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Abstract

Unraveling the nature of dark matter (DM) stands as a primary objective in modern physics. Here we present
evidence suggesting deviations from the collisionless cold DM (CDM) paradigm. It arises from the radial
distribution of stars in six ultrafaint dwarf (UFD) galaxies measured with the Hubble Space Telescope. After a
trivial renormalization in size and central density, the six UFDs show the same stellar distribution, which happens
to have a central plateau or core. Assuming spherical symmetry and isotropic velocities, the Eddington inversion
method proves the observed distribution to be inconsistent with the characteristic potentials of CDM particles.
Under such assumptions, the observed innermost slope of the stellar profile discards the UFDs to reside in a CDM
potential at a �97% confidence level. The extremely low stellar mass of these galaxies, 103–104Me, prevents
stellar feedback from modifying the shape of a CDM potential. Other conceivable explanations for the observed
cores, like deviations from spherical symmetry and isotropy, tidal forces, and the exact form of the used CDM
potential, are disfavored by simulations and/or observations. Thus, the evidence suggests that collisions among
DM particles or other alternatives to CDM are likely shaping these galaxies. Many of these alternatives produce
cored gravitational potentials, shown here to be consistent with the observed stellar distribution.

Unified Astronomy Thesaurus concepts: Cold dark matter (265); Dark matter (353); Dark matter distribution (356);
Dwarf galaxies (416); Star counts (1568)

1. Introduction

The shape of the dark matter (DM) haloes of low-enough
mass galaxies encodes direct information on the nature of DM.
Self-gravitating collisionless cold DM (CDM) halos evolving
in a cosmological context develop a central cusp where the
mass density profile increases toward the center following the
Navarro–Frenk–White (NFW) profile or other similar shape
(after Navarro et al. 1997; see also Wang et al. 2020). When
baryons are included, baryonic processes can thermalize the
overall gravitational potential turning the central cusp into a
plateau or core (e.g., Governato et al. 2010), a mechanism
invoked to explain the DM haloes observed in dwarf galaxies
(e.g., Oh et al. 2015). The energy needed to turn cusps into
cores must be extracted from the star formation; therefore,
when the formed stellar mass is too small, the baryon feedback
is unable to transform cusps into cores and the DM haloes
remain cuspy. The actual largest stellar mass (Må) unable to
modify the CDM potential is model dependent (Read et al.
2016) but it roughly corresponds to Må< 106Me or to a DM
halo mass <1010Me (Di Cintio et al. 2014; Chan et al. 2015;
Hayashi et al. 2020; Jackson et al. 2021). Thus, if the DM
haloes of these halo unevolved galaxies (HUGs) happen to
show a core, it would indicate the DM not being collisionless,
reflecting the much sought-after presently unknown true nature
of the DM (fuzzy, self-interacting, warm, or other alternatives;
e.g., Bechtol et al. 2022).

In practice, DM halo shapes are deduced from spatially
resolved kinematical measurements, which require time-con-
suming high spectral resolution spectroscopy and are virtually
impossible in the required HUG regime. Sánchez Almeida et al.
(2023) proposed an alternative based on photometry, much
cheaper observationally, but starting from a series of simplify-
ing assumptions that must be justified a posteriori. It uses the
classical Eddington inversion method (EIM; e.g., Binney &
Tremaine 2008; Ciotti 2021), which provides the distribution
function (DF) to be followed by a mass density profile immerse
in a spherically symmetric gravitational potential. If the
required DF becomes negative somewhere in the phase space,
it proves the pair density–potential to be physically inconsistent
with each other. Such inconsistency happens for a combination
particularly interesting in the present context, namely, a stellar
density with a core residing in an NFW potential (An &
Evans 2006, 2009; Sánchez Almeida et al. 2023). Stellar cores
seem to be quite common in low-mass galaxies (e.g.,
Moskowitz & Walker 2020; Carlsten et al. 2021) and, if their
presence remains in the critical HUG mass range (provided
they meet the requirements of EIM), it could indicate the need
to go beyond the standard CDM model.
Here we analyze the stellar count distribution of six ultrafaint

