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We present a set of techniques that enhances a previously developed time domain simulation of wave propagation
and allows the study of the optical response of a broad range of dielectric photonic structures. This method is
particularly suitable for dealing with complex biological structures, especially due to the simple and intuitive
way of defining the setup and the photonic structure to be simulated, which can be done via a digital image
of the structure. The presented techniques include a direction filter that permits the decoupling of waves traveling
simultaneously in different directions, a dynamic differential absorber to cancel the waves reflected at the edges of
the simulation space, and amultifrequency excitation scheme.We also show how the simulation can be adapted to
apply a near to far field method in order to evaluate the resulting wavefield outside the simulation domain. We
validate these techniques, and, as an example, we apply the method to the complex structure of a microorganism
called Diachea leucopoda, which exhibits a multicolor iridescent appearance. © 2013 Optical Society of America

OCIS codes: (050.1755) Computational electromagnetic methods; (350.4238) Nanophotonics and photonic
crystals; (050.6624) Subwavelength structures; (170.1420) Biology.
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1. INTRODUCTION
The study of the optical response of structures with typical
sizes of the order of the optical wavelengths has gained great
interest in recent years. Emerging technologies had resulted
from the study of photonic materials, which consist of a regu-
lar distribution of particles within a host matrix. Depending on
the size of the inclusions relative to the operating wavelength,
photonic materials can be designed to control the effective
electric permittivity and magnetic permeability in order to ob-
tain a specific response (metamaterials), with the possibility
of generating a negative refraction index [1] and a great vari-
ety of promising applications such as superlensing and optical
cloaking [2–6]. On the other hand, all-dielectric photonic crys-
tals exhibit interesting properties that arise from the resonant
scattering generated by the specific modulation of the refrac-
tion index [7–9]. Also, the photonic band gaps [10] can be de-
signed for specific purposes such as optical switches, Bragg
filters, or photonic crystal fibers [11–13].

Another growing research field based on dielectric pho-
tonic structures is the study of natural structural color, which
is responsible for the iridescent appearance exhibited by a
broad diversity of animals and plants [14–16]. Structural color
is produced by the selective reflection of light incident on the
microscopic structures present in the cover tissues of biologi-
cal organisms. Optical mechanisms such as interference,
diffraction, and scattering are involved to achieve colorful pat-
terns or metallic appearance. These colors usually appear
considerably brighter than those of pigments, although they
often result from completely transparent materials [17,18].
Unlike artificial photonic materials, the geometry and

distribution of these natural media is usually extremely com-
plex, and the simulation of their electromagnetic response
requires versatile and accurate tools. The study of this phe-
nomenon contributes to the understanding of different behav-
ioral functions of living species such as thermoregulation and
camouflage and, at the same time, inspires new developments
of artificial devices.

A large variety of rigorous electromagnetic methods for the
calculation of the optical response of a given photonic struc-
ture are available, such as the modal method [19–21], the
coupled-wave method [22], coordinate-transformation meth-
ods [23,24], and the integral method [25–27]. These ap-
proaches are very efficient for the accurate determination of
the optical response of corrugated interfaces and periodic gra-
tings of canonical shapes. However, in most cases, they are
not suitable for dealing with highly complex structures.
Another way of studying the electromagnetic response of
complex nanostructures is by means of computer simulations.
Among them, a widespread approach is the finite-difference
time-domain method (FDTD) introduced by Taflove and
Hagness around 40 years ago [28], which is based on the Yee
algorithm [29] and consists of numerically solving six coupled
vector equations obtained from Maxwell’s equations in the
time domain. The FDTD is a very powerful method and has
been improved over the last decades to account for a great
variety of problems in electrodynamics. Recently, Kolle et al.

implemented an interface for the MEEP package (an FDTD
implementation) [30], which permits introducing the profile
of the diffracting structure via binary images based on refrac-
tion index contrasts in scanning electron microscope or
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transmission electron microscope (TEM) images [31]. How-
ever, it is heavily time consuming, and requires large
computer resources and even parallelization for very large
simulation spaces [32].

In this paper, we present a set of processing techniques that
improve the performance of the simulation method presented
in [33], which allows studying the propagation of electromag-
netic waves in a dielectric medium of arbitrary refraction in-
dex distribution. Within the simulation, the evolution of the
propagating waves can be easily visualized on a conventional
computer during runtime. One of the highlights of the pro-
posed method is its versatility to obtain the optical response
of an arbitrary dielectric photonic structure. The refraction
index distribution can be artificially generated using any avail-
able computational design tool for digital image edition, or it
can be obtained from a digitized electron microscope image
of a real physical sample. The presented tools complement
and enhance the former implementation of the method in
several aspects.

In Section 2, we summarize the basic concepts of the sim-
ulation. In Sections 3–6, we present a set of techniques which
permit us to control and analyze the behavior of the waves
within the simulation: (i) a direction filter (DF) that permits
us to decouple waves traveling simultaneously in different
directions and also allows us to determine the field of energy
flux in any type of wave (Section 3); (ii) an active system to
cancel waves reflected at the edges of the simulation space,
which allows the simulation of boundary conditions that
represent an unbounded virtual space (Section 4); and (iii) a
multifrequency excitation scheme which increases the com-
puting speed since it avoids sequential frequency sweeps to
obtain the spectral response of a given structure (Section 5).
Finally, in Section 6, we show how to obtain the far field (out-
side the simulation space) from the near field. As an example,
in Section 7 we apply the simulation method, including the
whole set of developed techniques, to obtain the optical re-
sponse of the photonic structure present in the tissue of a
microorganism. Concluding remarks are given in Section 8.

2. DESCRIPTION OF THE SIMULATION
The basic idea underlying the whole method is the parallelism
between electromagnetic and mechanical waves, as already
reported in the literature [34]. It proposes the use of the com-
puter as a generator of a virtual environment where the physi-
cal differential law is used to make the system evolve along
the time, as it would evolve in the real physical world.

The simulation reproduces the propagation of transverse
mechanical waves along the time. Although the details can
be found in [33], for the sake of completeness, we describe
the physical model and introduce the parameters that are used
in the following sections.

The physical model consists of a two-dimensional array of
p × q particles of mass m contained in the x–y plane. Each
particle is joined to its four nearest neighbors by means of
elastic springs of elastic constant k and separated by a dis-
tance d. The movement of the particles is constrained to
the z axis, which is normal to the plane of the two-dimensional
array along which the waves propagate, as shown in Fig. 1.
The net force on each particle is null when it is located at
z � 0. A wave is generated by applying an external force along

the z axis to certain particles, depending on the type of
excitation.

