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ABSTRACT

Context. Traditional studies of stellar streams typically involve phenomenological ΛCDM halos or ad hoc dark matter (DM) profiles
with different degrees of triaxiality, which preclude us from gaining insights into the nature and mass of the DM particles. Recently,
the maximum entropy principle of halo formation has been applied to provide a DM halo model that incorporates the fermionic (quan-
tum) nature of the particles while leading to DM profiles that depend on the fermion mass. These profiles develop a more general
“dense core – diluted halo” morphology that can explain the Galactic rotation curve, while the degenerate fermion core can mimic the
central massive black hole (BH).
Aims. We model the GD-1 stellar stream using a spherical core-halo DM distribution for the host that simultaneously explains the
dynamics of the S-cluster stars through its degenerate fermion core without a central BH.
Methods. We used two optimization algorithms in order to fit both the initial conditions of the stream orbit and the fermionic model.
We modeled the baryonic potential with a bulge and two disks (thin and thick) with fixed parameters according to the recent literature.
The stream observables were 5D phase-space data from the Gaia DR2 survey.
Results. We were able to find good fits for both the GD-1 stream and the S-stars for a family of fermionic core-halo profiles param-
eterized by the fermion mass. The particle masses are constrained in the range 56 keV c−2, with a corresponding DM core of ∼103

Schwarzschild radii, to 360 keV c−2, which corresponds to the most compact core of 5 Schwarzschild radii prior to the gravitational
collapse into a BH of about 4 × 106 M�.
Conclusions. This work provides evidence that the fermionic profile is a reliable model for the massive central object and for the DM
of the Galaxy. Remarkably, this model predicts a total Milky Way mass of 2.3 × 1011 M�, which agrees with recent mass estimates
obtained from Gaia DR3 rotation curves (Gaia RC). In summary, with one single fermionic model for the DM distribution of the
Milky Way, we obtain a good fit on three totally different distance scales of the Galaxy: ∼10−6 kpc (central, S-stars), ∼14 kpc (middle,
GD-1), and ∼30 kpc (boundary, Gaia RC mass estimate).
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1. Introduction

The gravitational interaction between a galaxy and a satellite
(a dwarf galaxy or a globular cluster) modifies both systems: The
host galaxy strips stars from the satellite at a rate that depends
on their density profiles and on the orbit, and the density pro-
file of the host shows reorganized matter (due to dynamical fric-
tion) in the vicinity of the satellite orbit. The ensemble of stars
that are tidally stripped from the satellite constitute the so-called
stellar stream (also known as tidal stream). Such streams have
been detected in the Milky Way (MW), in Andromeda, and in
the Local Volume (Martínez-Delgado et al. 2010).

Stellar streams currently constitute one of the main
MW observables that are related to the dynamics, together
with other baryonic observables such as the Galaxy rota-
tion curve, the radial surface density profile of the disk, and
the vertical density profile of the disk at the solar radius.
Tidal streams probe the acceleration field produced by the
Galaxy (Johnston et al. 1999; Zhao et al. 1999; Law et al. 2009;
Lux et al. 2013; Johnston & Carlberg 2016; Ibata et al. 2016,
? Corresponding author; mmestre@fcaglp.unlp.edu.ar

2017; Thomas et al. 2017; Reino et al. 2021) as well as its for-
mation history, according to Helmi et al. (1999), Helmi (2020),
Ramos et al. (2022), and Cunningham et al. (2023), among oth-
ers. A stellar stream could be the closest realization of a galactic
orbit that can be observed in nature. Nevertheless, the larger the
progenitor, the greater the discrepancy between its orbit and the
stream phase-space configuration. The taxonomy of streams is
very rich (Amorisco 2015) because different gravitational con-
figurations occur, from almost 1D streams whose progenitor is
a small globular cluster, to wide shells produced by the partially
radial sinking of a large progenitor into the MW center. In addi-
tion, an accreted stream whose progenitor is a globular cluster
orbiting a MW satellite galaxy is theoretically possible, giving
rise to a stellar cocoon around the stream track (Carlberg 2018;
Malhan et al. 2019, 2021; Gialluca et al. 2021; Qian et al. 2022).
Moreover, perturbations of the streams due to dark matter sub-
halos are theoretically possible as well. They form off-track fea-
tures such as the detected spur (Price-Whelan & Bonaca 2018)
in the GD-1 stream (Grillmair & Dionatos 2006).

Stream data together with other measurements from bary-
onic tracers can substantiate claims about an unknown aspect
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of the gravitational field: Whether it needs to be modeled
with a dark matter (DM) halo component or with modified
Newtonian dynamics (MoND) theory. For example, within the
DM paradigm, spatial densities might have different profiles
(e.g., spherical, axisymmetric, or triaxial) depending on the
number of conserved components of the angular momentum,
which also influences the stream properties (Vera-Ciro & Helmi
2013; Price-Whelan et al. 2016; Mestre et al. 2020). In partic-
ular, Malhan & Ibata (2019) constrained the MW dark mat-
ter halo shape using Gaia DR2 data of the GD-1 stream
assuming an axisymmetric generalization of the Navarro-Frenk-
White profile (NFW, Navarro et al. 1996) and obtain a flat-
tening halo parameter of q = 0.82+0.25

−0.13, which is compatible
with spherical symmetry. Moreover, Palau & Miralda-Escudé
(2023) measured the oblateness in an axisymmetric generaliza-
tion of the NFW profile using three stellar streams: NGC 3201,
M68, and Palomar 5. They obtain consistency with a spherical
halo.

In addition to the above traditional halo models, which arise
from ΛCDM cosmologies or from various ad hoc symmetry
considerations, some DM profiles take the quantum nature of
the DM candidate into account (see, e.g., Schive et al. 2014
for bosonic profiles that are composed of axion-like particles,
and Ruffini et al. 2015; Chavanis et al. 2015; Argüelles et al.
2021 for fermionic profiles that are typically composed of
sterile neutrinos). A relevant aspect of this type of profiles
is the source of quantum pressure acting in the innermost
regions of the halos: While in the boson case, the profiles
develop a highly dense soliton, in the fermion case, the pro-
files develop a degenerate compact core surrounded by a more
diluted halo that is self-bounded in radius. In this work, we
focus on the latter. A dense core - diluted halo fermionic
DM profile like this was obtained from the fully relativis-
tic Ruffini-Argüelles-Rueda (RAR) model, which was success-
fully applied to different galaxy types (Argüelles et al. 2019;
Krut et al. 2023), including the MW from Sagittarius A* until
the entire halo (Argüelles et al. 2018; Becerra-Vergara et al.
2020, 2021; Argüelles et al. 2022). This type of model built in
terms of a Fermi-Dirac-like phase-space distribution function
(including central degeneracy and cutoff in the particle energy)
is also known as the relativistic fermionic King (RFK) model
(Chavanis 2022b).

