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Testing for Persistence in the Error Component
Model: A One-Sided Approach

WALTER SOSA-ESCUDERO

Department of Economics, Universidad de San Andres,
Victoria, Argentina

This article proposes new simple testing procedures for the joint null hypothesis of
absence of persistent effects, in the form of random effects and first-order serial
correlation in the error component model. The fact that the presence of random
effects is clearly of a one-sided nature, together with the fact that in many empirical
applications researchers worry about positive serial correlation leaves room for a
power gain that arises from restricting the parameter space under the alternative
hypothesis, compared to existing procedures that allow for two-sided alternatives.
A Monte Carlo experiment shows that the proposed statistics have good size and
power performance in very small samples like those typically used in applied work
in panel data. An empirical example illustrates the usefulness of the proposed
statistics.

Keywords Error component model; One-sided alternatives; Random effects;
Serial correlation; Testing.

1. Introduction

Among the many uses of the basic linear error components model, a particularly
relevant one is to provide a flexible structure to explore persistent behavior. For
example, the seminal article by Lillard and Willis (1978) uses a simple error
component model with individual random effects and first-order serial correlation
to investigate how much of the persistence of poverty is related to time invariant
individual factors that make certain persons more prone to be poor (random
effects), or to bad shocks experienced by individuals whose effect persist over time
(serial correlation).

In the case that all persistences can be captured by observed variables, the
null hypothesis of “no persistence in the unobservables” corresponds to the absence
of random effects and serial correlation. Baltagi and Li (1991) proposed a simple
procedure to test this hypothesis, based on the Rao score/Lagrange multiplier
(LM) principle. Their statistic is designed to detect departures away from the null
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2602 Sosa-Escudero

hypothesis in any direction, in the sense that under the alternative hypothesis
the parameters controlling each effect (serial correlation and random effects) are
different from zero.

The presence of random effects is clearly a one-sided matter since under the null
hypothesis the variance of the individual effect is zero, and under the alternative it
is a positive number. If, as in the case of the persistence literature, the interest is on
positive first-order serial correlation, it is then relevant to ask whether the Baltagi
and Li procedure can be improved upon by deriving a test that explicitly considers
this one-sided nature of the alternative hypothesis.

A first goal of this article is to derive one-sided versions of a test for the joint
null of absence of random effects and positive first-order serial correlation. The
multiparameter character of the problem introduces a complication since, unlike the
single-parameter case, there is not an obvious optimality principle from which to
obtain such a test. We rely on results by King and Wu (1997) and Bera and Bilias
(2001) to derive asymptotically optimal one-sided tests.

The classical article by Breusch and Pagan (1980) proposed a simple LM-
based test for the null of no individual random effects allowing for a two-sided
alternative; Honda (1985) derived the corresponding one-sided version. These
tests implicitly assume no serial correlation in the remaining error component.
Bera et al. (2001), showed that the presence of first-order serial correlation makes
these test reject the null of no random effects independently of whether it is
true or not, and derived a test statistic that is insensitive to the presence of
local serial correlation. A similar concern applies to the test for first-order serial
correlation derived by Baltagi and Li (1991) which implicitely assumes no random
effects, in the sense that its presence induces spurious rejections of the null
of no serial correlation. A robustified version of this test is also provided by
Bera et al. (2001).

When the interest is in exploring which source of persistence is active, the
testing framework by Barro (2001) is instructive, but the fact that the Breusch-
Pagan/Honda and the Baltagi-Li statistics reject their nulls in the presence of
random effect or serial correlation suggest that even though they were not
explicitly designed for this purpose, they may serve the goal of being informative
about departures away from the joint null of no persistence. Hence, it is
relevant to include this family of statistics as valid competitors of the joint tests
proposed.

Consequently, a second goal of this article is to compare the new and existing
procedures through a detailed Monte Carlo experiment. The results suggest that the
use of one-sided tests result in non trivial power gains in small samples similar to
those commonly used in applied work. Finally, as it is the case of all the previously
available procedures discussed before, the new test statistics are computationally
very simple, requiring OLS residuals only.

