxation” stage may or may not be desirable. If the initial mesh has bad
quality, then this stage may tend to get a new better mesh. However, if the initial mesh has
some ad-hoc refinement, then it is possible that the relaxation stage will revert this refinement.
Consider for instance mesh M2 in figure 1, which has a refinement towards side AB in such a
way that the horizontal spacing near C'D is 3.5 times larger than the one at AB. As a result of
the relaxation process, the relaxed mesh M3 is reached. The resulting relaxed mesh depends
only on the topology of the mesh and on the constraints on the boundary nodes, but not on
the initial position of the internal nodes. In fact, both meshes M2 and M1 (with and without
refinement) produce the same final mesh M3 after relaxation.

The functional can be easily modified in order to keep the initial refinement. First, note
that for simplicial elements there is a unique linear transformation (xg, T') that transforms the
coordinates {X;cg j} of the regular element (i.e. equilateral triangle in 2D, regular tetrahedron
in 3D) to the actual element coordinates {x;}

xj = X0 + T Xpeg (6)
It is easy to see that the functional can be put as a function of the transformation matrix T
F, = g(T) (7)

This fact can be seen because the functional can be computed by taking the nodal coordinates
of the regular elements, applying the transformation and finally computing the side lengths,
volume, and the functional. All these computations are encapsulated in the function g(-). Of
course, the functional does not depend on the translation xq. In fact, it does only depend on
the metric of the transformation T7 T, because it is independent of rotations. However, for the
analysis that follows, it is needed only to accept that it depends on the transformation matrix,
as reflected in (7). By construction, g has a minimum when T = ¢ O, with ¢ as a scaling factor
and O as an orthogonal matrix, since in this case the current element is similar to the regular
one.

The purpose is to modify the functional so that the optimal element shape for F, is not the
regular element shape, or else the shape of some reference element with coordinates {Xyef ;}
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M1 =initial homogeneous mesh
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Figure 1. Relaxation of meshes

(see figure 2). It is easy to see that this can be done by considering the transformation from
the reference element to the current element

F.=g(TT ™) (8)

where T’ transforms the regular element to the reference element. For instance, as mentioned

.. . -1 . o
above, a minimum is reached when TT'~ " = cO, i.e. when the current element is similar in
shape to the reference element.

Note that, this modification can be simply introduced by computing transformations T, T"
and then computing the functional with the coordinates x; =TT 71Xref’j.

An example can be seen in figure 3. The original mesh on the right has a refinement ratio
of 1:10 near the AB side. Then, it is deformed at the AB side with a ramp with amplitude 0.2
(resulting in the mesh shown on the left). Note that as no initial relaxation is produced, the
final mesh still has the refinement towards the AB side.

Computations of the analytical jacobians are also straightforward. The jacobians with
respect to the x9 are computed in the standard way, and then they are composed with the
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Figure 2. Compensation for initial deformation in reference mesh
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3. Functional regularization

Being the main goal of the present work to include the untangling capability to the formerly

published mesh smoothing technique [

], the functional was modified using an idea proposed

in [32], that makes the functional continuous for all element volume values. This modification
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8 E. LOPEZ ET.AL.

consists in replacing V' in equation (4) by the function

h(V) = %(V + V2 1 487) (10)

This is a strictly increasing function of the volume and it is also a positive function for all
V' (see figure 4). The parameter § represents the value of the function for a null volume.

J
hv)

o 4

Figure 4. Function A(V).

Then, the modified functional is written as

. h(V)
Fi(x)=¢q", with ¢ =C =
L

The dependence of h(V) with the parameter § is such that

Vit V>0
0 if V<O

(11)

lim h =
Lim h(V)
Therefore, when the parameter ¢ tends to zero, the modified functional tends to the original
one for V' > 0, and also, the modified optimal solution tends to the original one. In the limit
when § — 0, F*(x) — F(x) pointwise.

4. Solution strategy

In this paper, a global strategy for solving the system of equations is applied, taking as variables
the coordinates of the free nodes in the mesh, simultaneously. Assuming that a valid mesh
exists for the given topology and boundary position, the goal is to look for the position of
the nodes in order to make the original functional optimal or to find an approximate solution
close to the original one. This can be done by decreasing the value of the parameter  below
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SIMULTANEOUS UNTANGLING AND SMOOTHING OF MOVING GRIDS 9

a prefixed tolerance. According to numerical examples, the lower the parameter §, the slower
the convergence rate of the optimization algorithm, without guarantee of a final convergence.
Moreover, if § is not small enough the optimal mesh may be invalid, being even worse for high
relative domain deformations. Therefore, two main problems arise:

e finding the decreasing sequence of the parameter § to ensure the final convergence to a
valid mesh.
e finding the initial value for the parameter 0.