dwarf (UFD) satellites of the Milky Way (MW) and the Large
Magellanic Cloud (LMC) from Richstein et al. (2024). Their
stellar masses are in the interesting HUG regime, 103–104Me,
and they present stellar surface density profiles with cores. Here
we consider whether these facts represent evidence for the DM
deviating from the CDM paradigm. The work is presented as
follows: Section 2 summarizes the observations and shows that
the same radial profile reproduces all galaxies simultaneously
within the error set by star counting. Section 3 outlines the
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EIM-based procedure used to infer the DF needed to explain
the observed profile with an assumed a potential. In Section 4,
the procedure is applied to conclude that NFW potentials
require unphysical negative DF and provide fits significantly
worse than potentials with cores (Schuster–Plummer and ρ230
potentials). The conclusion that the satellites do not reside in
NFW potentials depends on several simplifications and
assumptions: steady state, stacking of profiles, spherical
symmetry, shape of the potential, isotropic velocities, and
unimportance of tidal forces and stellar feedback effects. All of
them are discussed in Section 5, and the most compelling
explanation for the existence of stellar cores in these dwarf
galaxies remains a deviation from the CDM paradigm.

2. Data

Richstein et al. (2024) studied 10 UFD satellites of the MW
and the LMC. Deep Hubble Space Telescope two-band
photometry (F606W and F814W) allows them to select stars
individually and to separate them from foreground and
background contaminants. Only six of the UFDs have a field-
of-view large enough to have good determination of structural
parameters, and these are the targets employed in the present
study: Horologium I, Horologium II, Hydra II, Phoenix II,
Sagittarius II, and Triangulum II. The observed stellar counts
of each galaxy were modeled using 2D Schuster–Plummer
functions and exponentials, leaving free parameters that include
the center, the characteristic radius, the ellipticity, and the
orientation. These 2D fits were later used to construct 1D radial
profiles as the number density of counts in ellipses with the
ellipticity, orientation, and center of the best-fitting 2D
functions. We use these 1D profiles in our work, both from
the Schuster–Plummer function and the exponential since their
differences quantify the systematic errors induced by the
determination of centers, ellipticities, and orientations. The
error in each radial bin is estimated as the Poisson noise arising
from star counts.

From the above fits and ancillary data, Richstein et al. (2024)
show the UFDs to have axial ratios from 0.55 to 1, Må from
6× 102 to 2.4× 104Me, and dynamical masses at the half-
light radius between 105 and 5× 106Me. Thus, the ratio of
dynamical mass to stellar mass within the half-light radius goes
from 300 to 3000, with the exception of Sagittarius II where it
is only around 10. It has been argued that Sagittarius II may be
a globular cluster (GC) of large size (Longeard et al. 2021) but
from the point of view of its surface density profile, it behaves
as the rest. It is analyzed together with the others and
separately, as discussed in Section 5. For further details on
the data set and reduction, we refer to Richstein et al. (2024).

Figure 1 shows the 1D stellar surface density of the six
UFDs normalized in x (size) and y (central density) using a
least-squares procedure to set the scales so that the resulting
profile, assumed to be a polynomial, is the same for all.4 The
reduced χ2/ν of the fit,5 1.06, implies that all galaxies are well
reproduced with a single profile with the scatter almost
exclusively set by the star counting. This result is remarkable
and implies that the profile in Figure 1 represents galaxies with

any ellipticity including completely round ones as expected in
spherically symmetric systems in steady state. Moreover, this
common profile has a central plateau or core whose logarithmic
slope when R→ 0 is
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S
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determined from a linear fit to the 12 innermost points, chosen
because they delineate the plateau (the black dashed line in
Figure 1). The normalized data points in Figure 1 are the
observations analyzed in this work. It represents stellar counts
but we use them as proxies for the stellar mass density
distribution, which is a good approximation for the UFDs
having old stellar populations (e.g., Sacchi et al. 2021).