For large p and q, the array of particles can be considered
as a continuous medium representing a tensioned elastic
membrane. The time evolution of the system is described
by the following wave equation:

∂2A
∂t2

� T
μ
∇2A −

γ

μ

∂A
∂t

� Et

μ
; (1)

where A � A�x; y; t� is the position along the z axis of a differ-
ential element of the membrane, T is the tension of the mem-
brane, γ � γ�x; y� is a damping constant, μ � μ�x; y� is the
surface mass density, and Et � Et�x; y� is the time-varying ap-
plied external force. v �

���������
T∕μ

p
represents the speed of the

waves. Equation (1) is discretized in space and time and its
dynamic evolution is obtained by means of an iterative
algorithm [33].

Making an analogy with optics, regions with mass density
μ0 can be identified with vacuum, i.e., a medium of refraction
index n0 � 1, while a region with an arbitrary mass density μ
corresponds to a medium with a real part of the refraction
index n �

����������
μ∕μ0

p
. This approach permits optical phenomena

involving dielectric materials illuminated by transverse elec-
tric (TE) polarized light to be reproduced in two-dimensional
configurations.

One of the advantageous features of this method is the pos-
sibility of defining the simulation domain by means of digital
images or bitmaps. Each pixel in the image represents the
position of the particle in the array. In this manner, a digital
image of p × q pixels automatically defines the size of the sim-
ulation domain. An appropriate constant σp given in units of
[nm/pixel] links the size of an object in the digital image, in
pixels, with the actual physical size of the sample to be simu-
lated, which is usually measured in nanometers.

Three bitmaps of equal size are defined within the simula-
tion code to introduce different characteristics of the struc-
ture and the illumination conditions, which are denoted as
M (mass density), D (damping), and E (excitation). The gray
levels in the M bitmap represent the mass distribution within
the array, which should be assigned using an adequate linear
conversion function. Bitmap D encodes the damping constant
of each point of the array, which allows introducing attenua-
tion in the medium, and bitmap E is introduced to specify the
excitation, i.e., the particles on which the external force is
applied. Following the analogy with the propagation of
electromagnetic waves in an optical medium, the M bitmap
determines the refraction index distribution, bitmap D

Fig. 1. Particle array representing the physical model of the
simulation.
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specifies the regions where there is absorption, and bitmap E
specifies the location and shape of light sources. The gray
level matrices M , D, and E are related to the matrices
Mphys, Dphys, and Ephys, respectively, which contain the
values of mass, damping, and excitation measured in physical
units, by

Mphys � m0 �Mmp; (2)

Dphys � Dμp; (3)

Ephys � rp�E − 128�; (4)

where m0 is the minimum mass value, which is associated
with the refraction index of vacuum. The proportionality con-
stant mp in Eq. (2) has units of [kg/gl] and the constant μp has
units of [�N � s�∕�m � gl�] ([gl] is the gray level unit within a
scale of 0–255 in which the digital images are represented).
rp in Eq. (4) is a constant of units [N/gl], which transforms the
value of gray level provided by the bitmap E to a value of
force. In Eq. (4), a value E � 128 indicates that no force is
applied on the particle. Then, values over 128 are interpreted
as positive forces and gray level values under 128 are inter-
preted as negative forces. The harmonic excitation is intro-
duced by means of the time-varying applied external force as

Et � Ephys sin�ωτnnc � φ�; (5)

where ω is the angular frequency of the excitation, φ is the
initial phase, and τn is a time-adapting constant in units of
[s/cycle] that converts the integer number of iteration cycles
nc into a physical time variable. The product τnnc

represents the discretized time variable, and the product
ωd � ωτn in Eq. (5) can be regarded as a digitized angular
frequency measured in [rad/cycle].

The Nyquist–Shannon sampling theorem [35] states that the
frequency of the signal sampling must be at least twice the
highest frequency component of the signal in order to pre-
serve the alternating nature of the external excitation after
the sampling. In our case, the sinusoidal waveform of the ex-
ternally applied force has a period 2π, and then it should be
sampled at minimum at twice its frequency, that is, every π
radians or less every iteration cycle. This implies that ωd

should be smaller than π rad∕cycle. On the other hand, the
adapting constants τn and σp are related by

τn � vd
vphys

σp; (6)

where vd is the digitized speed of the waves (measured in
[pixels/cycle]) and vphys is the physical speed of the waves
measured in [nm/s]. In the case of optical waves in vacuum,
vphys � v0 corresponds to c � 2.99792 × 1017 nm∕s. There-
fore, the digitized angular frequency ωd can be expressed as

ωd � ω
vdσp
c

: (7)

The above expression implies that once the optical frequency
is fixed, the Nyquist–Shannon criterion requires

vdσp <
πc
ω
: (8)

On the other hand, the Courant–Friedrichs–Lewy condition
[36] imposes that vd0, the digital counterpart of the maximum
speed v0 � c, must satisfy vd0 ≤ 1 pixel∕cycle. That is, the
maximum allowed digitized wave speed that guarantees the
stability of the simulation is one pixel per cycle of iteration.
A speed beyond this value would cause the simulation to
diverge. In other words, the dynamical information can be
transferred to a maximum distance of one pixel, i.e., from
one pixel to the next one, in each iteration cycle.

3. DIRECTION FILTER
We propose a simple and natural DF to isolate a single wave
traveling in a given direction. This method is based on a wave
subtraction technique, and it works automatically for any
wavelength, amplitude, direction, waveform, and also in the
presence of other waves traveling in different directions.

For the sake of clarity, in the following subsection we
describe the DF formulation for one-dimensional problems
and in Subsection 3.B we generalize it to two dimensions.

A. Mathematical Formulation of the DF in One
Dimension
For a given time-evolving function A�x; t�, we propose the
operator

F ����A�x; t�� � A�x; t� Δt� − A�x − vΔt; t�; (9)

where v is a constant representing a speed. If and only if
A�x; t� represents a wave traveling at speed v toward the
�x direction, it must satisfy

A�x; t� Δt� � A�x − vΔt; t�: (10)

Substituting Eq. (10) in Eq. (9), we obtain

F ����A�x; t�� � A�x − vΔt; t� − A�x − vΔt; t� � 0 ∀ t: (11)

The positive DF operator F ��� cancels waves traveling to-
ward the�x direction. Correspondingly,F �−� � A�x; t� Δt� −
A�x� vΔt; t� is the negative DF operator, and it cancels waves
traveling toward the −x direction. In other words, the DF op-
erator cancels a wave A�x; t� traveling in a given direction by
subtracting from it the same wave but evaluated in a previous
instance and in a position displaced by an amount Δx � vΔt
from its present position. This is schematically shown
in Fig. 2.