This article is organized as follows. The next section discusses available
procedures to test for persistent effects in the form of tests of random effects
and serial correlation. Section 3 presents the theoretical framework used to derive
optimal tests for the one-sided multiparameter hypothesis of no random effects
nor serial correlation and derives the proposed test statistics. Section 4 illustrates
their usefulness with a simple empirical example. The small sample behavior of
the proposed procedures is explored in Sec. 5 through an extensive Monte Carlo
experiment. Section 6 concludes.
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Testing Persistence in the Error Component Model 2603

2. Persistent Effects in the Error Component Model

Consider the following one-way error component model which combines random
individual effects and first-order serial correlation in the disturbance term:

yit = x′it� + uit� i = 1� 2� � � � � N� t = 1� 2� � � � � T�

uit = �i + �it�

�it = ��i�t−1 + �it� ��� < 1�

where � is a �k× 1	 vector of parameters including an intercept, �i ∼ IIDN�0� 
2
�	

is a random individual component, and �it ∼ IIDN�0� 
2
�	. �i and �it are assumed

to be independent of each other with �i�0 ∼ N�0� 
2
�/�1− �2		. N and T denote the

number of individual units and the number of time periods, respectively.
This model possesses three potential sources of persistent behavior. The first

one is the persistence in the explanatory variables, the second one is the presence
of �i, a time-invariant unobserved individual factor that introduces a source of
“permanent” persistence, and the third one is associated to � > 0, which induces
a “transitory” persistence due to the stationary character of �it. In their seminal
article, Lillard and Willis (1978) used this structure to study the sources of income
persistence. Freije and Portela-Souza (2002) or Sosa-Escudero et al. (2011) are more
recent applications of models of this sort.

In this context it is relevant to check whether all persistence can be
appropriately captured by observable variables, which corresponds to the null
hypothesis of no random effect and serial correlation. A test for this null may
serve several purposes. First, under the joint null and if the model is correctly
specified, the unknown parameters and their variances can be safely estimated by
simple OLS-based methods. Second, and in a more general context, the presence
of either random effects or serial correlation bias standard OLS-based estimates
of variances, invalidating inferential methods based on them. In a recent article
Bertrand et al. (2004) clearly documented that panel based difference-in-difference
estimates of treatment effects are severely affected by the presence of positive serial
correlation, spuriously favoring rejecting the “no treatment effect” null, highlighting
the empirical importance of checking for correlated residuals. Third, under random
effects or serial correlation, OLS estimates are still unbiased so a possible strategy
is to consider alternative consistent estimators for the variances. There is not a
trivial strategy to “robustify” variance estimates under serial correlation and/or
random effects, to the point, Bertrand et al. (2004) explored several alternatives,
favoring block bootstrap methods when the number of individual units is large.
Consequently, powerful tests for the joint null are needed to justify the costs of
moving away from standard procedures.

Finally, rejections of the joint null may point towards considering more
efficient estimation methods that explicitly contemplate random effects and/or serial
correlation. The latter seems to be of a more demanding nature since the presence
of serially correlated errors may require more sophisticated dynamic structures,
in the sense of the classic article by Hendry and Mizon (1978) for the standard
time series regression context, where serially correlated errors are suggested to
arise as a consequence of dynamic misspecifications, which only under very specific
conditions, like the presence of common factors, can be fully captured by simple
autorregresive structures instead of general dynamic specifications. Estimation and
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2604 Sosa-Escudero

inference in dynamic models for panel data are a complicated matter of active
current research and, again, powerful tests that suggest abandoning the null of no
persistence may help evaluating this decision.

There are several procedures available to explore persistence in unobservables
in the form of random individual effects and serial correlation. Breusch and Pagan
(1980) classic article derives a Lagrange multiplier test for the null H0 � 


2
� = 0 (no

random effects) against HA � 
2
� �= 0. Honda (1985) notes the one-sided nature of the

relevant alternative, and proposes a simple test for H0 � 

2 > 0, which results in a

gain in power by focusing on this more appropriate alternative hypothesis.
These tests are derived in the context of no serial correlation �� = 0	.

