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ABSTRACT

Context. The study of the physics of the accretion discs that develop around supermassive black hole (BH) candidates provides
essential theoretical tools to test their nature.
Aims. Here, we study the accretion flow and associated emission using generalised α-discs accreting onto horizonless dark compact
objects in order to make comparisons with the traditional BH scenario. The BH alternative proposed here consists in a dense and
highly degenerate core made of fermionic dark matter (DM) and surrounded by a more diluted DM halo. This dense core–diluted halo
DM configuration is a solution of Einstein’s equation of general relativity (GR) in spherical symmetry, which naturally arises once
the quantum nature of the DM fermions is duly accounted for.
Methods. The methodology followed in this work consists in first generalising the theory of α-discs to work in the presence of regular
and horizonless compact objects, and then applying it to the case of core–halo DM profiles typical of active-like galaxies.
Results. The fact that the compactness of the dense and transparent DM core scales with particle mass allows the following key
findings of this work: (i) There is always a given core compacity – corresponding particle mass – that produces a luminosity spectrum
that is almost indistinguishable from that of a Schwarzschild BH of the same mass as the DM core. (ii) The disc can enter deep inside
the non-rotating DM core, allowing accretion-powered efficiencies of as high as 28%, which is comparable to that of a highly rotating
Kerr BH.
Conclusions. These results, together with the existence of a critical DM core mass of collapse into a supermassive BH, open new
avenues of research for two seemingly unrelated topics: AGN phenomenology and dark matter physics.
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1. Introduction

One of the central results of the Lambda cold dark mat-
ter (ΛCDM) standard cosmological model is the necessity to
invoke a dark matter component in the composition of the
Universe (Bahcall et al. 1999). However, how this component
is distributed on inner galactic scales, and the precise nature
and mass of the dark matter particles, are long-standing open
questions (Bullock & Boylan-Kolchin 2017). A main available
tool to tackle these questions is based on cosmological N-
body (classical) simulations with adequate initial conditions; for
example the ones provided by the ΛCDM paradigm (see e.g.
Ivanov & Simonović 2020 and references therein). Although
this paradigm provides a sound explanation as to the distribution
of dark matter on large scales (>Mpc), it faces various challenges
on short galactic scales (Diemand et al. 2005; Battaglia et al.
2008; Joung et al. 2009; Bullock & Boylan-Kolchin 2017).

Within the framework of cosmological simulations, differ-
ent state-of-the-art alternatives are being provided in an attempt
to solve these problems, including the possibility that cold DM
is self-interacting (Kaplinghat & Ren 2020), considering warm
instead of cold DM (Bozek et al. 2019), or even abandoning

the hypothesis of classical particles by incorporating quantum
effects into the simulations (Schive et al. 2014). In an attempt
to include the quantum nature of the DM particles explicitly
in the physics of the DM halos, an alternative (semi-analytical)
approach was recently proposed whereby fermionic DM is con-
sidered in a cosmological framework (Argüelles et al. 2021).
This addresses the problems of DM halo formation, overall mor-
phology, and stability from first principle physics. In particular,
it includes (quantum) statistical mechanics and thermodynam-
ics in the presence of self-gravity, offering solutions to some of
the problems that the ΛCDM paradigm faces at short scales (see
e.g. Krut et al. 2023; Argüelles & Becerra-Vergara 2023a for a
recent work and a review, respectively).

Fermionic mass distributions of this sort are obtained by
solving the equations of a self-gravitating system of neu-
tral fermionic (spin 1/2) particles in hydrostatic and ther-
modynamic equilibrium in general relativity (GR). Some
generic solutions to this model have been obtained by var-
ious authors aiming to address the problem of DM halos
(Chau et al. 1984; Ingrosso & Ruffini 1988; Gao et al. 1990;
Chavanis & Sommeria 1998; Bilic et al. 2002; Chavanis 2006;
Destri et al. 2013; Argüelles & Ruffini 2014; Ruffini et al. 2015;
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Chavanis et al. 2015), and just recently a more realistic ver-
sion of this theory – including particle evaporation and
central (fermion) degeneracy – was developed in GR by
Argüelles et al. (2018, 2019, 2021) and is referred to here as the
(extended) Ruffini-Argüelles-Rueda (RAR) model1. This model
implies novel DM density profiles, which self-consistently
account for the Pauli exclusion principle, yielding a source
of quantum pressure towards the centre of the configura-
tions with key implications for galactic nuclei. The more gen-
eral DM profiles develop a ‘dense core–diluted halo’ mor-
phology, which, unlike other phenomenological profiles in
the literature, depends on the mass of the particle. Remark-
ably, these fermionic DM halos can explain the galaxy rota-
tion curves in different galaxy types (Argüelles et al. 2018,
2019; Krut et al. 2023), while the degenerate fermion core can
mimic their central BHs (Argüelles et al. 2018, 2019, 2022b,a,
2021; Becerra-Vergara et al. 2020; Becerra-Vergara & Argüelles
2021). Moreover, as demonstrated in Argüelles et al. (2021,
2023b,c) based on dynamical and thermodynamical stability cri-
teria in GR, the central DM core can reach a critical mass for
collapse and therefore provides a novel channel for supermassive
BH formation in the early Universe (see also Chavanis & Alberti
2020; Alberti & Chavanis 2020 for a first dynamical and thermo-
dynamical instability study in GR of the self-gravitating Fermi
gas at finite temperature leading to BH formation).

In the present work, we centre our attention on fermionic
core–halo profiles applied to typical active-like galaxies,
together with their central accretion processes. Our study of the
free parameters of the theory (including particle mass) focuses
on solutions whose central core has not yet reached the critical
mass for collapse, and therefore represents an alternative to the
traditional BH scenario. This choice is motivated by our ambi-
tion to try to understand the very nature of the massive compact
objects at the centres of galaxies, their formation channel, sur-
rounding emission, and finally their relation with the host galaxy
and AGN phenomenology.