Let us now evaluate the effect of the positive DF operator
in a more general case (the analysis for the negative DF
operator is completely analogous). Suppose that A�x; t� �
B��x; t� � B−�x; t� is the superposition of two waves of arbi-
trary shapes traveling with speed v toward opposite directions
�x and −x, respectively. Taking into account that

A�x − vΔt; t� � B��x − vΔt; t� � B−�x − vΔt; t� (12)

and

A�x; t� Δt� � B��x; t� Δt� � B−�x; t� Δt�; (13)
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by applying F ��� to this new function, we get

F ����A�x; t�� � B��x; t� Δt� � B−�x; t� Δt�
− B��x − vΔt; t� − B−�x − vΔt; t�: (14)

Since B��x; t� and B−�x; t� are waves traveling toward the
�x and −x directions, respectively, they satisfy

B��x; t� Δt� � B��x − vΔt; t� (15)

and

B−�x; t� Δt� � B−�x� vΔt; t�: (16)

Therefore,

F ����A�x; t�� � B−�x� vΔt; t� − B−�x − vΔt; t�: (17)

As expected, B��x; t� is completely cancelled. By calling
x0 � x� vΔt, Eq. (17) can be rewritten as

F ����A�x0 − vΔt; t�� � B−�x0; t� − B−�x0; t − 2Δt�; (18)

which represents a wave traveling toward the −x direction. By
dividing both sides of Eq. (18) by 2Δt and taking the limit
Δt → 0, Eq. (18) is reduced to

F ����A�x; t�� ≈ 2Δt
∂B−�x� vΔt; t�

∂t
: (19)

Expression (19) reveals the effect of the DF operator on a
wave of general shape traveling in a nonfiltered direction.
For small Δt compared with the time period of the higher
harmonic component of B−�x; t�, the filtered wave is propor-
tional to the time derivative of the original wave.

B. Generalization of the DF to Two Dimensions
Consider a two-dimensional scalar wavefield A2�r; t�. The
expression for the DF operator (9) in R2 is

F �v;δ�
2 �A2�r; t�� � A2�r; t� δ� − A2�r − vδ; t�: (20)

This operator filters waves traveling with phase speed jvj in
the direction of v, with a characteristic time delay δ � Δt
(bold letters represent vectors). To find out the effect
produced by the DF operator on waves traveling in directions
different from the filtering direction determined by v, we
consider a two-dimensional plane wave

A2�r; t� � Aeikw�r−vwt�; (21)

where kw is the wave-vector, vw � ω∕jkwjkw is the velocity of
the wave, and ω is its angular frequency. Substitution of
Eq. (21) into Eq. (20) yields

jF �v;δ�
2 �α�j � Aje−iωδ − e−iωδ cos�α�j; (22)

where jF �v;δ�
2 �α�j is the complex amplitude of the filtered wave

and α is the angle between the propagation direction (kw) and
the filtering direction (v) (see Fig. 3).

To quantify the performance of the DF, we define the
relative attenuation μa of the wave as

μa�α� � 1 − jF �v;δ�
2 �α�j∕jF �v;δ�

2 jmax; (23)

where jF �v;δ�
2 jmax stands for the maximum value of jF �v;δ�

2 �α�j
for α ∈ �0°; 360°�. As mentioned at the end of Subsection 3.A,
the requirement for the DF to work properly is that δ must be
small compared to the time period of the highest harmonic
component of A2�r; t�. Therefore, it can be easily proved that
in the limit δ → 0, the attenuation (23) takes the simple form

μa�α� �
1
2
�cos�α� � 1�: (24)

Figure 4 shows the relative attenuation of a plane wave as a
function of α. As expected, the maximum attenuation is
obtained for α � 0, that is, when the propagation direction
of the plane wave coincides with the filtering direction.

Fig. 2. Geometric representation of the action performed by the
positive DF operator.

Fig. 3. Angle α between the direction of propagation of the plane
wave (along vw) and the filtering direction (along v).
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Conversely, the attenuation is minimum for the wave traveling
in the opposite direction, that is, for α � 180°. In Fig. 5, we
show the performance of the DF for a circular wavefront,
which can be regarded as a superposition of plane waves
propagating along all possible directions. The amplitude of
the obtained filtered wave is shown in gray levels.

C. Numerical Considerations
As presented above, the DF is characterized by two parame-
ters: v, which determines the speed and direction of the wave
to be filtered, and δ, the characteristic delay. However, as in
any digital simulation, the space–time domain is discretized,
and this discretization imposes certain constrains on the DF
parameters.

From Eq. (20), it becomes evident that the filtering opera-
tion will be effective if the spatially displaced wavefield A2�r −
vδ; t� has exactly the same shape as A2�r; t� δ�. Since in the
discretized domain the minimum separation distance is 1 pixel
and the simulation allows a maximum digitized wave speed
vd0 ≤ 1 pixel∕cycle (according to the Courant–Friedrichs–
Lewy condition), the traveling wave advances a distance d0 �
jvjt � vd0 × Δnc ≤ 1 pixel in one iteration cycle (Δnc � 1), and
therefore A2�r; t� δ� will have the same shape as A2�r − vδ; t�
exactly after 1∕vd0 iteration cycles, with �1∕vd0� ∈ Z. During
intermediate iteration steps, the wave will take interpolated
values between A2�r − vδ; t� and A2�r; t� δ� that will not

exactly match the shape of either of them. According to this,
the necessary requirement for a good performance of the DF
within the simulation is that the speed of the waves must be
set to vd0 � 1 pixel∕Δnc, with Δnc ∈ Z being the integer num-
ber of iteration cycles in which the wave advances a distance
of exactly 1 pixel. Therefore, the characteristic delay of
the filter must be δ � Δnc � 1 pixel∕vd0 for a spatial shifting
of A2�r − vδ; t� equal to 1 pixel. In our simulations, we
usually set the second allowed digitized speed vd0 �
0.5 pixels∕cycle, (i.e., Δnc � 2). Therefore, in this case, δ �
2 cycles for a spatial shifting of 1 pixel in A2�r − vδ; t�.
Although we could eventually use spatial shiftings larger than
1 pixel, larger shiftings lead to larger values of the character-
istic delay δ, during which the shapes of A2�r − vδ; t� and
A2�r; t� δ� would be more affected by the numerical errors,
thus decreasing the quality of the directional filtering.