Bera et al. (2001) found that the presence of positive serial correlation induces
spurious rejections of the null of no random effects in the previous testing procedures.
The underlying intuition is that the Breusch-Pagan/Honda statistics check for
correlations in the residuals of estimating the linear panel model by OLS methods.
In the absence of serial correlation in the idiosyncratic term ��it	 the only source of
residual correlation is relegated to the presence of �i, and the test derives its power
by checking this correlation. Obviously, the presence of positive serial correlation
introduces an extra source of persistence that confounds the Breusch-Pagan/Honda
tests.

Nevertheless, and for the purposes of this article, it is relevant to stress the fact
that the previous concern applies when the interest is in distinguishing which one,
if any, of the sources of persistence is present. But when the interest is in checking
the null of no persistence, the Breusch-Pagan/Honda statistics may serve the goal
of being informative about the validity of the joint null since they have power in all
directions away from the joint null (random effects, serial correlation, or both), even
though, very likely, in a sub optimal way since these tests were explicitly designed
to capture deviations away from the no-random effects null.

In the same article, Bera et al. (2001) proposed modified version of the
Breusch/Pagan and the Honda statistics, that are insensitive to the presence of local
serial correlation, hence the tests have power only in the direction of the presence
of random effects. Of course, when serial correlation can be safely assumed to be
inexistent, there is a power cost associated to this robustification, since in such case
the Breusch-Pagan/Honda procedures are optimal. Bera et al. (2001) conducted a
Monte Carlo experiment that shows that the modified tests work well even in non
local contexts, and that the power loss discussed above is relatively small.

Baltagi and Li (1991) proposed a test for the null of no first-order serial
correlation, assuming no random effects. As expected, the same concern highlighted
by Bera et al. (2001) affects this procedure, in the sense that the presence of the
random effect adds an extra source of persistence that confounds the check for
autocorrelation. Bera et al. (2001) also proposed a robustified version of the Baltagi
and Li test, with good performances in their Monte Carlo experiment.

All the previous procedures are designed to check the presence of random
effects or serial correlation separately, but when the interest is in the joint null
of no persistence in the unosbervables, it is natural to consider joint tests that
may exploit departures from the null more efficiently. To this purpose, Baltagi and
Li (1991) derived an LM test for the joint null of no random effect and serial
correlation �H0 � 


2
� = 0� � = 0	 against the general two-sided alternative H0 � 


2
� �=

0� � �= 0. As advanced in Sec. 1, the presence of random effects is clearly of a one-
sided matter, and if the interest lies in the possible presence of persistent effects,
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Testing Persistence in the Error Component Model 2605

applied researchers may want to focus on the relevant alternative of positive serial
correlation. This appreciation opens the door to consider one-sided versions for the
joint null that result in larger power. This is the task of the next section.

3. One-Sided Tests for Persistence

This section describes the theoretical framework used to derive one-sided optimal
tests for the null hypothesis of no random effects and positive serial correlation in
the error component model. It is based on Bera and Bilias (2001) to which we refer
for further details.

Assume we are interested in a parametric statistical model for a sample of n
observations that can be represented by its log-likelihood function L��	 where � is a p
vector of unknown parameters. Let s��	 and I��	 be, respectively, the score vector and
the information matrix, defined as s��	 ≡ 
L��	/
��	, and I��	 ≡ E�s��	s��	′�. We will
be interested in testing Ho� �= �0 against the one-sided alternative HA � �>�0.

The case p = 1 corresponds to the single parameter case, for which there is
a well-established theory from where to derive optimal tests; see Gourieroux and
Monfort (1995, pp. 32–33), and, in particular, King and Hillier (1985), for a
discussion of optimal (in the sense of being locally best invariant) one-sided test for
parameters in the covariance matrix of the errors of linear regression models. The
well-known Rao score/Lagrange multiplier principle is based on the statistic

LM = s��0	
2/I��0	

has asymptotic central chi-squared distribution with one degree of freedom under
the null hypothesis. Alternatively, Rao and Poti (1946) proposed to use

RP = s��0	√
I��0	

which has asymptotic standard normal distribution under the null. It is interesting
to remark that this form of the test can be easily derived directly from the Neyman-
Pearson Lemma for local alternatives; see Gourieroux andMonfort (1995, pp. 32–33).