We model the 5D track of the GD-1 stellar stream inside a
MW with a fermionic dark matter core-halo distribution. At the
same time, we aim to explain the dynamics of the S-cluster stars
through the high-density fermion core and without assuming a
central BH. Finally, we compare the virial mass of the Galaxy as
predicted by the fermionic model with that obtained from recent
Gaia DR3 rotation-curve data. In Sect. 2 we explain the meth-
ods; in Sect. 3 we present the best-fit results, and in Sect. 4 we
conclude.

2. Methods

In this section, we explain the observables and the methods we
used in this research. The exact pipeline applied in order to
obtain the results and plots of this paper can be found at the
corresponding GitHub repository1.

1 https://github.com/martinmestre/stream-fit/blob/
main/pipeline_paper/

2.1. Observables and assumed measurements

The main observables that we used were computed with the
polynomial fits found by Ibata et al. (2020) for the GD-1 stream
using astrometric (Gaia DR2) and high-precision spectroscopic
datasets, together with the analysis of the Streamfinder algo-
rithm. The polynomials are the following:

φ2 = 0.008367φ3
1 − 0.05332φ2

1 − 0.07739φ1 − 0.02007, (1)

µ̃α = 3.794φ3
1 + 9.467φ2

1 + 1.615φ1 − 7.844, (2)

µδ = −1.225φ3
1 + 8.313φ2

1 + 18.68φ1 − 3.95, (3)

vh = 90.68φ3
1 + 204.5φ2

1 − 254.2φ1 − 261.5, (4)

with φ1 and φ2 in radians, µ̃α = µα cos δ and µδ in mas yr−1, and
vh in km s−1. These quantities correspond to the longitude and
latitude in the GD-1 celestial frame of reference (Koposov et al.
2010), the proper motion in right ascension and declination, and
the heliocentric radial velocity, respectively. The domain of the
polynomials was limited to −90◦ < φ1 < 10◦. To obtain our
observable data set, we sampled the domain with 100 equidis-
tant points (φ(i)

1 , i = 1, . . . , 100) and evaluated the polynomials
at these points, thus obtaining the sets φ(i)

1 , φ(i)
2 , µ̃(i)

α , µ(i)
δ , and v(i)

h .
We did not include among the observables in Eqs. (1–4) the pho-
tometric heliocentric distance D, which is justified by the poste-
rior analysis performed in Sect. 3.1. In one of the experiments,
we considered an observable of a different nature, the core mass
(Mcore), which is defined as the mass enclosed at the radius when
the circular velocity reaches its first maximum. The constraint
for the mass of the core of the distribution was assumed to be
Mcore = 3.5 × 106 M�, in agreement with Becerra-Vergara et al.
(2020, 2021), and Argüelles et al. (2022). The core radius does
not include the entire mass inside the innermost S-star pericen-
ter we considered (S2) because the first maximum of the cir-
cular velocity corresponds to a shorter distance at which the
core density-region is still falling. In Sect. 3 we obtain a DM
mass inside the S2 star pericenter of M(rperi−S2) = 4.03 ×
106 M�, which agrees very well with the Schwarzschild BH
mass constraints of 4.1 × 106 M� and 3.97 × 106 M� obtained
from the same S2 star in GRAVITY Collaboration (2018) and
Do et al. (2019), respectively. The parameters assumed in this
paper are the galactocentric distance of the Sun R� = 8.122 kpc
(GRAVITY Collaboration 2018) and the peculiar solar velocity2

u�p = (11.1 km s−1, 12.24 km s−1, 7.25 km s−1) (Schönrich et al.
2010).

2.2. Fermionic dark matter halo model

Our fermionic DM model is a spherical and isotropic distribu-
tion of fermions at finite temperature in hydrostatic equilibrium,
subject to the laws of General Relativity (GR), that is, the T.O.V.
equation complemented with the Tolman and Klein thermody-
namics equilibrium conditions and the particle energy conserva-
tion along a geodesic, as defined in Argüelles et al. (2018), while
using a notation from Chavanis (2020) as detailed below.

We started with a spherically symmetric metric, which is
defined as

ds2 = g00(r)dt2 + g11(r)dr2 − r2dϑ2 − r2 sinϑdϕ2, (5)
2 We adopted a Cartesian reference frame (X,Y,Z) with corresponding
velocities (U,V,W) in which the X and U axes point from the Galactic
center in the opposite direction of the Sun; Y and V point in the direction
of the Galactic rotation at the location of the Sun; and Z and W point
toward the Galactic north pole. This is the same right-handed reference
system as is adopted by Astropy.
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with g00(r) = eν(r)c2 and g11(r) = −eλ(r), where c is the speed
of light, t stands for the time, (r, ϑ, ϕ) are spherical coordinates,
and ν and λ are metric exponents whose radial dependence is
computed below.

Our first differential equation is that of the mass versus radius
for a spherical system of density ρ,

dM
dr

= 4πr2ρ(r), (6)

from which we obtained the enclosed mass M(r) at a given radius
r by simple integration,

M(r) = 4π
∫ r

0
r′2ρ(r′)dr′. (7)

From the Einstein equations, the relation between M(r) and the
metric exponent λ can be found,

e−λ(r) = 1 −
2G
c2

M(r)
r

, (8)

where G is the gravitational constant.
Additionally, the following version of the T.O.V. equation for

the metric exponent ν can be deduced:

dν
dr

=

1 +
4πr3P(r)
M(r)c2

r
(

rc2

2GM(r) − 1
) , (9)

where P is the pressure. The two quantities ρ and P are defined
as the following integrals over momentum space,

ρ(r) =

∫
E(p)

c2 f (r, p)dp, (10)

P(r) =
1
3

∫
p

dE(p)
dp

f (r, p)dp =
1
3

∫
p2c2

E(p)
f (r, p)dp, (11)

where p is the spatial momentum vector, p is its norm, E(p) =√
p2c2 + m2c4 is the total energy of a particle of mass m, and f

is the phase-space distribution of the system, given by a Fermi-
Dirac distribution with an energy cutoff. This number density
f can be obtained from a maximum entropy principle computed
from a kinetic theory that includes self-gravity and violent relax-
ation, as shown in Chavanis 2004 (for a review see also Chavanis
2022a), and was recently applied to a vast sample of disk galax-
ies in Krut et al. (2023). It can be expressed as

f (r, p) =
g

h3

1 − e[E(p)−Ec(r)]/kT (r)

1 + e[E(p)−µ(r)]/kT (r) if E(p) ≤ Ec(r), (12)

and f (r, p) = 0 otherwise, where k is the Boltzmann constant,
h is the Planck constant, g = 2s + 1 is the spin multiplicity of
quantum states, with s = 1/2, and the following local quantities
were used: the chemical potential µ(r), the cutoff energy Ec(r),
and the effective temperature T (r). The coefficient g/h3 is the
maximum accessible value of the distribution function fixed by
the Pauli exclusion principle.