It is worthwhile mentioning that the above conditions are
valid for the implementation of the DF in the orthogonal di-
rections x and y, which coincide with the rows and columns
of the discretized array of particles comprising the simulation
medium, as shown in Fig. 1. In the present paper we use four
DFs corresponding to the directions�x, −x,�y, and −y. From
a practical programming point of view, the DF is applied to the
waves evolving in the two-dimensional array defined by the
simulation, called main plane. However, the resulting direc-
tionally filtered waves are stored in secondary planes. These
secondary planes show time-evolving waves that are filtered
images of the waves evolving in the main plane, and therefore
the DF does not affect the physics of the system. In this case,
we have four secondary planes that store the filtered waves
traveling in the �x, −x, �y, and −y directions, respectively.

To illustrate the behavior of the DF, in Fig. 6(a) we show
the main plane of the simulation of a linear source emitting
Gaussian waves in directions �x. Figures 6(b) and 6(c) show
the secondary planes that contain the wavefield of Fig. 6(a)
after the application of the DF that cancels waves traveling
toward the �x and the −x direction, respectively.

One of the main applications of the DF is the method for
evaluating the energy flux of any simulated wavefield. This
method makes use of the waves filtered in the orthogonal
directions �x and �y. Let us call Ix�, Ix−, Iy�, and Iy− the
intensity (calculated as the time integration of the squared am-
plitude) of the waves traveling toward the�x, −x,�y, and −y
directions, respectively. Then, the quantities ϕx � Ix� − Ix−
and ϕy � Iy� − Iy− are proportional to the energy flux along
the x and y directions, respectively. Consequently, the vector
field F defined as

F � �ϕx;ϕy� (25)

is proportional to the energy flux vector field.
It should be mentioned that the DF developed here could

also be applied to experimental data. For instance, the method
of Fourier transform profilometry presented in [37] permits
digitalizing the evolution of surface water waves along time.
Therefore, the technique proposed in this paper also enables
the calculation of the energy flux field for real systems.

4. DYNAMIC DIFFERENTIAL ABSORBER
It is well known that any computer wave simulation can
only reproduce the propagation of waves in a finite domain.

Fig. 4. Attenuation of the plane wave as a function of the angle α
between its direction of propagation and the filtering direction.

Fig. 5. Angular effect of the DF on a circular wavefront.
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However, the waves that arrive at the edges of the simulation
domain are naturally reflected back [33]. Therefore, in order
to simulate open boundaries, it is necessary to artificially can-
cel these reflected waves. Several methods have been pro-
posed for this purpose [33,38–41], each of them having its
advantages and disadvantages. One possibility to avoid these
reflections is to place a slab of an absorbing medium adjacent
to the edges of the domain. In its basic implementation, this
approach reduces the reflected waves, but it does not com-
pletely cancel them [33]. Besides, the absorbing region produ-
ces an unnecessary increment of the size of the simulation
space and, consequently, the computation time also increases.

A highly improved version of the procedure described
above is the so called perfectly matched layer (PML)
[28,38]. This method is the most widespread technique to can-
cel reflected waves in electromagnetic simulations, and it con-
sists of introducing an absorbing anisotropic layer at the edges
of the simulation space. Within this layer, the differential wave
equation is modified by including a special transformation that
produces a rapid attenuation of the wave as it propagates.
Although this method is very efficient, it requires a layer of
finite thickness to allow the decay of the waves. Besides,
waves traveling parallel to the layer are not attenuated by
the PML method, producing the accumulation of nonrealistic
energy in that region.

In this section, we present an alternative approach to sim-
ulate the open space by cancelling reflected waves at the
edges of the simulation domain. The method, called dynamic
differential absorber (DDA), is based on an intuitive concept
and its main advantage is that it does not require a layer of a
given thickness to cancel the waves, i.e., it produces the ab-
sorption of the wave within a layer of infinitesimal thickness,
and this saves computation space and time. On top of that, the
method automatically cancels waves of any amplitude, shape,
or frequency with the same efficiency, and this constitutes a
great advantage that enables the use of multifrequency exci-
tation, as shown in Section 5.

The basic idea behind the DDA is similar to the analytic
boundary condition of the differential wave equation pro-
posed several decades ago by Engquist and Majda [39] first,
and by Higdon [40,41] later. The framework of their formula-
tions is the so-called space-time extrapolation, which basically
presents a static view of the problem. The approach by
Engquist and Majda [39] consists of finding an analytic boun-
dary condition that is later discretized, whereas the method by
Higdon [40,41] directly works with the finite difference
approximation of the differential wave equation. Although
our approach is closer to the latter method, it differs from
Higdon’s work especially in the case of oblique incidence.

In this case, Higdon’s method finds the range of angles for
which the best absorption is obtained, but it does not provide
a solution to improve the absorption for an arbitrary angle of
incidence. The novelty of the DDA is that it actively adapts the
absorbing performance by detecting the angle of incidence of
the waves reaching the absorber, which greatly improves the
absorbance. Additionally, our DDA is based on an intuitive
and simple idea, which provides more physical insight to
the problem.

In the following subsection we present the basic formu-
lation of the DDA for the 1D case, called simple dynamic dif-
ferential absorber (SDDA), and then we develop the adaptive
dynamic differential absorber (ADDA), which is a generaliza-
tion to two and more dimensions.

A. Simple Dynamic Differential Absorber
Let us examine the movement of a wave propagating along the
x axis toward the�x direction, at two fixed points x � xa and
x � xb, as shown by the dots in Fig. 7. As the wave passes
through, the amplitude Ab at xb will take the value of Aa at xa
after a time delay given by Δt � Δd∕vw, where Δd � xb − xa
and vw is the phase velocity of the wave (within this context,
the term “amplitude” refers to the magnitude of the wavefield
at a given point).

The key idea underlying the DDA is the following: if we ar-
tificially control the amplitude Ab of the wave at xb and make
it move in such a way that Ab copies the amplitude Aa with the
right time delay, the behavior of the propagating wave for
x < xb will not be affected as it passes through. In fact, if
xb is a point located at the edge of the simulation domain,
the incoming wave will not be affected at this point and it
would continue propagating as if there were no boundary.
Therefore, the SDDA consists in controlling the movement
of a point located at xb, called the absorbing point, according
to the behavior of the incoming wave at xa, called the reading
point. Mathematically, this can be expressed as

A�t1�
b � A�t0�

a ; (26)

Fig. 6. (a) Source emitting Gaussian waves in directions �x and −x. (b) Secondary plane of the DF that cancels waves traveling toward the �x
direction. (c) Secondary plane of the DF that cancels waves traveling toward the −x direction. Arrows show the wavefront propagation directions.

Fig. 7. Amplitude of a propagating wave at two fixed points located
in x � xa and x � xb.
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where A�t1�
b is the amplitude of the wave at xb in a certain in-

stant t1 and A�t0�
a is the amplitude of the wave at xa in a pre-

vious instantt0 � t1 − Δt, with Δt � δdΔd. In this context,
δd � 1∕vw is the differential delay which depends on the
medium characteristics via the phase velocity of the waves
within the propagating medium.