Motivated by distinct branches of theoretical physics and
astrophysics, different alternative models to that of the classi-
cal BHs have been proposed (see e.g. Cardoso & Pani 2019 for
a review). When dealing with galaxy centres, a typical example
studied in the recent past is the boson star (Schunck & Mielke
1999; Torres et al. 2000; Guzmán 2006; Vincent et al. 2016;
Olivares et al. 2020), which is a horizonless and massive com-
pact object made of self-gravitating scalar fields. In particu-
lar, the different observational signatures of boson stars have
been studied, such as the luminosity spectra of α-discs (Guzmán
2006); strong-field images and luminosity patterns in boson stars
surrounded by a disc torus (Vincent et al. 2016); and accretion
flow via general relativistic magnetohydrodynamic simulations
in the space-time of a boson star (Olivares et al. 2020).

In analogy to the above study cases, it is our objective to
start a research program for AGN phenomenology dedicated
to the RAR model for a self-gravitating system of fermions
representing the DM in galaxies. In order to cover the main
observational signatures associated with the emission of galaxy
centres, we start in this work by studying the accretion of
barionic matter onto supermassive compact cores made of
fermionic DM, and the corresponding luminosity. To this end,
we first extend the standard disc model of Shakura and Sunyaev
(Shakura & Sunyaev 1973) in the presence of a fermionic DM

1 The term ‘relativistic fermionic King model’ is also used in the liter-
ature (Chavanis 2022).

distribution using a Keplerian disc and a classical treatment. We
are motivated to use fermionic particles because of the numer-
ous efforts made in the last decade to shed light on the nature
of such supermassive dark compact objects and the surrounding
DM halo in a unified description (Argüelles & Becerra-Vergara
2023a).

The data coming from observational campaigns dedi-
cated to the stellar motions around Sgr A* (Ghez et al. 2005,
2008; Genzel et al. 2010; GRAVITY Collaboration 2018) –
confirming the presence of a supermassive compact object
– have been used to show that the core–halo RAR solu-
tions accurately reproduce the orbital motion of the S stars,
including its relativistic effects (Becerra-Vergara et al. 2020;
Becerra-Vergara & Argüelles 2021; Argüelles et al. 2022b).
Additionally, observations of the relativistic images using
Very Long Base Interferometry (VLBI) in both M87 and the
Milky Way (The Event Horizon Telescope Collaboration 2019;
Akiyama et al. 2022) can be used to further test the RAR solu-
tion, for which it is essential to study the accretion physics in
this new paradigm.

The present article is organised as follows: We briefly
describe our extended RAR model in Sect. 2. In Sect. 3, we
study the efficiency, spectra, and solutions of steady-state thin
discs that accrete in the background metric of the RAR model.
Finally, in Sect. 4 we present the conclusions we derive from this
work.

2. Model

2.1. Extended RAR solution

The RAR model consists in a spherical system of self-gravitating
tempered fermions distributed in phase-space according to the
following Fermi–Dirac-like distribution function:

fc(ε ≤ εc) =
2
h3

1 − e(ε−εc)/kT

e(ε−µ)/kT + 1
, fc(ε > εc) = 0, (1)

where ε =
√

c2 p2 + m2c4 − mc2 is the particle kinetic energy, µ
is the chemical potential with the particle rest-energy subtracted
from it, T is the effective temperature, k is the Boltzmann con-
stant, h is the Planck constant, c is the speed of light, and m is the
fermion mass. Anti-fermions are not included as temperatures
T � mc2/k are considered. The full set of (functional) dimen-
sionless parameters of the model is made up of temperature,
degeneracy, and cutoff parameters, β = kT/(mc2), θ = µ/kT ,
and W = εc/(kT ), respectively.

Interestingly, a coarse-grained phase-space distribution of
this kind can be linked with halo formation processes, because
it can be obtained from a generalised kinetic theory in the pres-
ence of gravity as demonstrated in Chavanis (2004). Indeed, it
was shown there that Eq. (1) is a (quasi-) stationary solution
of a generalised Fokker-Planck equation for fermions (Chavanis
2004, 2006). Such a kinetic theory includes the physics of
violent relaxation appropriate for non-linear structure forma-
tion – as originally presented in Lynden-Bell (1967) for clas-
sical particles –, though further extended to include particle
evaporation and applied to realistic DM halos (Chavanis et al.
2015; Argüelles et al. 2021). This kind of phase-space distri-
butions has been shown to fulfil a maximisation entropy prin-
ciple during the collisionless relaxation process, until the halo
reaches the steady state that is currently observed. More recently,
this formation mechanism of fermionic halos was applied in
Krut et al. (2023) to a sample of 120 galaxies, and compared
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with phenomenological profiles as obtained from cosmological
N-body simulations.