To determine an equation that allows the decrease the parameter d, we include it inside the
functional as a new global variable only for theoretical purposes; i.e. considering F* = F*(x,0).
Due to the functionality of h(V') with the parameter §, the value of the optimal regularized
functional increases when § decreases (0 # 0). If the optimization problem is posed in terms
of the variables (x,d) and using a Newton-like solver, the problem is written as follows:

8*F* B9 F*

oF*

oxT oxd6 Ax _ ] Tax

O2F*  92F* As | oF*
d5o%x 067 95

Rewriting the above equation in the following way

92 F 92 F OF"
o X st T Tax )
92 - 92 F OF
dox Xt G 80 T T8

it is observed that this system may be solved in an uncoupled way if the parameter § is
kept fixed for the first equation. This is equivalent to solve the system (13) using the block
Gauss-Seidel method. Thus, the variable increments Ax and Ad are written as follows:

2F*\ ' oF*
Ax = —|— —_—
* < 0x? ) ox
(13)
A (85:5 + gégx AX)
o = - B2+
062

The expression for Ad in (13) is adopted as the maximum value to reduce ¢, thus limiting
the decreasing rate of the sequence to avoid losing convergence.
Therefore, the updated ¢ in the iteration & is defined in the following way:

§* = max(65 1 — a|AS|, B5* 1) (14)

being o and (§ constants lower than one.

It was found that the off-diagonal terms in the element-wise matrix have a strong influence
on the convergence of this optimization method. In the untangling stage, it is advisable to
relax these off-diagonal terms to make the matrix more diagonal-dominant. However, in the
smoothing stage these terms should be restored to take advantage of the convergence rate
of full Newton schemes. Here, the relaxation parameter for these off-diagonal terms (y < 1)
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10 E. LOPEZ ET.AL.

may be constant or variable with respect to the iterations. For example, for a 2D case the
element-wise matrix is modified in the following way:

9*F* d%F*
3)(% e Py 8x1 3)(2 e
d%F* d*F*
,‘y sz (9X1 e 6x§ e

The problem is solved by the Newton-Raphson method with Armijo inexact line search [34].
At each iteration ¢ is diminished only if the line search strategy gives a unit step as result.

K° =

4.1. Differential predictor

The optimization strategy means that at each time step the unknown node positions are
obtained by solving a minimization problem. The mesh coordinates vector x is composed of
nodes at the boundary x; and the internal nodes X;ut

<[z ]

Xint

At each time step, the minimization problem consists in finding the x that minimizes the
functional F(x). Due to the fact that some components of x (those in x;) are fixed by the

boundary conditions
XTL
x', = argmin I’ ({ b ]) (16)

< X;
Xint nt

The recurrence formula from the Newton-Raphson strategy is

k41 & k\—1pk
X =Xy — (KY) TR (17)
where
OF
R = 3
Xint
1
IR (18)
K =
aXint
This generates a sequence xﬁltk that, if it converges, it gives the solution for the optimization
problem
IEI;O xﬁf = X (19)

-n’to is to take the unknown vector at the previous

The simplest choice for the initial value x;’

time step

,0 -1,
Xint = Xing (20)

However, this has the drawback that, if the elements near the moving boundary are small,
then the initial combination [xﬁ{l’oo,xg] may lead to invalid elements, even for small time
steps. In fact, the time step is limited by the element size at the wall, and the limit time step
of the problem of the moving mesh diminishes with mesh refinement.
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SIMULTANEOUS UNTANGLING AND SMOOTHING OF MOVING GRIDS 11

To avoid this, a linear predictor for the initial mesh is performed. If the solution X, (¢) for
each t in the range t"~1 <t < t" is considered, then

R(xint(t),x5(t)) =0 (21)

Taking derivatives with respect to time and making an evaluation at ¢t = ¢!

OR OR
( ) Xint(tn_l) + (a) Xb(tn_l) =0 (22)
tn—1 Xb tn—1

axint

then the Newton-Raphson sequence can be initialized with the extrapolation

xpd = X[ % o At X (1771) (23)

For instance, consider a 1D problem with a homogeneous mesh of N linear elements in the
interval [0, 1]. The right boundary is fixed and the left boundary moves to the right with velocity
1. With the standard initialization strategy, the limit time step is initially Atcyp = h = 1/N,
since a larger time step will cause the left boundary to pass over the position of the first
internal node (initially at = h). Besides, with the differential predictor, the limit time step
is Atcmp = 1, since, in fact, the differential predictor gives the optimal solution, and the
subsequent Newton-Raphson iteration is not needed. It has been verified through numerical
experiments that with differential predictor the limiting time step Atcyp is independent of
the mesh refinement.