Although the above equations do not condition the distance
between the absorbing and the reading points, within the
simulation method the discretized nature of the space–time
domain must be taken into account, as already explained in
Subsection 3.C for the DF. Since the minimum distance be-
tween the reading and the absorbing points is of one pixel,
we also set the allowed digitized wave speed vd0 �
0.5 pixels∕cycle (see Subsection 3.C), and then δd � 1∕vd0 �
2 iteration cycles. If, for instance, a 1D simulation space is M
pixels long, the rightmost pixel m � M is forced to move as

A�nc�
M � A�nc−2�

M−1 ; (27)

where A�nc−2�
M−1 is the amplitude of the wave at the pixel M − 1

stored two iteration cycles before the present cycle nc.
Similarly, the leftmost pixel m0 � 1 is forced to move as

A�nc�
1 � A�nc−2�

2 ; (28)

where A�nc−2�
2 is the amplitude of the second pixel stored two

iteration cycles before the present cycle nc.

B. Adaptive Dynamic Differential Absorber
If the simulation domain is two-dimensional, the SDDA pre-
sented in the previous subsection would only be effective
for waves propagating normally to the edge of the simulation
space (or whose wavefronts are parallel to the edges of the
domain). In order to develop a direction-sensitive method that
could properly absorb waves propagating in different direc-
tions, small corrections must be introduced into the differen-
tial delay used to cancel the incoming waves.

The effective wavelength λeff of the wave that arrives at the
edge of the simulation space is given by

λeff � λw∕ cos�α�; (29)

where λw is the actual wavelength of the incoming wave and α
is the angle between the direction of propagation and the nor-
mal to the edge of the simulation space. Then, the effective
phase velocity veff , the phase velocity of the wave along
the direction normal to the edge of the simulation space,
depends on the angle of incidence and is given by

veff �
ω

keff
� λeff f (30)

with ω � 2πf , keff being the effective wavenumber and f the
frequency of the wave. This is schematically shown in Fig. 8.
Consequently, the effective differential delay δeff becomes

δeff �
1
veff

� cos�α�
vw

� δd cos�α�; (31)

which implies that δeff is always smaller than δd.
To determine δeff , the reading point must provide informa-

tion not only about the time-varying amplitude of the wave to

be cancelled, but also about its direction of propagation, given
by α. This angle can be obtained by evaluating the energy flux
vector at the reading point, using the method described in
Subsection 3.C. For example, for the right-hand side edge
of the simulation space, α is given by

α � arctan
�
ϕy

ϕx

�
. (32)

In practice, to clearly establish the direction of the incom-
ing wave before it is affected by the edge of the simulation
space, the information about the direction of the incoming
wave is taken from points located between two and four pix-
els away from the edge of the simulation space, i.e., from the
absorbing points. On the other hand, if the wave speed is set to
vd0 � 0.5 pixels∕cycle, δeff is a real number between 2 and 0
for α between 0° and 90°, respectively. Since the number of
cycles δeff must be an integer, the resulting value Δt must
be approximated to the closest integer value. This implies that
the allowed discretized delays (δeff � 2, 1, and 0) will only
match the required delay for three angles of incidence, that
in this case are α � 0°, 60°, and 90°. Therefore, in order to
increase the number of allowed discretized delays, the wave
speed can be decreased and set, for instance, to
vd0 � 0.1 pixels∕cycle. In this case, δeff will be bounded be-
tween 10 and 0, for α between 0° and 90°, respectively. Then,
the number of discretized delays is increased, and the error
between the calculated and the allowed integer delays is mini-
mized, as shown in Fig. 9. Increasing the number of discre-
tized delays improves the effectiveness of the ADDA. Then,
to increase this number we can either increase the distance
between the reading and the absorbing point, or decrease
the wave speed vd0. Depending on the requirements of speed
and usable space size of the simulation, the best choice should
be made. Figure 10 shows the location of the absorbing points
(black dashed–dotted line) and the reading points (white dot-
ted line) for a two-dimensional space. The distance Δd
(magnified for clarity) between the reading and the absorbing
points is also indicated.

Despite the difference between the calculated and the dis-
crete values of δd introduced for certain incidence angles by
the discretization process, it was verified that these errors do
not significantly affect the performance of the ADDA, even for
δd � 2 (second maximum digitized wave speed allowed) and

Fig. 8. Effective wavelength λeff and effective phase velocity veff of
an obliquely incident wave forming an angle α with the normal to the
simulation space edge.
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Δd � 1 pixel (maximum available space), as will be shown in
the next subsection. Making an analogy with electronics, the
proposed method behaves like an active device, which reads
an input signal and reacts accordingly to return a post-
processed output signal. In this sense, this method is different
from most available absorbing methods, which behave like
passive devices whose response does not take into account
the input signal.

C. Validation
In order to evaluate the performance of the ADDA, the reflec-
tance, defined as the ratio of the reflected to the incident in-
tensity, was calculated for a Gaussian beam incident on the
edges of the simulation space with different angles. In all
cases, the distance between the reading and the absorbing
points was set to Δd � 1 pixel. Figure 11 shows the
reflectance as a function of the angle of incidence for
δd � 2 (blue solid line), δd � 4 (green dashed line), and
δd � 8 (red dotted line). It can be observed that as δd is
increased, the overall reflectance decreases, that is, a better

performance of the absorber is obtained. For δd � 2, there are
peaks of relatively high reflectance for 39° and 69°. In the case
of δd � 4, the reflectance also shows peaks, but less intense
than for δd � 2. These peaks are located at the angles of in-
cidence for which the difference between the calculated and
the available integer delays is maximized. As the number of
integer delays is increased (by increasing δd), a better match-
ing between the calculated and the available integer delays is
obtained (see Fig. 9), and the intensity of the reflectance
peaks is gradually reduced, as observed for δd � 8 in Fig. 11.

Figure 12 shows the attenuation produced by the ADDA ex-
pressed in decibels (dB), and calculated as χ � −10 log10�R�,
where R is the reflectance. It can be noticed that for the angles
for which the matching between the integer and the calculated
delays is better, the attenuation values reach up to 44.2 dB for
δd � 2, 64.5 dB for δd � 4 and 49.4 dB for δd � 8. As a refer-
ence, the maximum attenuation values obtained with the PML
applied within the FDTD method lie between 20 and 39 dB for
small incidence angles, depending on the setting parameters
of this method [38].