The corresponding four parametric fermionic equations of
state at a given radius r, that is, ρ(β, θ,W,m), P(β, θ,W,m), are
directly obtained as the corresponding integrals (bounded from
above by ε ≤ εc) of fc(p). These components are the diagonal
part of the stress–energy tensor in the Einstein equations, which
are solved under the perfect fluid approximation within a back-
ground metric with spherical symmetry, which reads

ds2 = eνc2dt2 − eλdr2 − r2dΘ2 − r2 sin2 Θdφ2, (2)

where (r,Θ, φ) are the spherical coordinates, and ν and λ only
depend on the radial coordinate r. The system of Einstein equa-
tions (i.e. the mass and the Tolman–Oppenheimer–Volkoff equa-
tions below) is solved together with the Tolman and Klein ther-
modynamic equilibrium conditions (involved in Eqs. (5)–(6)
below), and (particle) energy conservation along a geodesic
(Eq. (7) below). The dimensionless system of highly non-linear
ordinary differential equations reads:

dM̂DM

dr̂
= 4πr̂2ρ̂, (3)

dν
dr̂

=
2(M̂DM + 4πP̂r̂3)
r̂2(1 − 2M̂DM/r̂)

, (4)

dθ
dr̂

= −
1 − β0(θ − θ0)

β0

M̂DM + 4πP̂r̂3

r̂2(1 − 2M̂DM/r̂)
, (5)

β(r̂) = β0e
ν0−ν(r̂)

2 , (6)

W(r̂) = W0 + θ(r̂) − θ0, (7)

where the dimensionless quantities are: r̂ = r/χ, M̂DM =
GMDM/(c2χ), ρ̂ = Gχ2ρ/c2, P̂ = Gχ2P/c4, with χ =
2π3/2(~/(mc))(mp/m) and mp =

√
~c/G the Planck mass. The

system of Eqs. (3)–(7) constitutes a boundary condition prob-
lem, which, for fixed DM particle mass m, has to be solved for
a given set of free parameters (β0,θ0,W0) defined at the centre of
the configuration.

The most general solution results in a degenerate compact
core (governed by Pauli degeneracy pressure) surrounded by
an extended and more diluted halo (governed by thermal pres-
sure) as detailed in the following section and in Argüelles et al.
(2018). The core mass Mc = MDM(rc) is given at the core radius,
which is defined as the first maximum of the rotation curve.
This latter corresponds to the radius where the central density
has decreased by about one-tenth of the central value, which
is where fermion degeneracy starts to vanish. In the following
section, we show different solutions for well-motivated values of
m, with DM core masses and total halo masses typical of active-
like galaxies, following Argüelles et al. (2019).

2.2. Application to active-like galaxies

The application of the extended RAR model to large galaxies
with dark and regular compact cores reaching mass values of
∼107–108 M� typical of AGN was first shown in Argüelles et al.
(2019). This was done for a DM particle mass of m ≈ 50 keV,
which was motivated by the excellent results obtained for the
Milky Way (Argüelles et al. 2018, 2022b; Becerra-Vergara et al.
2020; Becerra-Vergara & Argüelles 2021), where the corre-
sponding DM core explains the motion of the S-cluster
stars around SgrA*. For a similar value of fermion mass,

Fig. 1. Core–halo RAR solutions for DM particle mass of mc2 = 48 keV,
in agreement with the Ferrarese relation connecting the halo mass with
the supermassive central object mass (Ferrarese 2002).

the highly degenerate core reaches the critical mass of col-
lapse Mcr

c into a supermassive black hole (SMBH) of ≈2 ×
108 M� (Argüelles et al. 2021). Particle masses of the order of
∼100−350 keV have also been analysed within this DM model
with excellent results (see e.g., Argüelles et al. 2018, 2023b). As
demonstrated in Argüelles & Ruffini (2014) and Argüelles et al.
(2021), the larger the m, the lower the critical core masses
Mcr

c ≈ MOV ∝ 1/m2 (roughly following the Oppenheimer-
Volkoff limit; Oppenheimer & Volkoff 1939), with m ≈ 350
keV leading to a critical mass of a DM core collapsing to a
SMBH of ≈4 × 106 M� as for SgrA* (Argüelles et al. 2018;
Becerra-Vergara et al. 2020).

An important result of the core–halo family of RAR DM
profiles for given m, is that it follows different universal scal-
ing relations, such as: the Ferrarese relation (Ferrarese 2002;
Bogdán & Goulding 2015), which connects the halo and its
supermassive central object masses; the DM surface density rela-
tion (Donato et al. 2009), and the radial acceleration relation
(McGaugh & Lelli 2016), as shown in Argüelles et al. (2019),
Krut et al. (2023). Indeed, in Fig. 1 we show an example of RAR
profiles with m = 48 keV (solutions A1 − A3), corresponding to
a halo mass window of Mtot ∼ 1011−1012 M� and supermassive
DM compact objects of masses of Mc ∼ 106−108 M�, in excel-
lent agreement with the Ferrarese relation (RAR models with
m = 200 keV are also in agreement with the correlation, though
reach up to Mc ∼ 107 M�).

One of the central objectives of this work is to analyse the
accretion power efficiencies and consequent luminosity spec-
trum caused by supermassive compact objects alternative to
BHs. Due to the fact that larger fermion masses imply more
compact and denser DM cores at a given core mass (see e.g.
Argüelles et al. 2018), we study two different families of pro-
files here: those with mc2 = 48 keV (which we call RAR model
A), and those with mc2 = 200 keV (RAR model B). Table 1
shows the main parameters of the two models: for a typical DM
compact-core mass of 107 M�, model B2 gives a more compact
core than the A2 solution (see Fig. 2 for a comparison of the
two profiles). The DM core mass in solution B2 is close to the
critical mass of gravitational collapse to a Schwarzschild BH
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Table 1. Main parameters of the different RAR models.

Model Particle mass Mc Mtot rc θ0 W0 β0
[keV] [M�] [1011 M�] [rg]

A1 48 1.5 × 106 3 1.5 × 104 39.5 69.6 2.5 × 10−6

A2 48 1.0 × 107 10 1.0 × 103 37.9 66.6 6.8 × 10−5

A3 48 1.2 × 108 45 3.4 × 101 38.8 67.2 1.1 × 10−3

B1 200 3.5 × 106 3 8.1 × 101 49.4 77.9 5.1 × 10−3

B2 200 1.0 × 107 10 1.5 × 101 44.3 75.4 2.1 × 10−3

Fig. 2. Density profiles corresponding to a core mass of Mc = 1.0 ×
107 M�, and particle masses of mc2 = 48 keV (A2, blue) and mc2 =
200 keV (B2, red). These DM halos correspond to typical Elliptical
galaxies.

of that mass and therefore implies very similar metric functions
(see Fig. 3).