5. Numerical results

In this section, the numerical results for several test examples are presented. These examples
show the capability of the proposed strategy for different deformations of the boundary, from
medium (50 %) to high deformations (99 %) carried out in only one step. In all these cases,
initially inverted elements were found. 2D and 3D mesh dynamics problems are presented, as
well as a 2D mesh generation problem . In the whole set of test cases, the following convergence
criteria had been applied:

e Valid mesh.
e For the iteration k,
k k—1
‘qmin k_ Qmin | < €y
Qmin
being gmin = min. g and ¢, a prefixed tolerance.

The relaxation coefficient for the Hessian matrix was chosen as v = 0.5 for the untangling
stage and v = 1 for the smoothing stage. When the mesh is initially invalid, the starting value
of the parameter 0 is chosen according to the following criterion based on the minimum volume
(Vinin = min, V.). Due to the fact that A(V') is a strictly increasing function, then

1 /
hmin = h(Vmin) = 5 <Vmin + Vn21in + 452) (24)
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12 E. LOPEZ ET.AL.

Adopting A%, = hmin/0 as an user-defined parameter and getting J from the last equation,

min

the following criterion to initialize § arises:

s ] G e i V<0
it V>0

where €5 > 0 is the minimum value given to the initial § such that § > 0 when V,,,;, = 0.

In the whole set of numerical examples, the following set of parameter values were used:
n=-1,a=1,6=0.1,¢,=0.01, hl;, =0.75 and ¢5 = 1 x 1075, In these tests, the reference
element used was the regular element.

In order to compare the performance of the proposed technique with the smoothing one,
some tests were solved using both methods. The time required for the computation is compared
for both techniques. When the smoothing strategy (S) was used, At and the law of movement
of the boundary were chosen in such a way that the mesh remains valid during the whole
time interval. For the untangling and smoothing technique (U-S), the tests were solved in the
following way: for a given relative deformation of the domain, a linear law of movement of the
boundary was applied using different number of time steps. The domain deformations were
chosen varying from 10 % to the maximum deformation, with steps of 10 %.

5.1. Test 1

Figure 5 shows the original domain and the deformation sequence for this problem. The test
was solved for a relative domain deformation of 50 %, 90% and 99 %. A structured mesh
with 200 triangular elements and 121 nodes was employed. The initial tangled mesh and the
resulting valid meshes are presented (figures 6 to 9). The evolution of the minimum quality
with iterations is also included (figure 10).

y

—

(o) X

Figure 5. Test 1 - Domain.

Figure 11 shows the comparison between S and U-S strategies. It is observed that the
elapsed time in the computation with the U-S technique is approximately independent of the
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SIMULTANEOUS UNTANGLING AND SMOOTHING OF MOVING GRIDS 13

Figure 6. Test 1 - 50 % def. - Initial mesh. Figure 7. Test 1 - 50 % def. - Final mesh.

Figure 8. Test 1 - 90 % def. - Final mesh. Figure 9. Test 1 - 99 % def. - Final mesh.

deformation. It does depend on the number of time steps used, and tends to the elapsed time
of the S method as the number of time steps are increased.

In order to verify the utility of the differential predictor (DP) explained in section 4.1, the
test was solved for a relative domain deformation of 90 %, varying the amount of time steps
used. In table I the total number of iterations in each case (with and without DP) is presented.
As it is observed, the use of the DP makes it possible to diminish in a noticeable manner the
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number of iterations

5.2. Test 2

This test contains two squares, one inside the other initially centered, as observed in figure 12.
The internal square is displaced without contact towards one of the sides of the external
square. The mesh has 710 triangular elements and 415 nodes. Three cases with different
domain deformations were solved: 50 %, 90 % and 99 %. The results achieved are presented

E. LOPEZ ET.AL.

1 T T

- - 50 % def.
-~ 90 % def.
0.5 —*%— 99 % def.