The above equations were complemented with two ther-
modynamic equilibrium conditions given by Tolman (1930)
and Klein (1949), together with the condition of energy conser-
vation along the geodesic given in Merafina & Ruffini (1989),

1
T

dT
dr

=
1
µ

dµ
dr

=
1
Ec

dEc

dr
= −

1
2

dν
dr
. (13)

Thus, we built a system of five differential equations given
by Eqs. (6), (9), and (13), with initial conditions at the center of
the distribution M(0) = 0, ν(0) = 0, T (0) = T0, µ(0) = µ0,
and Ec(0) = Ec0. The differential equations do not depend on ν,
but on its radial derivative, so that the system can be solved start-
ing with an arbitrary initial value ν(0) = 0, adding a finite value
later, namely ν0, in such a way that the solution satisfies the condi-
tion of continuity with the Schwarzschild metric at the border of
the fermionic distribution. In Appendix A we solve the system of
equations numerically. Following Argüelles et al. (2018), we use
adimensional versions of the initial conditions throughout,

θ0 =
µ0 − mc2

kT0
,

W0 =
Ec0 − mc2

kT0
,

β0 =
kT0

mc2 , (14)

subtracting the rest-energy in the first two cases.
Although our fermionic system is univocally determined by

the four free parameters m, θ0, W0, and β0, in some convenient
situations, we use ω0 = W0 − θ0 instead of W0.

2.3. Milky Way and stream models

We modeled our Galaxy by combining the fermionic dark
halo described above, whose parameters are determined in this
work, with a fixed baryonic component identical to that in
Model I of Pouliasis et al. (2017). We call this full Galaxy model
Fermionic-MW.

In addition to this model and for qualitative comparative pur-
poses, we used the Galactic model fit by Malhan & Ibata (2019),
which is the MWPotential2014 model with an axisymmetric
NFW profile. This model was evaluated by means of the Galpy
package (Bovy 2015). A robust statistical comparison between
the RAR and other models will be performed in a future paper,
but here, we intend to verify that our GD-1 fit agrees with the
latest fit performed in the literature. This fitted model has a cir-
cular velocity at the position of the Sun vc(R�) = 244 ± 4 km s−1

and a z-flattening of the DM density distribution qρ = 0.82+0.25
−0.13.

We call this Galaxy model NFW-MW.
GD-1 is a dynamically cold stream, and its stars are highly

correlated, although its progenitor has not been detected with
certainty (de Boer et al. 2018; Price-Whelan & Bonaca 2018;
Malhan et al. 2018). Its almost one-dimensional distribution
in phase space could be well approximated with the orbit
of a theoretical progenitor, however, as previously reported
by Malhan & Ibata (2019), Price-Whelan & Bonaca (2018) and
Koposov et al. (2010).

The initial conditions of the orbit were given in the spher-
ical equatorial coordinates of the ICRS frame: right ascension
α, declination δ, D, µ̃α, µδ, and vh. The code uses the Astropy
ecosystem (Astropy Collaboration 2022, 2018, 2013) in order to
transform these initial conditions to galactocentric coordinates
assuming a galactocentric reference frame with the Sun at the
position x� = (−R�, 0, 0) and the solar velocity given by the sum
of the circular velocity at the position of the Sun and the pecu-
liar solar velocity: u� = u�p + (0, vc(R�), 0). The circular velocity
depends on the model and position and is given by

v2
c(R�) = R�|∇Φ(x)|x=x�

= R�|∇ΦB(x)|x=x� + G
MDM(R�)

R�
, (15)
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where Φ is the total potential, ΦB is the potential generated by the
three baryonic components, and MDM is the enclosed fermionic
DM mass. In the last term, we used the spherical symmetry of
the DM distribution in order to relate the acceleration with the
enclosed mass. For the NFW-MW model, the circular velocity
was computed using the gradient of the total potential, that is,
the first line of Eq. (15), performed with the Galpy code.

We integrated the orbit forward and backward in time dur-
ing a time interval of ∆t = 0.2 Gyr, starting in both cases
from a given initial condition for the progenitor. In the next
sections we explain how these initial conditions were chosen
for some simulations and fitted for others. The integrator we
used was an eighth-order Runge-Kutta (DOP853 called from the
SciPy solve_ivp function) with relative and absolute tolerance
parameters given by rtol= 5 × 10−14 and atol= 0.5 × 10−14,
respectively.

The resulting orbit was successively transformed into the
ICRS and then into the GD-1 coordinate frames. For the lat-
ter, we used the GD1Koposov10 class defined in the Gala
package (Price-Whelan 2017; Price-Whelan et al. 2020), which
uses the transformation matrix defined by Koposov et al. (2010).
After these transformations, we obtained the orbit expressed
in the observable variables φ1, φ2, µ̃α, µδ, and vh. Finally, we
computed these variables at the points φ(i)

1 by interpolation.
These values, together with the observed GD-1 data defined in
Sect. 2.1, were used to evaluate the following stream function:

χ2
stream = χ2

φ2
+ χ2

µ̃α
+ χ2

µδ
+ χ2

vh
(16)

χ2
η =

1
σ2
η

100∑
i=1

(
η(i) − η(φ(i)

1 )
)2
, (17)

where η ∈ {φ2, vh, µ̃α, µδ}, and ση are the corresponding disper-
sions of the stream data points estimated by inspection of Figs. 1,
3, and 4 of Ibata et al. (2020), σφ2 = 0◦.5, σvh = 10 km s−1, and
σµ̃α = σµδ = 2 mas yr−1. Thus, χ2

stream measures the departure of
the model from the observed stream.