Figure 2 shows the density profiles for models A2 and B2.
These clearly demonstrate the existence of compact and massive
cores corresponding to the highest density trends, and the diluted
halo at larger radii. This is because the system goes from being
governed by fermionic degeneracy pressure at small radii to be
governed by thermal pressure at larger radii. The density pro-
file therefore transitions from a degenerate core of almost con-
stant density to a Boltzmann-like regime in the outer halo, where
the density falls off as a power law followed by an exponential
decrease determining the galaxy border.

3. Accretion discs

3.1. Efficiency

There is an essential difference between the Schwarzschild BH
solution and the RAR DM model regarding the motion of mas-
sive particles in their surroundings. Because the former is a sin-
gular solution of the Einstein equations and the latter is not, the
existence of the innermost stable circular orbit (ISCO) becomes
discernable. Due to the regularity of the central object in the
RAR case, there is no critical angular momentum of the particle
for which a potential barrier is no longer present, and therefore
no ISCO can be reached (Crespi 2022). This behaviour directly

Fig. 3. Metric components corresponding to the same RAR solutions as
in Fig. 2 but with a core mass of Mc = 107 M�, and particle masses of
mc2 = 48 keV (A2, blue) and mc2 = 200 keV (B2, red). A comparison
with the metric of a Schwarzschild BH of mass MBH = 107 M� is also
shown (BH, green).

implies that the disc has no clear inner boundary2. To set an inner
constraint in this regard, we study the binding energy of a test
particle in the disc, and analyse when it saturates towards a max-
imum.

In the case of BHs, the efficiency of the accretion process is
related to the binding energy per unit rest mass at the innermost
stable circular orbit (ISCO), that is:

ε =
mc2 − Ec

mc2 , (8)

where Ec corresponds to the particle’s energy at the last stable
circular orbit. This accretion efficiency represents the maximum
fraction of the rest mass energy of the accreted particle that can
be converted into radiated energy. In standard astrophysical sce-
narios such as a neutron star of radius ∼10 km, the efficiency is
of the order of 10%, while in the case of BH accretion the effi-
ciency varies between 5.7% and 42% for Schwarzschild and Kerr
(maximal rotation with a prograde disc) solutions, respectively3

2 General relativistic simulations of fluid dynamics should be per-
formed to tackle this problem in analogy to boson stars either
for unmagnetised (Meliani et al. 2016) or magnetised scenarios
(Olivares et al. 2020), though both are out of the scope of this paper.
3 When considering the effects of the radiation of the disc on the rota-
tion of the black hole, the maximum spin reduces, and the efficiency
results in 32.4% (Thorne 1974; Laor & Netzer 1989).
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(Novikov et al. 1973). In analogy to the BH case, and in order to
define the corresponding accretion efficiency in the RAR model,
we seek a maximum in the radial behaviour of the (normalised)
binding energy of a test particle. Therefore, in the RAR solution,
the binding energy normalised to the rest mass reads

Ēb(r) = 1 −

√
g00(r)

(
1 +

rg′00(r)
2g00(r) − rg′00(r)

)
, (9)

where g00(r) = eν(r) is the temporal component of the metric,
and the prime symbol indicates derivation with respect to r. We
show this binding energy behaviour in Fig. 4 for the case of a
Schwarzschild BH obtained by replacing g00(r) in Eq. (9) by
1 − 2GM/r-, and for two different RAR solutions with the same
DM core mass of Mc = MBH = 107M� but different core com-
pacities. For the RAR solutions, the binding energy asymptoti-
cally reaches the maximum as r → 0, and saturates (see defini-
tion below) at a given radius rin. The definition for rin implies
that it is always smaller than the core radius, with the binding
energy remaining approximately constant as the particle’s orbit
gets smaller and smaller (i.e. until rmin ∼ 10−7rg ≈ 10−13 pc, the
smallest representable radius admitted by computer precision for
such core–halo solutions). As the inner radius of the disc, rin, we
adopt the value at which the relative error for the change in the
maximum efficiency of the binding energy is equal to or lower
than 1%, that is

|Ēb(rin) − Ēb(rmin)|
Ēb(rmin)

≤ 0.01. (10)

Adopting this definition, the inner radius typically corresponds
to one-tenth of the core radius rin ∼ 0.1rc (for 1% of relative
error). In Table 2, we list the values of the inner radius and effi-
ciency for the different RAR models. We compare the efficien-
cies of the RAR models A2 and B2 (labelled εA2 and εB2 in Fig. 4)
with the Schwarzschild efficiency labelled εBH. Remarkably, as
the disc can enter deep inside the DM core (i.e. the Keplerian orbits
in the disc can have r < rc), the binding energy of RAR solu-
tions with sufficiently compact cores can surpass the maximum
Schwarzschild value. Figure 4 shows an example of a subcritical
DM core (solution B2) with an efficiency of 14%, to be compared
with the 5.7% of the BH case. Moreover, when the degenerate core
achieves its critical mass of collapse, the accretion efficiency can
be as large as ≈28%, which is similar to that of a highly rotat-
ing Kerr BH. This interesting result is not new, and analogous
conclusions were obtained for relativistic clusters with constant
density and different compacities by Cocco et al. (1995).