£
E 0 |
o
-0.5 |
-1 =
0 2 4 6 8 10 12 14 16 18
Iteration number
Figure 10. Test 1 - Evolution of gmin-
60 1 f ‘
—— S - 200 time steps

_ 50 - =%~ - U-S -1 time step
§ ——¥%-- U=S -2 time steps
5 w0F s U=8 - 4 time steps ]
-§ -=¥-=- U=8S = 10 time steps
g 30+
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Q
3
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Figure 11. Test 1 - Computational time in terms of the relative domain
deformation.

in figures 13 to 18.
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Table I. Total number of iterations to reach a relative domain
deformation of 90 % for test 1

| time steps | with DP | without DP |

1 15 13
2 19 27
4 34 A7
8 39 69
y
D C
D’ ? t C’
A! :- ______ JIB’
A B

X

Figure 12. Test 2 - Domain.

Table II. Total number of iterations to reach a relative domain
deformation of 90 % for test 2

| time steps | with DP | without DP |

1 9
2 13
4 17
8 24

13
21
38
51

15

Table II presents the total number of iterations necessary to solve the test with 90 % of
relative domain deformation when the amount of time steps is increased. This table shows a
comparison of what happens when the DP is applied and when it is not. As it is observed, the

advantages of using the DP are evident when the amount of time steps increases.

Copyright © 2000 John Wiley & Sons, Ltd.
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Figure 14. Test 2 - 50 % def. - Final mesh.
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Figure 15. Test 2 - 90 % def. - Final mesh.

5.8. Test 3

Figure 16. Test 2 - 99 % def. - Final mesh.

This test is the 3D extension of the test presented in subsection 5.1. Figure 19 shows the
domain for different deformations. The top face of the cube is moved in vertical direction.
During the deformation, this face is transformed into two planes at different heights joined by
a truncated cone with upper radius r and lower radius R.
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Figure 17. Test 2 - Evolution of gmin-
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Figure 18. Test 2 - Computational time in terms of the relative domain
deformation.

A mesh with 1080 tetrahedral elements and 343 nodes was used. This test was solved for
50 % and 87 % of relative domain deformation. Figures 20 to 25 show the results achieved.

Again, as in previous tests, the advantage of applying the DP can be observed in table III.
In this case, the problem was solved for a relative domain deformation of 70 % varying the size
of the time step.
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X

Figure 19. Test 3 - Problem definition.

Table III. Total number of iterations to reach a relative domain
deformation of 70 % for test 3

| time steps | with DP | without DP |

1 8 7
2 9 12
4 13 24
8 20 48
5.4. Test 4
This test was taken from [33] and it consists in a unit cube with 625 tetrahedras and 216

nodes. The invalid initial mesh was obtained by transforming the cube into another cube of 10

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1-6
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Figure 25. Test 3 - Computational time in terms of the relative domain
deformation.

5.5. Mesh generation

As it was previously mentioned, the strategy of simultaneous mesh untangling and smoothing
may serve as an algorithm for mesh generation. Here, a 2D test example is presented to give
an idea of its potentiality. This case was extracted from [35] and it consists in finding the mesh
for the domain bounded by x =0, z =1, y = 1 and y = 0.75 4 0.25sin(7 (0.5 + 2z)). To this
purpose, and initial mesh composed of 800 triangular elements and 441 nodes covering a unit
square was chosen. Deforming the boundaries of the original square to match the desired final
boundary, an invalid mesh is temporarily obtained. To fix this mesh, the proposed technique
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Figure 26. Test 4 - Initial mesh. Figure 27. Test 4 - Final mesh.
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Figure 28. Test 4 - Evolution of ¢min.

is applied as in mesh dynamics problems. The achieved results are shown in figures 29 and 30.

6. Conclusions

In this work, a simultaneous mesh untangling and smoothing technique based on the solution
of an optimization problem solved in a global way was presented. From the results obtained
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Figure 29. Final mesh. Figure 30. Evolution of g¢min.

for several tests cases in both 2D and 3D with medium, large and extra large deformation, it
may be possible to reach the conclusion that this procedure is very robust. Normally, in FSI
problems the time step size is restricted by one of the two physical problems, being the mesh
dynamics an auxiliary problem, it is expected that it will not be more restrictive than any of
the other two. However, in several applications the refinement imposes the reduction of the
time step size to the mesh dynamics in order to avoid the element inversion. The enhancement
of the CMD with simultaneous untangling and smoothing circumvents this drawback. A global
solver is very attractive to make this procedure more user-independent. The computational
cost of each time step is scarcely higher than the one of the original mesh smoothing strategy.
However, taking into account that this new procedure does not alter the time step size in FSI
problems, it generally makes the global computational cost cheaper and the procedure more
robust. As a side effect, this proposed technique was successfully applied to mesh generation
of a simple 2D domain. In future works, it is expected that this capability will be proved in
others 3D meshes in more complex domains, and that the functional will be extended to get
nearly conformal meshes to be applied in airfoil meshing.
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