3. Eddington Inversion Method Approach

The details and tests of the technique are given elsewhere
(J. Sánchez Almeida et al. 2024, in preparation), but here we
summarize the approach used to compute the DF in the phase-
space f required for the observed profile (Figure 1) to reside in a
particular potential. For a spherically symmetric system of
identical stars with isotropic velocity distribution, f (ò) depends
only on the particle energy ò. (The impact of relaxing these
assumptions is addressed in Section 5.) Then, the stellar
volume density ρ(r) turns out to be (e.g., Binney &
Tremaine 2008, Section 4.3)

  òr p= Y -
Y

r f r d4 2 , 2
r

0
( ) ( ) ( ) ( )
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with  = Y - v1

2
2 the relative energy per unit mass of a star

and Ψ(r)=Φ0−Φ(r) its relative potential energy. The symbol
Φ(r) stands for the gravitational potential energy and Φ0 is Φ(r)
evaluated at the edge of the system. The previous equation can
be rewritten as
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The symbol ξ(ò, r) represents a family of densities that are
characteristic of the potential and dependent on the energy ò.
Then, according to Equation (3), the stellar density is just the
superposition of these characteristic densities with the DF f (ò)
giving the contribution of each energy to ρ(r). (The
characteristic densities for a Schuster–Plummer potential are
shown as an example in the Appendix.) Following
Equation (3), f (òi) could be retrieved by fitting the observable
ρ(r) with a linear superposition of ξ(òi, r) at various òi. (We will
see below that ρ can be replaced with the projected stellar
surface density, which is the true observable.) In practice,
however, there is no error-proof way to discretize Equation (3).
We approach the practical problem by expanding f (ò) as a

4 S S = å =R c R blog 0 logi i
i

0
5[ ( ) ( )] [ ( )] , with c0, ..., c5 = 0.262, −0.907,

1.019, 0.640, −1.619, −1.072, valid for 0.07 � R/b � 2.7 The symbols b and
Σ(0) stand for the scales in x and y, respectively. The half-mass–radius is 0.52b
whereas the core radius, defined as in Equation (11), is 0.60b.
5

χ2 is the sum of the error normalized squares of the residuals whereas ν
represents the degrees of freedom.
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polynomial of order n,
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with  a = max. Equation (7) gives a simple expansion of the
stellar density ρ(r) in terms of potential-dependent but known
functions Fi(r). The chosen functional form in Equation (6) is
both flexible and, by starting at i= 3, it describes a system of
finite mass despite the mass given by ξ(ò, r) diverges as ò− γ

when ò→ 0, with 2< γ< 3 depending on the potential
(J. Sánchez Almeida et al. 2024, in preparation). The normal-
ization in Equation (6) has been chosen so that Fi(r) does not
depend on max. The discretization in Equation (7) also holds
for the projection of the volume density in the plane of the sky,
i.e.,
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where Σ(R) and ξΣ(òi, R) stand the 2D projection (i.e., the Abel
transform) of ρ(r) and ξ(òi, r), respectively. R represents the

radial coordinate in the plane of the sky projection, as in
Section 2.

3.1. Actual Algorithm to Infer f(ò) from Σ(R)

Except for an arbitrary scaling parameterized by max,
Equations (6) and (9) provide a method to infer the DF f (ò)
needed for a galaxy of observed mass surface density Σ(R) to live
in a given gravitational potential. A fitting algorithm using
Equation (9) provides the coefficients ai determining f (ò) through
Equation (6). The characteristic densities in Equation (10) have to
be computed numerically starting from the potential in a chain
requiring at least two integrations: the Abel transform that projects
the volume densities on the plane of the sky and the integral over
all energies expressed by Equation (10). We compute the Abel
transform using the direct method implemented in the PyAbel
Python package (Hickstein et al. 2019). Then, the second
integration is carried out using the Simpsonʼs rule from
Scipy (Virtanen et al. 2020). The free parameters retrieved
from fitting Σ(R) are the amplitudes ai together with the global
radial scaling factor setting the width of the potential rsp (see the
Appendix), the latter making the fit nonlinear. The fits were
carried out using a Bayesian approach. After the initialization
using an unconstrained least-squares routine (least_squares
from scipy; Virtanen et al. 2020), the posterior is explored using
the ensemble sampler for Markov Chain Monte Carlo (MCMC)
emcee (Foreman-Mackey et al. 2013). Several trial and error tests
led us to set the order of the polynomial to 10, a value that
provides enough flexibility to reproduce the inner plateau of the
observed Σ(R) (Figure 1). The priors in the Bayesian analysis are
uninformative for rsp and ai (0< rsp/b� 103 and 10−2<
|ai|< 102 relative to the values from the least-squares best fit).
We also ask the outermost slope of the fitted S Rlog ( ) to be less