These results, exemplified in Fig. 4, have potential implica-
tions for the astrophysics of AGNs. In the context of the Soltan
argument (Soltan 1982), and based on observational results
regarding the mean accretion efficiency of SMBHs (both from
the local and the AGN-relic Universe; Yu & Tremaine 2002;
Ueda et al. 2003; Marconi et al. 2004), a mean value of ε ≈ 0.1
arises, which falls between that predicted by the Schwarzschild
and Kerr BH cases. Additionally, a data analysis of different
populations of AGNs showed that the required efficiencies are
ε > 0.1 (Raimundo & Fabian 2009), with the majority of cases
exhibiting ε ∼ 0.2-0.3 and the minority reaching down to as
low as 0.04 (such low values are compatible with the findings
of Marconi et al. 2004). Given these values, the relevance of the
results presented here for the accretion efficiencies onto the com-
pact DM cores becomes clear: depending on the compacity of
the fermion core, the efficiency can go from below the typical
Schwarzschild case up to values of larger than 0.1, which is

Fig. 4. Accretion efficiencies (labelled with coloured dots) for two dif-
ferent DM core compacities (i.e. different m) with the same core mass
of Mc = 107 M� (RAR solutions A2 and B2). For comparison, the case
of a Schwarzschild BH with a mass equal to Mc is also shown. Inter-
estingly, solution B2 reaches an accretion efficiency of 14%, which is
considerably larger than that of the Schwarzschild BH.

typical of Kerr BHs. Further discussions about the challenges
faced in observationally confirming the Kerr BH space-time at
galaxy centres – which are mainly related to degeneracy in mod-
els regarding the mass of the compact object, and in particular
the spin parameter and possible deviations from the Kerr metric
– can be found in Bambi (2017).

3.2. The steady standard disc model embedded in DM

In this section, we consider the model of steady thin discs devel-
oped by (Shakura & Sunyaev 1973), and extend it to be applied
in the context of RAR solutions. To this end, and following the
treatment presented in Frank et al. (2002), we use cylindrical
polar coordinates (r, φ, z), and assume that matter is very close
to the plane z = 0, and is rotating with an angular velocity Ω(r)
that remains very close to the Keplerian value:

Ω = ΩK(r) =

(
GM(r)

r3

)1/2

. (11)

Here, M(r) is the mass distribution of the DM core–halo solution
contained up to r. The circular velocity is given by vφ = rΩK(r).

In addition, the gas is assumed to possess a small radial
‘drift’ velocity vR(r), which is negative near the central object
so that matter is accreted. The disc is characterised by its sur-
face density Σ(r), which is the mass per unit surface area of the
disc, given by integrating the gas density ρ in the z-direction. For
a steady disc, the conservation of mass and angular momentum
can be written as:

Ṁ = 2πrΣ(−vR), (12)

ηΣ =
Ṁ
3π

1 − (
Minrin

M(r)r

)1/2 [1 − r
3M(r)

dM(r)
dr

]−1

, (13)

respectively. Here, Ṁ is the accretion rate (in units of g s−1), η is
the cinematic viscosity, rin is the internal radius of the disc (see
Sect. 3.1), and Min = M(rin).

A24, page 5 of 11



Millauro, C., et al.: A&A, 685, A24 (2024)

Table 2. rin considered for the different models.

Model Particle mass Mc rc rin ε
[keV] [M�] [rg] [rg] [%]

A1 48 1.5 × 106 1.5 × 104 9.6 × 102 0.02
A2 48 1.0 × 107 1.0 × 103 8.3 × 101 0.2
A3 48 1.2 × 108 3.4 × 101 2.6 × 100 6.7
B1 200 3.5 × 106 8.1 × 101 6.8 × 100 2.5
B2 200 1.0 × 107 1.5 × 101 1.3 × 100 14

Fig. 5. Comparison of disc temperatures for the A and B RAR models
with that of a BH with a mass of MBH ∼ 107 M�. The dots indicate the
location of the Rc for each RAR model.

In analogy to the BH case, we engineer the viscous torques
to vanish at the maximum of the binding energy, which in the
case of the RAR model corresponds to the inner radius rin. This
allows us to explicitly obtain the viscous dissipation per unit disc
face area, as

D(r) =
1
2
ηΣ

(
r

dΩ

dr

)2

=
3Ṁ
8π

GM(r)
r3

1 − (
Minrin

M(r)r

)1/2 [1 − r
3M(r)

dM(r)
dr

]
. (14)

It can be seen that, as in the standard solution, the viscous dis-
sipation is independent of the physical nature of the viscosity η.
Finally, the total disc luminosity is obtained by integrating D(r)
along the disc area.

We also consider an optically thick disc in the z-direction,
and therefore each element of the disc radiates as a black body
with temperature T (r), given by the equation of the viscous dis-
sipation per unit disc face area D(r) = σT 4(r), where σ is
the Stefan-Boltzmann constant. Figure 5 shows a comparison
between the A and B RAR models and a BH of M ∼ 107 M�.

For an observer at a distance d from the centre of the disc,
whose line of sight makes an angle i with respect to the normal
of the disc plane, the flux at frequency ν is

Fν =
4πh cos iν3

c2d2

∫ rout

rin

rdr
ehν/kT (r) − 1

. (15)

The outer radius rout can be estimated using the
condition that the disc becomes locally self-gravitating

Fig. 6. Comparison of the luminosity for the A and B models with a BH
of M ∼ 107 M�.

(Bogdán & Goulding 2015). This is determined by analysing the
stability criterion for a differential rotation disc:

QT = cS Ω/πGΣ � 1, (16)

where Ω is the angular velocity given in Eq. (11). The condition
QT = 1 defines the self-gravitating disc:

rout = (M/πρ)1/3. (17)

Knowing the density of the accretion disc, the outer radius can be
determined. Further details are discussed in Appendix A, where
we obtain rout ≈ 103 rg−104 rg, depending on the model studied.
Nevertheless, the disc beyond 103 rg does not contribute signif-
icantly to the total luminosity, and therefore we adopt this value
as the outer limit for all models.