For some fits, we also considered the departure of the model
from a dark mass constraint in the core of the distribution,

χ2
core =

(mc − Mcore)2

σ2
m

, (18)

where the value of Mcore was defined in Sect. 2.1, mc is the
core mass of the model (i.e., the variable), and σm was fixed at
0.01 Mcore. For these fits, we then used the following compound
function:

χ2
full = χ2

stream + χ2
core. (19)

We note that in order to compute the estimated core mass for
each model, mc in Eq. (18), we calculated the first local maxi-
mum of the circular velocity in GR. This is compactly expressed
as

Vcirc,DM(r) = c
(

r
2
g′00(r)
g00(r)

)1/2

= c
(

r
2

dν(r)
dr

)1/2

, (20)

where the velocity has components V i = dxi/dt (i = 1, 2, 3)
measured in a local frame that is fixed in space at a distance r
from the Galaxy center. From the T.O.V. Eq. (9), it is possible
to show that far from the core, this relativistic formula for the
velocity tends to the classical law, that is,

√
G M(r)/r.

2.4. Optimization algorithms

Our goal was to fit our Fermionic-MW model by minimizing the
full χ2 function given by Eq. (19) (when fitting the NFW-MW
model, we only used the function given by Eq. (16)). To
this end, we used two optimization algorithms that belong
to the family of black box algorithms, which perform very
well when the function to be minimized presents many rela-
tive minimums or when the landscape is complex, as in our
case. One algorithm is an implementation of a differential
evolution algorithm, which is a metaheuristic algorithm that
finds the solution of an optimization problem by iteratively
updating generations of candidate solutions until a certain
tolerance is met. Generally, a few best candidates from each
generation survive in order to create the descendants, that is,
the next generation, by making stochastic combinations from
them. We used the SciPy implementation of this algorithm,
called optimize.differential_evolution algorithm,
with the metaparemeters given by strategy=“best2bin”,
maxiter= 200, popsize= 200, tol= 5 × 10−8 and atol= 0,
unless otherwise stated. This method can be run in parallel with
shared memory.

The other algorithm is an implementation of the mesh adap-
tive direct search (MADS) algorithm called NOMAD (Audet et al.
2021). Audet & Dennis (2006) explained the method in detail.
The Julia (Bezanson et al. 2017) wrapper of this algorithm,
NOMAD.jl, was used through the package Optimization.jl.
We used default values of all the metaparameters, except for
maxiters=700.

3. Results

3.1. Fitting the Fermionic-MW model

We fit both the Fermionic-MW model parameters and the initial
conditions (IC) of the orbit of the progenitor through four steps
that consisted of (i) obtaining an order zero value of the orbit
IC using the NFW-MW model, (ii) fitting the Fermionic-MW
parameters with fixed IC values, (iii) polishing the IC values with
fixed Fermionic-MW potential, and (iv) polishing the Fermionic-
MW parametes with fixed IC values.

As a first step, we searched for a provisional but good enough
set of IC that was able to reproduce the orbit in our Fermionic-
MW model. To this end, we fit the initial conditions in the fixed
NFW-MW model by using the χ2

stream function as defined in
Eq. (16) and the differential evolution algorithm specified in
Sect. 2.4. Since the optimization algorithm needs bounds for
the variables, we used boxes centered near the midpoint of the
observable data, that is, η(51), which corresponds to α = 149◦.24,
δ = 36◦.61, µ̃α = −5.70 mas yr−1, µδ = −12.48 mas yr−1, and
vh = −18.81 km s−1 plus D = 7.69 kpc3, and with sides of
length equal to the absolute values of the variables at their cen-
ters (except for α, where we used a side of length α/5).

The differential evolution algorithm converged to the solu-
tion α = 149◦.25, δ = 36◦.59, D = 8.01 kpc, µ̃α = −5.56 mas yr−1,
µδ = −12.40 mas yr−1, and vh = −19.15 km s−1, with a value of
χ2

stream = 11.58. The orbit that corresponds to these IC is dis-
played in the observable space in Fig. 1 (top: φ2; middle: µ̃α,
µδ; bottom: vh) with a dotted (green) line. The solid (black) line
shows the corresponding observable data η, while the shaded
(gray) area demarcates the corresponding 1ση regions.

Previous works (Argüelles et al. 2018, 2019; Krut et al.
2023) have shown that the parameters of the fermionic DM

3 This value corresponds to evaluating D(φ(51)
1 ) according to Eq. (21).
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Fig. 1. Stream fits in observable space: Sky position (top: φ2), proper
motions (middle: µ̃α, µδ), and heliocentric velocity (bottom: vh).

model can be split into two sets for the family of fermionic
DM profiles with highly degenerate cores (i.e., θ0 & 15
Argüelles et al. 2019). On one hand, m and β0 control the core
of the distribution in the sense that for given values of Mcore
and m, it is possible to find a consistent value of β0 with little
influence on the other two parameters θ0 and W0. This implies
a partial degeneracy between m and β0. On the other hand, for
the same type of fermionic core-halo solutions with a positive
central degeneracy as mentioned above, the main behavior of
the distribution in the halo is determined by ω0, as reported in
Argüelles et al. (2019) for different galaxy types.

As a starting point for the fitting of the Fermionic-MW
parameters (second step), we took the values obtained by
Becerra-Vergara et al. (2020): (m, β0, θ0,W0) = (56 keV c−2,
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Fig. 2. Photometric distance (D). This was not included as an observable
in the stream-fitting procedure.

1.1977× 10−5, 37.765, 66.3407), which allowed their MW
model (DM plus baryons) to satisfy the geodesic motions of
both S2 and G2 at Sagittarius A*, and the rotation curve
from Sofue (2013). From these values, fixing m = 56 keV c−2

and taking the already fitted IC of the stream progenitor for
the NFW-MW model, we performed a differential evolution
minimization of the χ2

full function in the window (θ0, ω0, β0) ∈
[35, 40] × [25, 30] × [10−5, 1.5 × 10−5]. Using metaparameter
values maxiter= popsize= 300, the algorithm converged to
(θ0, ω0, β0) = (36.094, 27.368, 1.252 × 10−5), giving χ2

stream =

16.190 and χ2
core = 7.676 × 10−10.