The generalization of the score test for p > 1, the multiparameter case, is
given by

LM = s��0	
′I��0	

−1s��0	

which under the null hypotheses has asymptotic chi-squared distribution with p
degrees of freedom under the null.

Unfortunately, the optimality properties of the single-parameter case do not
translate directly to the multiparameter case. The problem lies in that optimality
for the single parameter case follows from maximizing power in the only direction
available under the alternative hypothesis, that is, the direction given by � > �0.
In the multiparameter case there will be a power surface defined over the possible
values � can take, and even when one-sided alternatives are considered, there is no
obvious direction that should be used to maximize power. There have been many
attempts at defining an implementable principle that maximizes power over relevant
directions of this power surface. Sen Gupta and Vermeire (1986) and Rao and
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2606 Sosa-Escudero

Mukerjee (1994) are modern references of a literature that dates back to Neyman
and Pearson (1938) work on the issue.

More recently, King and Wu (1997) proposed a testing framework for one-sided
hypothesis in the multiparameter case. Let i be a p-vector of ones. For the case
when �0 = 0, so HA � � > 0, they proposed the following test statistic

KW = i′s��0	√
i′I��0	i

�

which has an asymptotic standard normal distribution under the null. Tests based
on this statistic are shown to be locally mean most powerful against HA � � > 0.

The King-Wu test is based on a simple unweighted linear combination of the
components of the score vector. Bera and Bilias (2001) suggested weighing the
individual scores by their respective precision measures. Denote with

√
I��0	

−1 the
square root matrix of I��0	

−1, that is,
√
I��0	

−1 is such that
√
I��0	

−1
′√

I��0	
−1 =

I��0	
−1. The proposed sum of normalized scores (SNS) test statistic is

SNS = i′
√
I��0	

−1s��0	√
p

�

which also has asymptotic standard normal distribution under the null.
In practice, as in our case, there will be nuisance parameters that have to

be estimated. In such a case, � is expressed as � = ��′1� �
′
2	

′ where �1 and �2 are,
respectively, p1 > 1 and p2 > 0 vectors of parameters with p1 + p2 = p, and we will
be interested in testing H0 � �1 = 0 against HA � �1 > 0, so �2 are nuisance parameters
for the testing problem. Let �̃ be the maximum likelihood estimator of � under the
restriction imposed by the null hypothesis, that is, for our case, a p vector with its
first p1 components set at 0 and the remaining p2 components set at the maximum
likelihood estimates under the null hypothesis. Let s1��	 be the first p1 coordinates of
the score vector and G1��	 the upper p1 × p1 block of the inverse of the information
matrix.

The King-Wu and SNS test statistics for this case will be

KW = i′s1��̃	√
i′G1��̃	

−1i

(1)

and

SNS = i′
√
G1��̃	s1��̃	√

p
(2)

For the two-sided alternative hypothesis H1 � �1 �= 0 the LM test is

LM = s1��̃	
′G1��̃	s1��̃	

which under the null has an asymptotic chi-squared distribution with p1 degrees of
freedom.