Figure 6 shows the luminosities obtained for models A and
B. In all cases, we consider Ṁ = 0.1ṀEdd, where ṀEdd is
the Eddington accretion rate, defined as the accretion rate at
which the compact source radiates at an efficiency of ε ∼ 0.1
of the Eddington luminosity, that is ṀEdd = LEdd/εc2 ∼ 1.4 ×
1016

(
Mc/M�

)
erg s−1. Moreover, we show the comparison with a

black hole of M ∼ 107 M�. See also points (ii) and (iii) in Sect. 4
for a relevant discussion regarding the RAR model predictions
for disc luminosities.

Figure 7 only shows the luminosity for RAR models with
Mc = 107 M�, using two values for the fermion mass: mc2 =
48 keV (model A2) and mc2 = 200 keV (model B2); we also
compare this result with a disc around a Schwarzschild BH of
MBH = Mc. This important result shows that a core compac-
ity (i.e. solution B2) exists at which the luminosity spectrum is
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Fig. 7. Comparison of the luminosity in the A2 and B2 models and that
of a BH of ∼107 M�.

Fig. 8. Hypothesis validation for model A2: Keplerian velocity must be
highly supersonic, while radial velocity must be highly subsonic. Verti-
cal dashed (and doted) lines specify Rab (and Rbc), i.e. the radii at which
the behaviour of the disc changes between the inner and intermediate
region (and between the intermediate and outer region), respectively
(see Appendix A).

almost indistinguishable from that of a Schwarzschild BH of the
same mass as the DM core.

In the standard thin disc model, different hypotheses are con-
sidered: the azimuthal velocity vφ remains close to the Keplerian
value; the disc remains thin at all radii (i.e. the height scale H is
much smaller than the extent of the disc H � r); and the disc is
optically thick in the z-direction. In order to verify that the solu-
tions here obtained for the RAR model are consistent with the
above thin disc ansatz, we consider a disc in hydrostatic equi-
librium in the z-direction, meaning that there is no flow in the
vertical direction. Then, for H � r and P ≈ ρc2

s (with cs the
sound speed), the solution satisfies:

cs �

(
GM(r)

r
+ G

dM(r)
dr

)1/2

≈

(
GM(r)

r

)1/2

. (18)

The local standard Kepler velocity should be highly supersonic.

If the thin disc condition in Eq. (18) holds, the circular matter
velocity vφ satisfies

vφ =

√
GM(r)

r
+ G

dM(r)
dr

[1 + O(M−2)]. (19)

It can be seen that vφ is very close to the Keplerian value, as
assumed above. Figure 8 shows both hypotheses for model A2
as an example; though it is satisfied by all solutions, as we have
verified.

At this point, it is worth emphasising that the complete struc-
ture of the disc is not needed in order to compute the spectra for
the RAR solutions. However, in order to be able to verify the
hypothesis mentioned above, in Appendix A we write out the
generalisation of the Shakura & Sunyaev set of equations within
the fermionic DM model, and solve for the complete disc struc-
ture within the α prescription of the viscosity (see Frank et al.
2002 in order to make the analogous demonstration in the case
of the standard α disc theory).

4. Discussion and final remarks

We extended the standard, steady thin disc model in order to
study the accretion onto horizonless dark compact objects at the
centres of galaxies. The BH alternative investigated here consists
in a dense and highly degenerate core made of neutral fermions,
surrounded by a more diluted mass distribution that is able to
explain the DM halo in galaxies. This dense core–diluted halo
DM configuration is known as the RAR model, and is a non-
analytic solution of the Einstein equations of GR, which nat-
urally arises once the quantum nature (i.e. Pauli principle) of
the fermions is duly accounted for. The attention in this work is
focused on active-like galaxies together with their central accre-
tion processes, luminosity spectra, and efficiencies.

We used core–halo RAR solutions for two different fermion
masses, 48 keV and 200 keV, the latter corresponding to a very
dense DM core with a mass of 107 M�, close to its critical value
of gravitational collapse to a BH. The fact that, as m increases,
the DM-core of given mass becomes more compact (see Fig. 2)
makes the above choice particularly relevant to the analysis of
how similar the luminosity spectra of α-discs can be to those of a
BHs. Moreover, a particle mass falling within this range is totally
compatible with both linear structure formation in cosmology
and non-linear structure formation, including galaxy rotation
curves and scaling relations (see Argüelles & Becerra-Vergara
2023a for a review and references therein).

The main results of our work can be summarised as follows:
1. The fact that the dense DM core is transparent implies that

the accretion disc can enter inside reaching down to event-
horizon scales. As a consequence, it can achieve accretion
efficiencies of as large as ε = 28.5%, which is compara-
ble to that of a highly rotating Kerr BH. Figure 4 shows
a relevant example comparing a 107 M� Schwarzschild BH
with two different RAR solutions of increasing particle mass
(A2 and B2) with the same core mass. We show that for
m = 48 keV (solution A2) the efficiency is below 1% while
for m = 200 keV (solution B2), the stable (i.e. below critical)
DM core is compact enough to reach an accretion efficiency
at rin < rc that is more than two times that of the BH. The
maximum efficiency of ε = 28.5% is achieved for the criti-
cal core mass. The relevance of achieving Kerr-like efficien-
cies in active galaxies is supported by observational results
(Raimundo & Fabian 2009) based on the Soltan argument.
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2. At a given DM core mass Mc, the larger the particle mass,
the more compact the degenerate core, and consequently the
more luminous and energetic the discs. This result, when
considered in light of the efficiency trend explained above,
implies that there always exists a given core compacity at
which the luminosity spectrum is almost indistinguishable
from that of a Schwarzschild BH of the same mass as the
DM core. This important RAR model prediction is explicitly
shown in Fig. 7 for a BH mass of 107 M�, which is typical of
an active galaxy.