The third step consisted of polishing the IC of the
orbit by using the differential evolution algorithm with
fixed Fermionic-MW parameters, with metaparameter values
maxiter= popsize= 400, which gave a result very similar to
that of the FMW-MW case: α = 149◦.39, δ = 36◦.87, D =
8.02 kpc, µ̃α = −5.55 mas yr−1, µδ = −12.33 mas yr−1 and vh =
−20.84 km s−1, with an improved value of χ2

stream = 13.59.
The last step consisted of polishing the fermionic parameters

using the second optimization algorithm described in Sect. 2.4,
that is, NOMAD. We divided a macroscopic orthohedron in param-
eter space, (θ0, ω0, β0) ∈ [35.8, 36.3] × [27.0, 27.6] × [1.2 ×
10−5, 1.3 × 10−5], into 173 = 4913 smaller orthohedrons. In
each subregion, we performed an independent optimization in
a parallel distributed scheme and searched for the parameters
that minimized χ2

full. Then, we selected the global minimum by
comparing the results of each distributed process and obtained
the following final fit parameters of the model: (θ0, ω0, β0) =
(36.0704, 27.3501, 1.2527×10−5), giving χ2

full = 13.53. The cor-
responding orbit is displayed in the observable space in Fig. 1
with a dashed (amber) line. The Fermionic-MW and NFW-MW
models fit the GD-1 stream very well. We did not perform any
statistically rigorous comparison of the two models to determine
which was more consistent with the data. In a future paper, we
will compute the posterior distribution of the fit parameters and
will then be able to give error bounds.

For completeness, in Fig. 2 we plot the heliocentric distance
(D) using the same line types as in Fig. 1. The solid (black) line
corresponds to the fifth-order polynomial fit in Ibata et al. (2020)
to the photometric distance measured there,

D = −4.302φ5
1 − 11.54φ4

1 − 7.161φ3
1 + 5.985φ2

1

+ 8.595φ1 + 10.36. (21)

The two theoretical D(φ1) curves agree with each other, but they
both differ considerably with respect to the observed curve (i.e.,
the polynomial). Because the polynomial presents a suspicious
constant value for φ1 ∈ [−70,−30], we plotted the galactocen-
tric distance versus φ1 (not shown), and we found that this latter
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Fig. 3. Values of χ2
stream for (m, β0) = (56 keV c−2, 1.254 × 10−5) in the

window (θ0, ω0) ∈ [34, 38] × [25.5, 28.2]. The black point corresponds
to our solution, and the gray region corresponds to χ2

stream > 104. The
lowest values of the function are located along a thin valley.

curve presents an unphysical wobbling behavior. We therefore
did not include the photometric distance as a fitting observable.

It is instructive to see how the value of χ2
stream is mod-

ified when the parameters θ0 and ω0 (i.e., those that con-
trol the halo) are varied. To this end, we fixed (m, β0) =
(56 keV c−2, 1.2527×10−5) and varied (θ0, ω0) in a grid spanning
the rectangle [34, 38] × [25.5, 28.2]. Fig. 3 shows a contour plot
of this grid, colored by the value of their corresponding χ2

stream;
the black point corresponds to our fit solution. The lowest val-
ues of the function are located in a thin valley, which shows that
the solution of the fitting problem is locally degenerate along a
straight line in the (θ0, ω0) plane. To show the behavior of χ2

stream
around the solution, we first fit a line to the points that satisfied
χ2

stream < 50. We obtained h(x) = 0.7939 + 0.7362x. We then
subtracted this line from ω0, and finally remade a plot of χ2

stream
in the window (θ0, ω0 − h(θ0)) ∈ [35, 37] × [−0.011, 0.011]. The
result is shown in Fig. 4. It is noticeable that an absolute min-
imum indeed exists (nondegenerate problem) and that the vari-
ance along ω0 − h(θ0) is two orders of magnitude smaller than
the variance along θ0.

3.2. Rotation curves, accelerations, and virial quantities

We computed the resulting rotation curves for our two models
and compared them with three observed rotation curves (Fig. 5).

In order to build a unified rotation curve, Sofue (2020) com-
puted the running average of many rotation curves resulting from
different dynamical tracers according to the galactocentric dis-
tance. In the central parts of the Galaxy, the tracers used were the
molecular gas and the infrared stellar motion, while in the outer
parts (beyond r ∼ 30 kpc), the tracers were the radial motions of
satellite galaxies and globular clusters. Rotation curves resulting
from Galactic disk objects were also used. On the other hand,
Eilers et al. (2019) used a selection of red giant branch stars as
tracers of the disk dynamics.

It is worth noticing that Sofue (2020) assumed (R�,
vc(R�)) = (8 kpc, 238 km s−1), while Eilers et al. (2019)
assumed R� = 8.122 kpc and a solar galactocentric velocity
v� = (11.1, 245.8, 7.8) km s−1, with which they estimated to be
vc(R�) = 229 ± 0.2 km s−1.
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Fig. 4. Values of χ2
stream for (m, β0) = (56 keV c−2, 1.254 × 10−5) in the

window (θ0, ω0 − h(θ0)) ∈ [35, 37] × [−0.011, 0.011]. The black point
corresponds to our solution, and the gray region corresponds to χ2

stream >
500.
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Fig. 5. Rotation curves of the Fermionic-MW model (this work, in
dashed amber) and the NFW-MW model (Malhan & Ibata 2019, in dot-
ted green), which fit the GD-1 stream, are compared a posteriori with
different observed rotation curves (Eilers et al. 2019 with purple tri-
angles, Sofue 2020 with light blue rhombi, and Jiao et al. 2023 with
black circles). Only the Fermionic MW model can account for the GD-
1 stream data and the sharp drop of the recent Gaia DR3 rotation curve.

It is interesting to note that the two theoretical models,
Fermionic-MW and NFW-MW, both give vc(R�) ≈ 244 km s−1 at
the solar radius, which agree excellently with the estimate found
by Bovy (2020), vc(R�) = 244 ± 8 km s−1 for R� = 8.275 kpc,
or vc(R�) = 242 ± 8 km s−1 for our adopted value of R�.
Although this velocity is higher than the standard value (220–
230 km s−1), it should be mentioned that according to Table 1 in
Sofue (2020), our computed velocity is not an outlier (see also
Section 6.2 of Honma et al. 2012). Our solution has an aver-
age slope s = −4.15 ± 0.015 km s−1 kpc−1, fit for 14.5 kpc <
r < 26.5 kpc, which is comparable to the corresponding value of
s = −3.93± 0.15 km s−1 kpc−1 measured from the rotation curve
of Jiao et al. (2023), and agrees better than the corresponding
slope of the NFW-MW model (see also Fig. 5 for comparison).