Figure 1. Stellar surface density profiles for six UFDs from Richstein et al. (2024), pieced together by rescaling in x and y using a least-square fit that gives the scales
and assumes the same polynomial shape for all galaxies. The symbols represent different galaxies and reductions, as labeled, whereas the solid line shows the best-
fitting polynomial. The dashed line corresponds to a linear fit to the innermost points of the profile. The best-fitting polynomial is close to a simple y = 1/(1 + x2) law
(not shown). χ2/ν stands for the reduced χ2 of the fit with rms representing its root mean square.
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than −2, thus preventing Σ(R) from having infinite mass outside
the observed radii. In addition, we force f� 0 so that potential and
observation are physically consistent. All in all, the fits have nine
free parameters (eight ai plus rsp), which is much smaller than the
207 observed points in Figure 1. The posterior was explored with
32 walkers and 6000 samples—none of the results reported below
depend on these exact values.

The algorithm passed a number of sanity checks with
systems where the DM distribution is known, namely, GCs and
simulated dwarf galaxies. In addition, back-of-the-envelope

estimates assure the stars in UDFs to be collisionless, as
required by EIM.

4. Results

The DF fitting algorithm in Section 3 was applied to the
stellar surface density data of Richstein et al. (2024) rescaled as
in Figure 1. Thus, we consider the observed profile to represent
a spherically symmetric galaxy and assume its velocities to be
isotropic, assumptions critically inspected in Section 5. The

Figure 2. (a) Fits to the data in Figure 1 using f (ò) as free parameter and assuming the galaxies to reside in a Schuster–Plummer gravitational potential. The best fit is
shown as a solid red line. The fits forced to have f � 0 are shown as colored solid lines, where the color code represents the innermost slope ( Sd d Rlog log when
R→ 0) as indicated in the color bar. (b) f (ò) corresponding to the fits in (a) and using the same color code. Note that the best unconstrained fit yields f � 0 everywhere.

Figure 3. Same as Figure 2 but assuming the galaxies to reside in a NFW potential. The color code is the same as that employed in Figure 2. Note that the best fit
requires an unphysical f < 0 (the red solid line in panel (b)) and that the fits forced to have f � 0, contrarily to the observation, present quite negative inner slopes ω
(the coloring is green–yellow rather than orange–red).
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results considering a Schuster–Plummer potential (core) and an
NFW potential (cusp) are shown in Figures 2 and 3,
respectively. There are two clear differences between them:
(1) the best-fitting NFW potential needs and unphysical f< 0
(Figure 3(b), the red solid line) which is not required in the case
of a Schuster–Plummer potential (Figure 2(b)); (2) the
innermost slope obtained when the fits are forced to have
physically sensible f� 0 are distinctly negative for the NFW
potential and near zero for the Schuster–Plummer potential
(compare the coloring of the thin lines in Figures 2 and 3).