3. At fixed DM particle mass, it is possible to have different DM
core masses Mc (see Table 1) with surrounding DM halos
fulfilling the observationally inferred Ferrarese scaling rela-
tion (Ferrarese 2002; see Fig. 1 and Argüelles et al. 2019). A
novel RAR model prediction found in this work is that when
Mc increases, the peak frequency of the luminosity spectra
also increases (see e.g. the trend in the red curves B1 and B2
of Fig. 6). This is due to the degeneracy of the core, which
implies more compact solutions for more massive cores (at
given m). This result is at odds with what is expected from
accretion onto a BH, and could be a fundamental tool for
testing the RAR model (see discussion below).

Further detailed work is needed in order to differentiate the two
above paradigms of supermassive compact objects; for example
making use of real spectral energy distributions (SED) of AGNs,
or calculating the relativistic images produced by the emitted
photons via ray-tracing techniques. The latter is an important
project that has already been started by our team, and will allow
us to compare observations of the shadow-like features predicted
by the RAR model with those predicted by the BH.

Regarding the observational access to SEDs of AGNs rel-
ative to this work, the most important is the narrow window of
low central-object masses of ∼106−107 M� (for the m = 200 keV
case), or ∼107−108 M� (for m = 48 keV), before the correspond-
ing DM core becomes critical and collapses to a BH4. An even-
tual observational detection of the luminosity peaks that shift
towards higher ν in such a small DM core-mass window is chal-
lenging. This is mainly because of the lack of data in the UV
band (at about the UV bump) due to the absorption of the IGM;
the large error bars at the blue bump; or the fact that most of the
observed SEDs are obtained for relatively large central object
masses, that is, of >108 M� (Collinson et al. 2017).

In summary, the original results presented in this work and
summarised above may imply an important landmark – and may
open new avenues of research – in the field of AGN theory and
phenomenology in connection to DM physics and SMBHs.
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Appendix A: Local structure of the disc

Here, we present the solution of the complete disc structure. To
this end, we consider, as in the standard disc solution, the α−
prescription for the viscosity, given by:

η = αcsH. (A.1)

The following theoretical content of this Appendix is pro-
vided both for completeness and in order to be able to verify the
three main hypotheses of the (extended) Shakura & Sunyaev the-
ory: the geometrically thin disc (H(r) << r) and the Keplerian
velocity approximation, together with the optically thick (τ > 1)
assumption, for which the solution of the full disc structure is
needed. An example of such a verification is shown in Fig. 8 of
the main text.

In the thin disc approximation, the determination of the disc
structure is simplified. Following Shakura & Sunyaev (1973)
and Frank et al. (2002), and using the results obtained in Section
3.2 for the generalised thin disc embedded within the RAR DM
distribution, the set of disc equations results in:

1. ρ = Σ/H,
2. H = cs

(
GM(r)

r + G dM(r)
dr

)−1/2
r,

3. c2
s = P/ρ,

4. P =
ρ(r)kTc
µmp

+ 4σ
3c T 4

c ,

5. 4σT 4
c

3τ = 3Ṁ
8π

GM(r)
r3

[
1 −

(
Minrin
M(r)r

)1/2
] (

1 − r
3M(r)

dM(r)
dr

)
,

6. τ = ΣκR(ρ,Tc) = τ(Σ, ρ,Tc),

7. ηΣ = Ṁ
3π

[
1 −

(
Minrin
M(r)r

)1/2
]

1
1− r

3M(r)
dM(r)

dr
,

8. η = η(ρ,Tc,Σ, α, . . . ).
It is worth mentioning that in the limits M(r) → M and
dM(r)

dr → 0, the standard disc solutions are recovered.
There are three distinct regions in the disc, determined by

the relevant absorption mechanism, and the importance of Prad
versus Pgas. Regarding the absorption mechanisms, we consider
two main processes: free-free absorption, where the opacity is
given by (see e.g. Shakura & Sunyaev (1973))

κff = 5.0 × 1024ρT−7/2
c cm2g−1, (A.2)

and scattering, where we adopt

κsc =
σT

mp
∼ 0.4 cm2g−1. (A.3)

The parameterisation of the complete solutions, together
with the regions where Pgas dominates over Prad (and vice versa),
can be found in Appendix A.

As in the standard solution, there are three distinct regions in
the disc: (a) an inner region, where Prad � Pgas and κes � κ f f ,
(b) an intermediate region, where Pgas � Prad and κes � κ f f ,
and (c) an outer region, where Pgas � Prad and κes � κ f f . The
complete solution of the set of Eqs. 1-8 for the inner, interme-
diate, and outer regions are presented in Eqs. A.7-A.9, A.14-
A.19, and A.20-A.26, respectively. We define R10 = r/(1010 cm),
m1 = M(r)/M�, Ṁ16 = Ṁ/(1016g s−1), f 4 = 1 −

(
Minrin
M(r)r

)1/2
,

A =
(

M(r)
r + dM

dr

)
, and B = 1 − r

3M(r)
dM(r)

dr and we consider
µ = 0.615 for a fully ionised gas.

It is worth noting that the limits dm1
dR10
→ 0 and M(r) → Min

recover the standard disc solution around a compact object of a
given mass M. Secondly, the α power is of the same order of
magnitude as the standard solution. Hence, as α powers are low,
the magnitudes calculated for the disc are not sensitive to the
value of α.