It can also be observed in Fig. 12 that, for angles of inci-
dence greater than approximately 25°, the best (larger) attenu-
ation is obtained for δd � 8, whereas for small angles of
incidence the attenuation obtained for δd � 4 is better. This
result can be explained by taking into account that smaller
angles of incidence require higher values of the effective

Fig. 9. Delay versus angle of incidence: discretized (solid line) and
calculated (dashed line).

Fig. 10. Location of the absorbing and the reading points for a 2D
simulation space. The distance Δd is also indicated.

Fig. 11. Numerical experiment with the ADDA: Reflectance versus
angle of incidence α for δd � 2 (blue solid line), δd � 4 (green dashed
line), and δd � 8 (red dotted line).

Fig. 12. Attenuation versus angle of incidence α for δd � 2 (blue
solid line), δd � 4 (green dashed line), and δd � 8 (red dotted line).
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differential delay δeff , as determined by Eq. (31). In this case,
there are more iteration cycles between the reading and the
absorbing instants for δd � 8 than for δd � 4. Then, if the sam-
pling frequency of the shortest wavelength involved is low, a
wave that propagates a fraction of pixel will be represented in
the next iteration cycle by a natural interpolation produced by
the simulation. When the wave advances one pixel, the accu-
mulated numerical errors produced by interpolation will be
more in the case of δd � 8 than in the case of δd � 4, produc-
ing a higher mismatch between the read waveform and the
waveform that actually reaches the absorbing point. This pro-
duces a better performance for δd � 4 for small angles of in-
cidence. Therefore, in order to reduce the interpolation errors
and improve the absorbing characteristics for small incidence
angles, i.e., for high differential delays δd, the sampling fre-
quency must be increased, and this is done by decreasing
the constant σp as described in Section 2.

As can be noticed, the angles considered in Figs. 11 and 12
range from 0° to 80° due to the technical difficulties to evalu-
ate the reflectivity for grazing angles near (and at) 90°, with
the simulation. This limitation arises mainly from the require-
ment of a minimum width of the Gaussian beam in order to
approximately represent a highly directional incident plane
wave. For grazing angles, a very wide simulation space is re-
quired, which increases as α approaches 90°. Therefore, the
response of the absorber for the range of angles compre-
hended in the interval (80°,90°] was directly evaluated by
checking the values of the effective differential delay, which
are automatically set by the absorber during runtime. It was
verified that the obtained values for the discretized δeff were in
good agreement with those obtained theoretically by means of
Eq. (31) for the corresponding angles.

The effect of the ADDA is graphically shown in Fig. 13 for
an incident Gaussian beam forming an angle of 20° with the
normal to the edge of the simulation space. Figure 13(a)
shows the intensity diagram without the ADDA, where the
reflected wave can be observed, and Fig. 13(b) shows that

the reflected beam is almost completely cancelled when
the absorber is activated.

It is worthwhile mentioning that the DDA is a general
method that could be applied to waves of any nature, i.e.,
mechanical, electromagnetic, and potentially even to quantum
waves governed by Schrodinger’s equation.

5. MULTIFREQUENCY EXCITATION AND
TUNING FILTER
The optical response of a structure is usually described by its
reflectance and transmittance as a function of the wavelength.
To evaluate the optical response in a more efficient manner, in
this section we introduce a multifrequency excitation scheme
(MFE), i.e., the single frequency excitation (SFE) described in
Eq. (5) is replaced by

Et �
Xf tot
i�1

Ei sin�ωiτnnc � φi�; (33)

where f tot is the total number of frequencies, Ei is the exci-
tation bitmap for the i th frequency ωi, and φi is the ith initial
phase. In what follows, we set Ei � E, meaning a uniform fre-
quency spectrum.

Each point in the simulation space has a complex oscillat-
ing movement resulting from the superposition of the whole
set of waves of different frequencies with unknown ampli-
tudes, and we are interested in extracting each frequency
component from the multifrequency wavefield.

In order to guarantee that the waves could reach every
point within the simulation space, we established the follow-
ing criterion: the total number of iteration cycles ntot

c should
be such that it ensures that a wave can travel at least twice the
longest straight distance within the simulation space. For a
bitmap of p × q pixels and a wave speed vd0, the minimum
number of cycles is

ntot
c � 2

����������������
p2 � q2

p
vd0

: (34)

The different frequencies of each pixel are usually ex-
tracted using the numerical Fourier transform [42] of the
time–domain oscillation of each point. In this section, we
present an alternative method called tuning filter (TF) to ex-
tract the different frequencies from the multifrequency oscil-
lation of each pixel. The method is based on the frequency
response of the forced damped oscillator. This filter acts as
a temporal mask applied on the simulation space. After the
application of the TF to the time-varying multifrequency wave-
field, a dynamic single-frequency wavefield can be visualized,
allowing its processing to determine physical magnitudes
such as reflectance and transmittance, for a given frequency.

A. Implementation
The TF is based on the tuning properties of the forced damped
oscillator, governed by the well-known inhomogeneous differ-
ential equation

Fext

m
� d2z

dt2
� γdo

dz
dt

� ω2
doz; (35)

Fig. 13. Intensity diagram of a Gaussian beam forming an angle α �
20° with the normal to the lower horizontal edge of the simulation
space for the case δd � 4. (a) Without ADDA and (b) with ADDA.
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where Fext is the applied external force, z and t are the posi-
tion and time variables, respectively, γdo is the damping con-
stant, and ωdo �

�������������������
kdo∕mdo

p
is the natural frequency of the

damped oscillator (kdo is the spring elastic constant and
mdo is its mass). The TF uses the characteristic frequency re-
sponse of the forced damped oscillator, which acts as a nar-
row band filter and maximizes the signal at resonance, i.e.,
when the frequency of Fext equals the natural frequency
ωdo of the oscillator. Under the condition γdo ≪ ωdo, the band-
width of the resonance peak is given by

Δω ≈ γdo; (36)

the resonant frequency is

ωr �
��������������������
ω2
do −

γ2do
2

s
≈ ωdo; (37)

and the sharpness of the resonance peak is determined by the
quality factor Q, defined as

Q � ωdo

γdo
: (38)

Larger Q values correspond to sharper resonance peaks.
The implementation of the TF is similar to that of the DF.

The simulation space where the multifrequency wavefield is
evolving is considered as the main plane. Then, a damped os-
cillator is associated to each point of the main plane, forming a
two-dimensional array of oscillators, called the secondary
plane. As schematized in Fig. 14, the wavefield amplitude
at each point in the main plane is used to generate a propor-
tional force that is applied to the particle of mass mdo in the
corresponding oscillator. The displacement of each particle in
the secondary plane is associated with the amplitude of the
filtered wavefield. The oscillators are tuned at the frequency
to be isolated, and then the value of ωdo is selected accord-
ingly. Therefore, as many secondary planes as frequencies
to be extracted will be needed.