We computed the galactocentric distance of the GD-1 observ-
ables projected onto the plane z = 0 and found that it lies inside the
interval 11.5 kpc . r . 16.4 kpc, which is displayed as a vertical
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shaded (gray) band in the Galaxy RC of Fig. 5. The location
of the GD-1 stream orbit corresponds to z ∈ [2.6, 9.7] kpc and
thus explores the nonsphericality of the full MW models (due
to the axisymmetry of baryons and NFW). It is noticeable that
both models approximately agree in their circular velocity in
the GD-1 region. The galactocentric distance (not projected) of
the stream corresponds to the interval 13.9 kpc . r . 16.6 kpc
(subject to errors in the photometric distance, as commented in
Section 3.1). The theoretical orbit of the stream in the Fermionic-
MW has a pericenter of 14.3 kpc and an apocenter of 24.5 kpc,
and it is currently in its pericentric passage.

We computed the cylindrical components of the accelera-
tion, ar and az, for the two MW models along the stream and
obtained a maximum difference of |∆ar | . 0.08 km s−1Myr−1

and |∆ar | . 0.15 km s−1Myr−1, respectively. This agreement sup-
ports the idea that cold tidal streams are excellent accelerome-
ters (Ibata et al. 2016; Nibauer et al. 2022; Craig et al. 2023).

With respect to virial quantities, the core-halo dark matter
solution has a finite virial radius rDM,vir = 27.4 kpc and a virial
mass MDM,vir = 1.4 × 1011 M�. The total baryon mass of our
model is Mb = 0.9 × 1011M�, and the total virial mass therefore
amounts to Mvir = 2.3 × 1011 M�. The value of the MW total
mass at 50 kpc reported in Table 3 of Gibbons et al. (2014) is
2.9 × 1011 M� with (σ, 2σ) = (0.4, 0.9) × 1011 M�, which means
that our solution lies in the 2σ region. The mass of the fermionic
solution is constant for radii larger than rDM,vir, while the mass of
the model studied by Gibbons et al. (2014) continues to increase
with radius according to their Table 3, although their estimates at
large radii have relatively high error bounds, for instance, 2σ =
3 × 1011 M� for M(200 kpc) = 5.6 × 1011 M�.

The most recent MW mass estimates were obtained by
Jiao et al. (2023) and Ou et al. (2023) from Gaia DR3 data.
These authors reported data that are compatible with even lower
values of the MW virial mass of ≈2 × 1011 M� (however, see
Koop et al. 2024), in agreement with our fermionic model pre-
dictions. These MW mass estimates correspond to a sharp Kep-
lerian decline in the MW rotation that ends at ≈26.5 kpc. This
again agrees remarkably well with the virial radius predicted by
our Fermionic-MW model of ≈27 kpc.

The fitted fermionic DM model has a density in the
solar neighborhood of ρDM,� = 1.46 × 107 M� kpc−3 =

0.55 GeV cm−3c−2, which falls within the 2σ region of the esti-
mate made by Salucci et al. 2010 (0.43 ± 0.21 GeV cm−3c−2),
but is higher than the one obtained by Eilers et al. 2019
(0.30 ± 0.03 GeV cm−3c−2) or by Ou et al. 2024 (0.447 ±
0.004 GeV cm−3c−2).

3.3. Example of the S-cluster fit: Paradigmatic case of the S2
orbit

In this section, we answer the relevant question of how well the
fermionic model that fits the stream according to the procedure
of Sect. 3.1 can fit the iconic S2 star orbit with a focus in Sagit-
tarius A*. Even if a good fit is expected since the core mass of
the DM distribution Mcore = 3.5 × 106M� was fit together with
the stream constraint, it is important to note that the free param-
eters of the Fermionic-MW model are not precisely the same as
those obtained in Becerra-Vergara et al. (2020). That is, while
in Becerra-Vergara et al. (2020) the free DM model parameters
were obtained to explain the S2 star geodesic together with the
MW RC as given in Sofue (2013), here, the DM halo region was
instead fit in order to reproduce the GD-1 stream, with somewhat
different (β0,θ0,W0) values.
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Fig. 6. Modeled and observed projected orbit in the sky for a Fermionic-
MW DM model, shown as a solid (amber) line, and a BH of Mbh =
4.075 × 106 M�, shown as a dotted (green) line.

We therefore performed a least-squares fit following
Becerra-Vergara et al. (2020) for the case of the S2 orbit as
an example. As commented above, in this case, we used the
Fermionic-MW DM model, which fits the GD-1 stream best, that
is, (θ0, ω0, β0) = (36.0704, 27.3501, 1.2527×10−5). We obtained
excellent results. In Fig. 6, we show the projected S2 orbit in
the plane of the sky, while in Fig. 7, we show the time evo-
lution of the redshift function z (which is directly related to
the heliocentric radial velocity according to Equation (C.17a)
in Becerra-Vergara et al. 2020), α and δ, for the best-fitting val-
ues of the osculating orbital parameters. These values are given
in Table 1, along with the model-predicted value of the periapsis
precession per orbital period, ∆φ, and the orbital period, P.

Our fitting procedure was applied in the gravitational field
of two different scenarios: a Fermionic-MW DM model for m =
56 keV c−2 and Mcore = 3.5 × 106 M�, and a Schwarzschild BH
model with a central mass of MBH = 4.075×106 M�. The result-
ing values for the χ2

S2 minimization presented in Table 2 agree
perfectly with those obtained in Becerra-Vergara et al. (2020)4.
We used the latest publicly accessible data from Do et al. (2019).

For the exemplified case of the S2 star, the models differ in
the predicted value of the relativistic precession of the S2 peri-
apsis ∆φ. This interesting relativistic effect in the case of a reg-
ular (i.e., nonsingular) DM core was compared with the pub-
licly available astrometric data of S2 and was compared with
the BH case in Argüelles et al. (2022). These authors showed

4 Following their procedure, we have minimized χ2
S2 but we have not

computed the posterior distribution of the parameters, lacking the cor-
responding errors.
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Fig. 7. Redshift (z), right ascension (α), and declination (δ) as a function
of time epoch for the same models as displayed in Fig. 6.

that higher particle masses (i.e., leading to more compact DM
cores, as detailed in the section below) imply that less extended
DM mass fills the S2 orbit. Thus, precession growths from ret-
rograde to prograde as it tends to the unique value predicted by
the BH model. Argüelles et al. (2022) showed that already for
particle masses of m = 60 keV c−2, which is slightly above the
value considered here, m = 56 keV c−2, the periapsis precession
is very close the one predicted by the Schwarzschild BH. Con-
versely, for particle masses m . 56 keV c−2, the DM core is too
extended in radius and produces high values of retrograde S2
periapsis precession and poorer orbit fits (Becerra-Vergara et al.
2020; Argüelles et al. 2022).