Two other more subtle differences are brought out in
Figure 4: (3) the f� 0 Schuster–Plummer potential fits are
significantly better than the corresponding NFW potential fits
(see their χ2 in Figure 4(b)); and (4) the distribution of
innermost slopes of the NFW potential fits are in tension with
the observed innermost slope (Equation (1)); see the red and the
blue histograms in Figure 4(a). This tension goes away in the
case of a Schuster–Plummer potential (the orange histogram in
Figure 4(a)). We also analyze the observed stellar surface
density assuming the gravitational potential stemming from a
density profile r µ + r1 1230

2 3 2( ) , which is similar to
Schuster–Plummer in the center and to NFW in the outskirts
(see the pink dashed line in Figure 5). It is also consistent with
the observations, very much like the Schuster–Plummer
potential (Figure 4).

The distributions in Figure 4 are used to work out confidence
levels discarding the observed UFDs to reside in NFW
potential under the assumption of spherical symmetry and
velocity isotropy. The χ2 of the best fitting function is 4.5σ off
the mean of the χ2 corresponding to the f� 0 NFW potential
fits (see blue arrow and histogram in Figure 4(b)). (Here and
throughout, σ represents the standard deviation of the named
distribution.) The best NFW fit has been constructed to have
the lowest χ2, but only in the case of the NFW potential does

the best fit not overlap with the distribution of χ2 for f� 0
(Figure 4(b)). Assuming that a 2σ decrease of the best-fit χ2

would still be consistent with the f� 0 χ2 distribution, we can
set the confidence level as follows. Since the NFW best-fit χ2 is
4.5σ off, it would require an extra 2.5σ fluctuation. Being
conservative and assuming a Gaussian tail for the χ2

distribution, a 2.5σ fluctuation has a probability of 0.6%;
therefore, we can discard the observed UFDs to reside in an
NFW potential with a 99.4% confidence. The same argumenta-
tion applied to the Schuster–Plummer and the ρ230 potentials
yields full consistency of the best fits with f� 0 fits. A similar
exercise can be carried out with the distribution of innermost
slopes ω represented in Figure 4(a). The f� 0 NFW potential
fits yield a distribution with a mean and standard deviation of
−0.18± 0.06; therefore, its mean is 2.7σ away from the
observed value (Equation (1)). It is off by only 0.18σ and 0.58σ
in the case of Schuster–Plummer and ρ230, respectively
(Figure 4(a)). Assuming a Gaussian tail for the distribution of
errors, the probability for fluctuation >2.7σ is 0.004, which
would discard the existence of an NFW potential with 99.6%
confidence. A more conservative approach of setting a
confidence level is computing the probability that the innermost
slopes are consistent with the observed slope within 1σ, i.e.,
ω�−0.084. It is only 3% for the NFW potential whereas it is
100% for the Schuster–Plummer potential and 87% for the ρ230
potential. The 3% value discards the observed galaxies to
reside in an NFW potential with 97% confidence.
Figure 5 shows the correspondence between the stellar

surface density profile and the mass surface densities producing
the best-fitting potentials. The global scaling factor remains
unconstrained in our procedure (Section 3.1) and has been set
so that the mass giving rise to the potential is 500 times Må

(representative of the observations; see Section 2). Interest-
ingly, the core radius Rc of the stars and the potentials are very

Figure 4. Summary plot used to estimate confidence limits. (a) Histograms with the innermost slopes for the fits with the three gravitational potentials explored in the
work (see the inset). The red histogram represents the observed value (Equation (1)). (b) Distribution of χ2 of the fits for the three potentials when forcing f � 0. The
arrows represent the χ2 of the best fit obtained with unconstrained f (ò). The color code is the same in (a) and (b).
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similar. Defining as core radius when the surface density is half
the maximum value, Σ(Rc)=Σ(0)/2,

⎧
⎨⎩


r=


- 

R Rlog
0.06 0.08 Plummer,

0.01 0.13 ,
11c c

Potential

230
[ ] ( )

where Rc and Rc
Potential stand for the core radius of the stars and

the potential, respectively. The error bars come from the scatter
of the MCMC sampling of the posterior.