The transition radii between the regions result in

Rab ≈ 3.9 × 107α1/16m1/2
1 f 2Ṁ1/2

16 B1/2A−11/32 cm, (A.4)

Rbc ≈ 2.2 × 105m1/2
1 f 2Ṁ1/2

16 B1/2A−1/4 cm. (A.5)

Inner region of the disc: Prad � Pgas and κes � κ f f :

Σ = 5.0 × 108α−4/5 f 12/5B−2Am1/5
1 Ṁ3/5

16 R−3/5
10 g cm−2; (A.6)

H = 1.4 × 104m−7/20
1 R21/20

10 Ṁ1/5
16 f 4/5cm; (A.7)

ρ = 3.7 × 104α−4/5 f 8/5B−2Am11/20
1 Ṁ2/5

16 R−33/20
10 g cm−3; (A.8)

Tc = 7.7 × 105α−1/5m3/10
1 B−1/2A1/4R−9/10

10 Ṁ2/5
16 f 8/5K; (A.9)

τ = 2.3 × 1017α−4/5 f 12/5B−2Am1/5
1 Ṁ3/5

16 R−3/5
10 ; (A.10)

η = 9.4 × 107αm13/20
1 A−1/2R−19/20

10 Ṁ2/5
16 f 24/5cm2 s−1; (A.11)

vR = 9.4 × 10−3m13/20
1 A−1/2R−39/20

10 Ṁ2/5
16 f 24/5cm s−1. (A.12)

Intermediate region: Pgas � Prad and κes � κ f f :

Σ = 9.9α−4/5 f 12/5m−1/5Ṁ3/5
16 R−1/5

10 A2/5B−1 g cm−2; (A.13)

H = 9.6 × 107α−1/10m1/10
1 Ṁ1/5

16 R3/5
10 f 4/5A−9/20cm; (A.14)

ρ = 1.0 × 10−7α−7/10m−3/10
1 Ṁ2/5

16 R−4/5
10 f 8/5A13/20B−1 g cm−1;

(A.15)

Tc = 9.2 × 103α−1/5M1/5Ṁ2/5
16 R−4/5

10 f 8/5A1/10K; (A.16)

τ = 6.9 × 104α−4/5 f −8/5m−6/5
1 Ṁ−2/5

16 R9/5
10 A7/10B−2; (A.17)

η = 4.3 × 109α9/10A−9/20R3/5
10 m1/10

1 Ṁ1/5
16 f 4/5cm2 s−1; (A.18)

vR = 4.3 × 10−1α9/10A−9/20R−2/5
10 m1/10

1 Ṁ1/5
16 f 4/5cm s−1. (A.19)

Outer region: Pgas � Prad and κes � κ f f :

Σ = 3.65α−4/5A7/20R−2/5
10 f 14/5B−9/10Ṁ7/10

16 m−1/10
1 g cm−2; (A.20)

H = 1.5 × 108α−1/10 f 3/5Ṁ3/20
16 R7/10

10 m1/20
1 A−17/40B−1/20cm; (A.21)

ρ = 2.4 × 10−8α−7/10R−11/10
10 f 11/5Ṁ11/20

16 m−3/20
1 A31/40B−17/20g cm−3;

(A.22)

Tc = 2.5 × 104α−1/5R−3/5
10 Ṁ3/10

16 f 6/5m1/10
1 A3/20B−1/10K; (A.23)

τ = 177α−4/5R3/5
10 f 4/5Ṁ1/5

16 m−3/5
1 A3/5B−7/5; (A.24)

η = 2.7 × 1014α4/5 f 6/5Ṁ3/10
16 R2/5

10 m1/10
1 A−7/20B−1/10 cm2 s−1;

(A.25)

vR = 2.7 × 104α4/5 f −14/5Ṁ3/10
16 R−3/5

10 m1/10
1 A−7/20B9/10cm s−1.

(A.26)

We now consider the case of models A2 and B2 described
in Table 1. We assume Ṁ = 0.1MEdd ≈ 1.4 × 1023 g s−1,
and α = 0.1. We also compare to the standard disc around a
Schwarzschild black hole of mass MBH = 107M�.

Fig. A.1 shows the variation of both contributions to the
total pressure in the different regions; in an analogous way, in
Fig. A.2 we show the absorption coefficients due to scattering
and free-free absorption. In both cases, we compare our mod-
els (centre and right) to the standard disc around a black hole
(left).

An interesting result is obtained when varying the fermion
mass from 200 keV to 48 keV (for the same mass of the core,
model A2); in this case, only the outer region exists. This is due
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Fig. A.1. Variation of the radiation and gas pressures for a disc around a black hole (left), the RAR solution B2 (centre), and the RAR solution A2
(right). Dashed black and grey lines represent the limits of the different regions.

Fig. A.2. Variation of the absorption coefficients for a disc around a black hole (left), the RAR solution B2 (centre). and the RAR solution A2
(right). Dashed black and grey lines represent the limits of the different regions.

Fig. A.3. Variation of the opacity for a disc around a black hole (left), the RAR solution B2 (centre). and the RAR solution A2 (right). Dashed
black and grey lines represent the limits of the different regions.

to the fact that the compacity of the core diminishes for lower
masses of the fermion, which allows the disc to reach lower tem-
peratures, as can be seen in Fig. 5.

Using the criterion given by Eq. 17, we can determined the
outer radius of the disc. For both, model B2 and the black hole,

rout = 1.9× 1015cm and rout = 1.0× 1014cm, respectively, which
implies rout ≈ 103 rg in both cases. It is interesting to analyse
model A2, where only the outer region of the disc is present.
In this case, we find that the disc becomes self-gravitating at
rout = 1.3 × 1016cm ≈ 104rg.
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Fig. A.4. Thin disc approximation for a disc around a black hole (left), the RAR solution B2 (centre). and the RAR solution A2 (right). Dashed
black and grey lines represent the limits of the different regions.
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