3.4. Varying the fermion mass to reach more compact cores

As already mentioned, we found a fermionic solution that agrees
with both GD-1 data and the geodesic motion of the best-studied
S-cluster star around Sagittarius A*, the S2 star. However, this
S-star constraint is also satisfied by any fermionic DM profile
with a more compact core than the solution corresponding to
m = 56 keV c−2, as long as the core mass is mc ≈ Mcore. It is
therefore interesting to determine how much compactness can be
reached while keeping both the S2 star and GD-1 constraints, in
the light of the new observations of the Event Horizon Telescope,
Event Horizon Telescope Collaboration (2022), where a shadow
angular diameter of 48.7±7.0 µas has been measured. This diam-
eter corresponds to a shadow radius of ∼2.46 Schwarzschild
radii assuming a BH mass of Mbh = 4.075 × 106 M�. In order
to extend the fermionic solutions to other values of the fermion
mass (m), we used the second optimization algorithm described

Table 1. Best-fitting osculating orbital parameters of the S2 star for two
different models: a fermionic DM model with m = 56 keV c−2 and a core
mass Mcore = 3.5 × 106 M�, and a BH of mass Mbh = 4.075 × 106 M�.

Parameter Fermionic-MW BH

a [as] 0.12507 0.12530
e 0.8868 0.8861
ω [◦] 66.935 66.505
i [◦] 134.396 134.440
Ω [◦] 228.195 228.046
P [yr] 16.051 16.049
∆φ [arcmin rev−1] −6.04 11.95

Table 2. χ2
stream and χ2

S2 values corresponding to the best-fit to the GD-1
stream and the S2 orbit, respectively.

mc2/keV 56 100 200 300 360 BH

χ2
stream 13.528 13.530 13.575 13.862 13.836
χ2

S2 3.185 3.405 3.349 4.371 12.561 3.383

in Sect. 2.4 for m = 100, 200, 300, and 360 keV c−2. For each
fermion mass, we divided a given macroscopic orthohedron5 in
parameter space in 203 = 8000 smaller orthohedrons. In each
subregion, we performed an independent optimization in a paral-
lel distributed scheme to search for the parameters that minimize
χ2

full with the NOMAD algorithm. Afterward, we selected the global
minimum by comparing the results of each distributed process.
The result is that for all the fermion masses, it is possible to find
values of the other parameters in such a way that both the GD-
1 stream and the core mass constraints are respected with the
same precision as in the initial (m = 56 keV c−2) case. As shown
in Fig. 8, all the solutions have the same density profile in the
halo region, while their difference is limited to the compactness
of the core. In Table 2 we show the values of χ2

stream for all the
fermion masses we studied. We also give the value of χ2

S2 for the
Fermionic-MW and the BH models. All the fermionic models
we analyzed are statistically indistinguishable6, and more data
(e.g., a central shadow feature or fainter S-stars closer to SgrA*
than S2) are needed in order to further constrain the particle mass
range. Both projects are currently being developed within our
group. The values of the core radii of these solutions are approx-
imately 1097, 232, 35, 10, and 5 Schwarzschild radii for m = 56,
100, 200, 300, and 360 keV c−2, respectively. The last analyzed
value of m = 360 keV c−2 corresponds to a DM core very close
to the last stable solution according to the stability criterion of
Argüelles et al. (2021), leading to a gravitational core-collapse
into a BH of about 4 × 106 M�.

5 The orthohedrons in (θ0, ω0, β0) space were defined by the lower
bounds (36, 27, 1.2 × 10−5), (37, 28, 5 × 10−5), (38, 29, 3.5 × 10−4),
(40, 29, 1.3 × 10−3) and upper bounds (40, 31, 10−4), (41, 32, 10−3),
(42, 32, 3 × 10−3), (44, 32, 4 × 10−3), for m = 100, 200, 300, and
360 keV c−2, respectively.
6 These fits were made for the same fixed core mass as
in Becerra-Vergara et al. (2020, 2021), but it can be shown that the value
of χ2

S2 corresponding to m = 360 keV c−2 can be as low as in the other
cases by increasing the core mass by a few percent.
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Fig. 8. Fermionic DM density profiles with different core compacities
(i.e., different m) fitting the GD-1 stream and the DM core mass, which
agree with the S2 star data orbiting Sagittarius A*. The Schwarzschild
radius is computed assuming a BH mass Mbh = 4.075 × 106 M�.

4. Conclusions

We have fitted the GD-1 stream located at about 14−15 kpc from
the Galaxy center and the S2 star orbit located at miliparsec
scales in a MW potential consisting of a fermionic core-halo DM
distribution (Argüelles et al. 2018; Becerra-Vergara et al. 2020,
2021; Argüelles et al. 2022), plus a fixed baryonic distribution
(Pouliasis et al. 2017). Remarkably, the total resulting MW mass
and the virial radius of the Galaxy predicted by the fermionic
DM model agree very well with the virial mass of ≈2 × 1011 M�
and the galactocentric radial range of ≈20−26 kpc in which
the MW rotation curve sharply drops, as recently meassured
by Gaia DR3. This relatively low-mass MW is also consistent
with the independent estimate given by Gibbons et al. (2014),
although it is considerably lower than typical values given in
the literature, for instance, Watkins et al. (2010) and references
therein.

We obtained the free parameters of the fermionic model by
fixing the fermion mass and by simultaneously fitting two astro-
physical constraints: the stream observables, and a DM core
mass of 3.5 × 106 M�, the latter taken from previous fits of
the S-stars cluster at the center of the Galaxy without a central
BH (Becerra-Vergara et al. 2020, 2021). We could thus repro-
duce the polynomials fit by Ibata et al. (2020), which correspond
to the observed sky position, proper motion, and radial velocity
of the stream, with a high accuracy and for fermion masses rang-
ing from 56 to 360 keV c−2.

In order to compare our results with other GD-1 fits in the lit-
erature, we also fit the stream orbit with the axisymmetric gener-
alization of the NFW distribution from Malhan & Ibata (2019).
We obtained agreement in the GD-1 phase-space track of both
the Fermionic-MW and the NFW-MW models. Additionally, we
obtained agreement of the two models in the rotation curves
at projected (z = 0) galactocentric distances, r, corresponding
to the stream observables, that is, 11.5 ≤ r ≤ 16.4 kpc. The
average slope of the rotation curve between 14.5 and 26.5 kpc
obtained from the Fermionic-MW model was s = −4.18 ±
0.02 km s−1 kpc−1, which agrees much better with the recent
observations of Jiao et al. (2023) than the NFW-MW model. We
showed that the two MW models perfectly agree in their accel-
eration vectors as a function of the position along the stream.