The main advantage of the MFE is that the computing time
is significantly reduced compared with the SFE. In principle,
the MFE employs the same time to complete the simulation of
the wavefield as that used by the SFE for just a single fre-
quency. For a spectrum containing f tot discrete frequencies,
the total number of iteration cycles is reduced f tot times with
respect to the number of iteration cycles required to process

the same signal when a sequential sweep of f tot single frequen-
cies is carried out. However, the advantage in speed is com-
pensated for by a requirement of more memory to store the
whole set of secondary planes and their respective auxiliary
variables, which also introduces a slight delay in the comput-
ing time of each iteration cycle of the MFE compared with that
of the SFE. This delay increases with the number of simulta-
neous frequencies explored in the MFE. More precisely,
the computing times for a single iteration cycle within each
excitation scheme are related by

tMFE � tSFE�1� δMFE f tot�; (39)

where δMFE is the additional fraction of tSFE required by each
frequency. In the case of the algorithm implemented in this
work, δMFE ≈ 0.04. In general, δMFE could vary according to
the dynamic memory allocation efficiency of the implemented
algorithm. Taking into account Eq. (39), to run a whole set of
frequencies, the MFE requires less computing time than the
SFE if

ntot
cS > �1� δMFE f tot�ntot

cM ; (40)

where ntot
cM is the total number of iteration cycles for the MFE

and ntot
cS � f tot · ntot

c is the total number of iteration cycles for
the SFE.

While ntot
cS is only determined by the size of the simulation

space and by f tot, in the case of the MFE, ntot
cM is also condi-

tioned by the required selectivity of the TF, which depends on
Δω and on f tot. According to Eq. (36), to perform an adequate
isolation of a single-frequency component, the separation be-
tween adjacent discrete frequencies should be Δω ≥ γdo. In
addition, the TF should work under the stationary regime,
i.e., when the nontuned frequency oscillations have vanished.
Since the time employed by the oscillator to reach the station-
ary regime is inversely proportional to γdo, the time required
by the TF to isolate the selected frequency component basi-
cally depends on the desired resolution Δω. Consequently, the
value of γdo should be adjusted according to the speed and
precision requirements of the simulation in each particular
case, and this determines the value of ntot

cM . According to
the above considerations, one could decide which scheme
is more appropriate.

B. Discretization Requirements and Validation
In the case of the optical spectrum (λ ∈ [380, 780 nm]) discre-
tized in steps of 10 nm (41 frequency values), the value of ntot

cM
required for an appropriate separation of frequencies is large,
since in this case Δω is small, and then the required quality
factor is very high [see Eqs. (36) and (38)]. Moreover, to min-
imize the noise produced by the nontuned components in the
tuned frequency wave, it is even convenient to choose
γdo ≪ Δω, and this implies a high value of ntot

cM . The total num-
ber of cycles ntot

cM required by the TF to extract a frequency
component could, in principle, be reduced by increasing the
time adapting constant τn [see Eq. (5)], i.e., by increasing ωd.
As mentioned in Section 2, the Nyquist–Shannon criterion im-
poses ωd < π. However, it was found that for high values of
ωd, the TF resonates at a frequency higher than the tuned
frequency. Then, to ensure that the TF selects the desired
frequency, ωd must satisfy ωd ≪ π, and thereforeFig. 14. Schematic diagram of the TF implementation.
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vdσp � ωdc
ω

≪
πc
ω

(41)

for ωd and ω being the maximum digitized and physical fre-
quency contained within the analyzed spectrum, respectively.

In order to quantify the performance of the TF independ-
ently from other characteristics of the simulation, we define
the relative error (in percentage) of the obtained intensity as a
function of the explored wavelength as

εr�λe� � 100
jIMFE�λe� − ISFE�λe�j

ISFE�λe�j
; (42)

where IMFE � �Amax
M �2 and ISFE � �Amax

S �2 are the intensities
obtained with the MFE for the wavelength λe and the SFE, re-
spectively, and Amax

M and Amax
S are the maximum amplitudes

detected at the final stage of the time evaluation (in which
the TF is in the stationary regime) for the MFE and the
SFE cases, respectively.

The exploration of the optical spectrum with a resolution of
10 nm is an extreme situation for the MFE scheme because, as
mentioned above, for 41 simultaneous frequencies, a very high
quality factor is needed, which leads to a very large number of
iteration cycles ntot

cM . This limitation can be overcame by ex-
ploring the same amount of frequencies in several MFE stages
having a larger separation between frequencies, in such a way
that different frequencies are covered in each stage. In this
manner, the required quality factor of the TF is greatly de-
creased, and therefore ntot

cM is also considerably reduced.
For example, the optical spectrum can be explored in five

MFE stages with a resolution of 50 nm (f tot � 9). In this case,
an error of εr � 5.25% can be achieved with ntot

cM � 50; 000
cycles per stage, γdo � 10−4 rad∕cycle, σp � 19 nm∕pixel,
and vd0 � 0.5 pixels∕cycle. Therefore, the total number of
cycles required to explore the 41 frequencies is 5ntot

cM �
250; 000. For δMFE ≈ 0.04, the MFE scheme becomes more
suitable than the SFE in terms of computing time to
explore the 41 optical frequencies, if the simulation space
becomes larger than 1454 × 1454 pixels. This example shows
that, for large simulation spaces, the MFE (and the use of the
TF) represents an advantage over the SFE that can be imple-
mented in any conventional computer. The decision on which
scheme (MFE or SFE) is more suitable will in general depend
on the maximum allowed error in each particular case. If we
are just interested in the visualization of the field associated to
each frequency, less precision is required, and in this case the
whole set of frequencies can be analyzed in a single stage,
with a higher value of γdo, which considerably reduces the
required number of iteration cycles.

As an example, the field scattered by an opaque cylinder of
diameter 620 nm was simulated for an incident optical multi-
frequency plane wave (λ ∈ [380, 780 nm], Δλ � 10 nm) with
γdo�10−4 rad∕cycle, σp� 20 nm∕pixel, vd0 � 0.5 pixels∕cycle,
and a simulation space of 150 × 150 pixels. Figure 15(a)
shows the resulting multifrequency intensity diagram for the
scattered wavefield and Figs. 15(b)–15(d) are the intensity di-
agrams for several extracted components of wavelengths 780,
570, and 380 nm, respectively, for ntot

cM � 600. The white
dashed line denotes the cylinder position. As can be observed,
even for a very low number of iteration cycles, the TF allows a

Fig. 15. Simulated intensity diagram of a multifrequency plane wave scattered by an opaque cylinder of a diameter of 620 nm. (a) The
multifrequency wavefield, (b) λ � 780 nm component, (c) λ � 570 nm component, and (d) λ � 380 nm component.
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clear visualization of the wavefield of each frequency. This
result can be explained by taking into account that if γdo is
relatively high, the nontuned frequency components are rap-
idly damped and the filter would immediately be oscillating at
its tuning frequency, although the stationary regime has not
been strictly reached.