5. Discussion and Conclusions

The main finding of this study is that six small UFD galaxies
do not reside in NFW potentials, a conclusion supported with a
confidence level �97% (Section 4). The stellar mass of these
systems is as low as 103–104Me, for which baryon feedback
should be unable to modify the shape of the CDM potential
(Section 1), usually represented by an NFW potential.
Simultaneously, the observed UFDs are consistent with
potentials with an inner core as predicted by many alternatives
to CDM. Taken at face value, this result points to the DM
deviating from collisionless CDM. However, open to scrutiny,
the used analysis hinges on several assumptions that could blur
such seemingly clear-cut evidence. Below we examine the
assumptions to conclude that a deviation from the CDM
paradigm still seems to be the main interpretation of the
observed stellar cores.

(1) The main observational constraint disfavoring NFW
potentials is the innermost slope of Σ(R), ω, being ;0
(Equation (1)). The constraint is fairly robust largely
independent of the method to compute azimuthal average
profiles (Section 2). The stacking to produce the reference

observed profile (Figure 1) does not influence it either. We tried
several alternatives, and they all render cored stellar surface
density profiles, which, subject to our analysis, are incompa-
tible with NFW potentials.
(2) The EIM adopted in the work assumes the velocities to

be isotropic (Equation (2)). However restrictive, this assump-
tion does not seem to produce the tension between stellar cores
and NFW potentials because the tension remains even when the
assumption is dropped. The theorem posed by An & Evans
(2006) relates the innermost slope of stars with the velocity
anisotropy parameter, discarding all radially biased velocity
distributions provided ω; 0. The Osipkov–Merrit model
describes a case in between isotropic and radial, with isotropic
orbits at the center that progressively become radial in the
outskirts, and it is inconsistent with NFW potentials too
(Sánchez Almeida et al. 2023). Circular orbits offer a chance to
reconcile NFW potentials with stellar cores (e.g., Sánchez
Almeida et al. 2023); however, they are expected to be
uncommon among the smallest galaxies. Both the hierarchical
growth of galaxies by accretion and the outflows driven by
central starbursts cause radial rather than tangential motions.
This is indeed found in cosmological numerical simulations of
dwarf galaxy formation, which produce Osipkov–Merrit-like
velocity anisotropy (e.g., El-Badry et al. 2017; Orkney et al.
2023) or quasi-isotropic orbits (Gonzalez-Samaniego et al.
2017). This trend is also found in dwarf spheroidal galaxies
with observed kinematics (e.g., Massari et al. 2020; Kowalczyk
& Łokas 2022). More complex anisotropies still need to be
fully discarded (e.g., Strigari et al. 2017).
(3) The fact that the analyzed galaxies are satellites rather

than centrals may have changed the shape of their DM potential

Figure 5. Observed stellar surface density (the symbols) and its best fit assuming a Schuster–Plummer potential (the red solid line). The plot shows the mass surface
density that gives rise to the best fitting Schuster–Plummer potential (the blue dashed line), the NFW potential (the green dashed line), and the ρ230 potential (the
magenta dashed line). The vertical scaling was chosen to be representative of the UFDs, so that the mass creating the potential is 500 times the observed stellar mass.
The contribution from the stars to the overall potential has been subtracted out in the solid yellow–green line. The result is virtually indistinguishable from the original
profile (the green dashed line), showing the self-gravity of the stars to be negligible.
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through tidal forces with the central galaxy and other satellites.
Two arguments seem to minimize the influence of these
interactions. First, elaborate CDM-only cosmological numer-
ical simulations show that the DM haloes maintain their
identity and the same shape along 30 orders of magnitude in
mass (van den Bosch et al. 2018; Wang et al. 2020). Since
small haloes are satellites, this simulation shows that the tidal
forces arising from the main source of gravitation (i.e., from
DM) do not change the shape to be expected in CDM satellite
haloes. Second, the history of tidal disruptions suffered by
different satellites is different so that different satellites should
present different profiles if the shape were set by the tidal
influence, and this is not the case with the stellar distribution in
UFDs (Figure 1).