We found a circular velocity at the position of the Sun of
vc(R�) = 244 km s−1, which is in line with the value indepen-
dently obtained by Malhan & Ibata (2019).

The fermionic DM solution has a finite radius of rDM,vir =
27.4 kpc and a virial mass of MDM,vir = 1.4 × 1011 M�, imply-
ing a total (DM plus baryons) virial mass of the Galaxy of
Mvir = 2.3 × 1011 M�, which is at 2σ from the value reported
in Table 3 of Gibbons et al. (2014) for a radius of 50 kpc. The
value obtained for the DM density in the solar neighborhood
is ρDM,� = 1.46 × 107M� kpc−3 = 0.55 GeV cm−3c−2, which
falls inside the 2σ region of a previous estimate by Salucci et al.
(2010).

Finally, we showed that it is possible to find a 1D family of
solutions parameterized by the fermion mass with the same halo
that fits the GD-1 stream, but with a different compactness of
the central core. This always reproduces the S2 star orbit (see
Figs. 6 and 7 for the case of m = 56 keV c−2). For the limiting
case studied here (m = 360 keV c−2), we obtained a core radius
of rc ≈ 5 Schwarzschild radii. A precise relativistic ray-tracing
study about simulated ring-like images of the central cores of
fermionic distributions is in progress. We try to place strict con-
straints on the minimum compactness needed for an agreement
with the EHT observations.

In summary, the findings of this work not only support the
idea that cold tidal streams are excellent probes of the accelera-
tion field of the MW, but they show that the (spherical) fermionic
model is able to agree with a set of independent observables cov-
ering three totally different Galaxy distance scales: ∼10−6 kpc
(S-cluster), ∼14 kpc (GD-1), and ∼30 kpc (Gaia DR3 RC mass
estimates).
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Appendix A: Numerical solution of the system of
differential equations

In this section, we explain how we numerically solved the phys-
ical equations defined in Sec. 2.2. We start by defining some
constants,

ρ• = gπ3/2m4c3h−3, (A.1)

r• = c/(8πGρ•)1/2, (A.2)

and introduce the following changes of variables:

ζ(r) = ln(r/r•), (A.3)
z(ζ) = lnψ(r(ζ)), (A.4)
ν̃(ζ) = ν(r(ζ)), (A.5)

β(ζ) =
kT (r(ζ))

mc2 , (A.6)

α(ζ) =
µ(r(ζ))

mc2 , (A.7)

εc(ζ) =
Ec(r(ζ))

mc2 , (A.8)

ε(p) =
E(p)
mc2 , (A.9)

where

ψ(r) = 1 − e−λ(r) =
2G
c2

M(r)
r

, (A.10)

into equations (6), (9) and (13), obtaining

dz
dζ

= −1 + e2ζ−z ρ̃(ζ)
ρ•

, (A.11)

dν̃
dζ

=

(
ez + e2ζ P̃(ζ)

ρ•c2

)
(1 − ez)−1, (A.12)

1
β

dβ
dζ

=
1
α

dα
dζ

=
1
εc

dεc

dζ
= −

1
2

dν̃
dζ
. (A.13)

The thermodynamical quantities, density and pressure, are
given by

ρ̃(ζ) =
4ρ•
√
π

∫ ∞

1
ε2[ε2 − 1]1/2 f̃ (ζ, ε)dε, (A.14)

P̃(ζ) =
4c2ρ•

3
√
π

∫ ∞

1
[ε2 − 1]3/2 f̃ (ζ, ε)dε, (A.15)

where the fermionic King distribution as a function of ε =
E/mc2 in the new variables is given by

f̃ (ζ, ε) ≡
h3

g
f (r(ζ), p(ε)) =

1 − e[ε−εc(ζ)]/β(ζ)

1 + e[ε−α(ζ)]/β(ζ) if ε ≤ εc(ζ),

(A.16)

and f̃ (ζ, ε) = 0 otherwise.
Equations (A.13) can be analytically integrated to obtain

β(ζ) = β0e−ν̃(ζ)/2,

α(ζ) = α0e−ν̃(ζ)/2,

εc(ζ) = εc0e−ν̃(ζ)/2, (A.17)

thus transforming the original system of five differential equa-
tions, that is, (A.11-A.13), into a system of just two differential

equations that are to be solved numerically subject to the con-
straints (A.17).

It is not possible to integrate these equations from r = 0
because ζ(r) diverges at the origin. Therefore, the following
approximations for the initial conditions at a value rmin & 0 were
used:

ν(rmin) =
1
3
ρ0

ρ•

[
rmin

r•

]2

≡ τ, (A.18)

ψ(rmin) =
1
3
ρ0

ρ•

[
rmin

r•

]2

= τ, (A.19)

which implies

rmin

r•
=

√
3τ
ρ•
ρ0
, (A.20)

where τ ≡ 2 × 10−15 and

ρ0 ≡ ρ(0) =
4ρ•
√
π

∫ ∞

1
ε2[ε2 − 1]1/2 f̃0(ε)dε, (A.21)

where

f̃0(ε) =
1 − e[ε−εc0]/β0

1 + e[ε−α0]/β0
if ε ≤ εc0, (A.22)

and f̃0(ε) = 0 otherwise.
In this way, the initial conditions of our numerical system are

given by ζmin = ζ(rmin), ν̃min = τ, and zmin = ln τ, and the sys-
tem parameters to be varied are m, β0, α0, and εc0. In agreement
with Eqs. (14), we used as parameters the following normalized
quantities: m, β0, θ0 = (α0 − 1)/β0, and W0 = (εc0 − 1)/β0, or
ω0 = W0 − θ0 instead of W0 in some cases.

Equations (A.11) and (A.12) were solved with the LSODA
algorithm using a Python (Van Rossum & Drake 1995) script7
that makes use of the NumPy (Harris et al. 2020) and
SciPy (Virtanen et al. 2020) libraries. We used relative and abso-
lute tolerance parameters given by rtol= 5 × 10−14 and atol=
0, respectively.

After obtaining the numerical solution, since the right sides
of Eqns. (A.11) and (A.12) do not depend on the metric, but
only on its radial derivative, we can add a constant ν̃0 to the
solution in order to satisfy the condition of continuity with the
Schwarzschild metric at the border of the fermion distribution,
obtaining

ν̃0 = 2 ln
(
βb

β0

√
1 − ψb

)
, (A.23)

where ψb and βb are quantities evaluated at the border, that is,
when ρ(rb)→ 0.8

7 model_def.py
8 The border was defined numerically as the radius in which the den-
sity decays to ρb = 10−10 M� pc−3.
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