The possibility of getting a clear and rapid visualization of
the selected frequency components by means of the TF could
also be useful to decouple the different frequency components
that coexist in a multifrequency field of mechanical waves ob-
tained experimentally. A few thousands of frames of an exper-
imental evolving multifrequency wavefield could be enough to
decouple and visualize the evolution of a single-frequency
component. This feature also makes the TF a valuable tool
for visualization and signal processing of experimental data.

6. NEAR TO FAR FIELD
TRANSFORMATION
The presented simulation method provides the near field dis-
tribution of a wave interacting with a given object. However,
in many cases one is interested in the far field response of an
illuminated structure. In this section, we show how the
present simulation has been adapted to apply conventional
near to far field transformation methods.

Near to far field transformation methods are usually based
on Green’s Theorem [28,43] and require a complex wavefield
to be applied. If the wavefield is represented by a complex
phasor Z�r; t� � ZR�r; t� � iZI�r; t�, according to Green’s
theorem [28], for a fixed time we have

Zt�r� �
I
Ca

�G�rjr0�bn0
a ·∇0Zt�r0� − Zt�r0�bn0

a ·∇0G�rjr0��dC0;

(43)

where Zt�r� is Z�r; t� evaluated at a fixed t, r0 is the position of
a source point over an arbitrary contour Ca enclosing the scat-
terer, n̂a is the outward unit normal to the contour Ca, r is an
observation point outside Ca, and G�rjr0� is the Green’s func-
tion, which in two dimensions is given by the Hankel function

G�rjr0� � i
4
H�2�

0 �kjr − r0j� (44)

with i being the imaginary unit and k � 2π∕λ the wavenumber.
To apply Eq. (43) and calculate the far field, we need to have
the complex near field Zt�r� for each pixel. However, the
present simulation method provides a real scalar wavefield,
and then, its imaginary part should be found. Taking into
account that

Zr�t� � Ar�t�e−iωt � Ar�t� cos�ωt� − iAr�t� sin�ωt�; (45)

where Ar�t� is the amplitude of the phasor at a fixed position r
and ω is the angular frequency in a steady state (when Ar�t� is
constant), it is easily verified that

ZI�r; t� �
d
dt

fZR�r; t�g: (46)

Since the simulation provides ZR�r; t�, we use Eq. (46) to
calculate ZI�r; t�, and therefore to build the phasor for each
pixel that is introduced into Eq. (43) to calculate the far field.

In the case of a such multifrequency excitation as that de-
scribed in Section 5, the far field should be calculated from the
near field for each frequency component ωi [see Eq. (33)],
which is isolated from the multifrequency wavefield by means
of the TF described in Section 5.

7. APPLICATION EXAMPLE
To demonstrate the potential of the improved simulation pre-
sented in this work, in this section we show an application
example which includes the whole set of techniques pro-
posed, and obtain the optical response of a highly complex
biological structure. In particular, we evaluate the optical
response of the peridium—a transparent protective layer that
encloses the mass of spores—of the Diachea leucopoda

(Physarales order, Myxomycetes class), which is a micro-
organism that has a characteristic pointillistic iridescent
appearance [see Fig. 16(a)]. It has been demonstrated that this
appearance results from a photonic effect [17]. In [44],
we used a basic implementation of the present simulation
method to investigate the structural color generation in this
microorganism.

We use a TEM image of the peridium cross section of the
Diachea leucopoda, shown in Fig. 16(b), to set the M bitmap,
which defines the refraction index distribution by means of a
linear conversion of the gray levels of the negative image of
Fig. 16(b). The gray level 0 (black) is associated with the low-
est value of the refraction index (equal to unity). The average
refraction index of the peridium was set to 1.78, which corre-
sponds to a common value found in biological tissues. The
optical source is a Gaussian beam of width 2 μm. A total of
41 optical frequencies were explored in the range 380–780 nm
with a spacing of 10 nm. The simulation space was set to be of
280 × 230 pixels and σp � 15 nm∕pixel. The width of the

Fig. 16. (a) Diachea leucopoda observed under the optical micro-
scope and (b) TEM image of the peridium cross section.
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sample obtained from the TEM image is 1.68 μm and its mean
thickness is 550 nm. In order to avoid errors produced by the
finite size of the peridium image, we extended the biological
slab at both sides by planar homogeneous slabs whose thick-
ness is the average thickness of the actual image and whose
refraction index is its average refraction index.

Figure 17 shows the resulting near field distribution of
reflected intensity produced by the peridium cross section
for a wavelength of 380 nm, and Fig. 18 shows the far field
reflectance (R � reflected intensity∕incident intensity) as a
function of the observation angle α and of the wavelength λ.

8. CONCLUSION
In this paper, we presented a set of techniques to enhance the
performance of a previously published electromagnetic wave
simulation method from the point of view of computing time
optimization and space saving. The method is suitable for
dealing with dielectric objects of arbitrary shapes and refrac-
tion index distributions. The improvements introduced permit
the control and analysis of the propagating waves within
the simulation and results particularly suitable for

investigating the electromagnetic response of biological pho-
tonic structures that usually present a high degree of complex-
ity in their geometry as well as in the materials involved. The
proposed techniques include a DF that permits decoupling
waves traveling in different directions, a dynamic absorber
that prevents the reflection of waves at the edges of the sim-
ulation space in order to reproduce unbounded spaces, and a
TF that allows multifrequency excitation. We also adapted a
near to far field method to calculate the far field with a mini-
mum use of computation time and allocation space. As an ap-
plication example, we calculated the reflectance of the
transparent cover layer of a microorganism that exhibits iri-
descence, for multiple wavelengths and observation angles.

In its present form, the proposed simulation method com-
putes the electromagnetic response in the case of TE (electric
field perpendicular to the plane of incidence) polarized inci-
dent light. In order to fully simulate the electromagnetic
response of complex structures with translational invariance,
the transverse magnetic polarization mode (magnetic field
perpendicular to the plane of incidence) should also be in-
cluded. This would require an extension of the method to a
fully vectorial formulation that is already under development.
Also, we plan to make this enhanced method capable of
dealing with 3D objects. As stated above, most biological
structures are highly complex and require a 3D model to
properly account for their electromagnetic properties. The
development of such a tool would constitute a valuable con-
tribution to the study of natural photonic structures.
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