(4) Spherical symmetry of both DM and stars is assumed in
the EIM analysis. In principle, this is not consistent with the
fact that the observed axial ratio of the UFDs often differs from
1 (Section 2). However, we note that all observed stellar
density profiles collapse to the same profile within errors
(Figure 1). Since this profile is independent of that axial ratio, it
is the one to be expected from a purely spherical stellar system,
for which EIM applies consistently. Moreover, one of the
targets (Sagittarius II) is round within errors (Richstein et al.
2024). We analyze it individually with a result consistent with
the whole set: NFW potential fits are significantly worse than
Schuster–Plummer and the required innermost slope ω differs
from zero when forcing f� 0. In addition, Sánchez Almeida
et al. (2024) show how the incompatibility between NFW
potentials and stellar cores also remains for axisymmetric
systems suggesting that it is more fundamental than, and not
attached to, the spherical symmetry assumption. The idea that
the incompatibility is not due to the spherical symmetry
assumption is also advanced in An & Evans (2009).

(5) As soon as they possess cores, the actual details of the
potential are not important to grant agreement with stellar
cores. This conclusion is attested by the agreement of the
observations with both Schuster–Plummer and ρ230 potentials
(Figures 4 and 5) and also by the battery of tests carried out for
other potentials by Sánchez Almeida et al. (2023). The use of
NFW to represent CDM also seems to be unessential since the
Einasto profiles, which are also a good representation of the
CDM halos, are also incompatible with stellar cores (Sanchez
Almeida 2024). The Einasto profiles do not diverge at the
center indicating that the incompatibility is not artificially set
by the mathematical singularity of the NFW profiles
when r→ 0.

(6) The hypothesis that stellar feedback is unable to modify
the gravitational potential of the observed UFDs is backed up by
cosmological numerical simulations (Section 1); therefore, it
depends on the assumed subgrid physics for the feedback.
Increasing the effectiveness of the feedback may reduce the
stellar mass threshold able to influence, but not much. The order
of magnitude estimate by Peñarrubia et al. (2012, Figure 2
of their paper) shows that the threshold is set by energy
conservation—there is not enough energy in supernovas to turn
NFW potentials into core potentials when Må= 106Me. The
UFDs that we analyze are more than 2 orders of magnitude less
massive than this limit and so the ineffectiveness of stellar
feedback seems to be granted.

(7) The self-gravity of the stars is not considered in our
analysis, implicitly assuming the stellar mass to be negligible
compared to the DM mass. This is a good approximation for

most UFDs (Section 2), and since the observed surface
densities are the same for all (Figure 1), this assumption seems
to be safe.
(8) The fact that Sagittarius II may be an extended GC

(Section 2) is not relevant to the analysis. The whole procedure
was repeated withdrawing Sagittarius II without any difference
that could modify the above conclusions.
To sum up, this work shows that six UFD galaxies reside in

cored gravitational potentials. Since stellar feedback should be
inoperative in their stellar mass regime (HUG), the best
explanation seems to be that the DM deviates from the nature
assumed in the standard ΛCDM cosmological model. The
standard model provides an extremely good approximation to
reality but is likely not the last theory (Peebles 2021). Studying
the kind of galaxies analyzed here may provide a gateway to go
beyond.
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Appendix
Characteristic Densities in the Case of a Schuster–Plummer

Potential

Consider the gravitational potential generated by a mass
distribution following a Schuster–Plummer density profile, i.e.,

r
r

=
+

r
r r1

, A1SP
sp

sp
2 5 2

( )
[ ( ) ]

( )

where ρsp and rsp are the central density and the characteristic
radial scale, respectively. The gravitational potential produced by
this cored density profile is (e.g., Sánchez Almeida et al. 2023,
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Equation (A14))


Y =
+

r
r r1

, A2SP
max

sp
2 1 2

( )
[ ( ) ]

( )

with  p r= G r4 3max sp sp
2 . Equation (4) renders,

   x =r h r r, , , A3max max sp( ) ( ) ( )

a b p b a b b= + - P --h , 4 2 1 , A4X
2 1 2( ) [( ) ] ( ) ( )

with b a a= -1X
2 .
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