In order to derive test statistics for the error component model, analytic
expressions for the score and the information matrix of this model are given
in Baltagi and Li (1991). The information matrix is block diagonal between �
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Testing Persistence in the Error Component Model 2607

and �
2
�� �� 


2
�	, so we will concentrate the analysis on the latter. In terms of

the notation of the previous section, �1 = �
2
�� �	

′, �2 = 
2
� , p1 = 2, p2 = 1, and

p= 3. The score vector for these parameters, evaluated at the restricted maximum
likelihood estimates is given by

s��̃	 =



−NT

2
̂2
�

A

NTB
0




where

A = 1− ũ′�IN ⊗ eTe
′
T 	ũ

ũ′ũ

and

B = ũ′ũ−1

ũ′ũ
�

IN is the identity matrix with dimension N , eT is a T -vector of ones, ũ is an NT -
vector of OLS residuals from the standard linear model yit = x′it� + uit, ũ−1 is an
NT -vector with typical element ũi�t−1, and “⊗” denotes the Kronecker product. 
̂2

� =
ũ′ũ/NT is the maximum likelihood estimator of 
2

� .
The information matrix I��	 evaluated at �̃ is:

I��̃	 = NT

2
̂4
�


 T

2�T−1	
̂2�
T

1
2�T−1	
̂2�

T

(
T−1
T

)
2
̂4

� 0
1 0 1


 �

Analytic expressions for the inverse of I��̃	, its upper 2× 2 block G1��̃	, its inverse

G1��̃	
−1, and

√
G1��̃	 are given in the Appendix.

Replacing these magnitudes in (1) and (2) we obtain the following expression
for the test statistics:

KW = NT
[
2B
̂2 − A

]
√
2N�T − 1	�T + 4
̂2

� + 2
̂4
�	

and

SNS =
NT

[
B
(√

2�T − 2	− 2
)
− A

]
√
4N�T − 1	�T − 2	

�

As mentioned before, both statistics have asymptotic standard normal distribution
under the joint null. The expression for the joint Baltagi and Li (1991) LM test
(labeled JBL) for the two-sided alternative is

JBL = NT 2

2�T − 1	�T − 2	

[
A2 + 4AB + 2TB2

]
�

which has asymptotic Chi-square distribution with two degrees of freedom under
the null.
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2608 Sosa-Escudero

4. Empirical Illustration

In order to illustrate the usefulness of the testing procedures discussed in this
article, we consider a simple example derived from the economic development
literature. Consider a simple linear model of the determinants of income inequality.
Empirical models of this sort are usually linked to the study of the so-called
Kuznets Hypothesis that predicts an inverted-U relationship between inequality and
development: countries start their development processes with low inequality and as
they develop, inequality increases up to a point after which it decreases. There is a
copious literature on the subject and a detailed analysis of it is beyond the goals of
this article. Barro (2001) or Gustafsson and Johansson (2001) are recent examples
of this literature.

We considered the case of 17 urban regions in Argentina over the period 1993–
1999. A more detailed analysis of this empirical model can be found in Gasparini
et al. (2001). As an explained variable we use the Gini index for each year and
region, and the vector of explanatory variables includes mean income and its
square, size of industrial sector and of public administration, degree of openness,
unemployment rate, population under 64 years old, percentage of population with
complete high school, and family size. Regional disparities in inequality are in
general persistent over time and a first goal of such a model is to explore whether
these persistences can be fully captured by observed factors. The testing procedure
is based on a ‘null’ model where there are no persistences in the unobservables. The
test statistics are aimed at learning whether persistance in inequality is still present
in its unobservable determinants, and if so, if they are due to region specific and
time invariant factors, or to the persistence of idiosyncratic shocks, or to both.

We estimated a simple linear error component model using pooled OLS and
implemented several testing procedures. The values of the test statistics and their
p-values under their corresponding nulls are shown in Table 1.

The first three statistics are the Bera et al. (2001) robust one-sided test for random
effects (MBP) and serial correlation (MSC), respectively, and the Baltagi-Li joint test
for the null of no persistence (JBL). Each of these tests are specifically designed to
detect departures away from their nulls and hence are expected to be informative about
the presence of persistent effects and its source (random effects, serial correlation
of both). The results do not offer conclusive evidence about the falseness of the
joint null, in particular, the joint test does not reject the null at a conservative
10% of significance. Next we present results for the KW and SNS one-sided statistics

Table 1
Empirical example

Statistic P-value

Random Effect One-Sided Robust: MBP 1.492 0.067
Serial Correlation One-Sided Robust: MSC 0.433 0.332
Joint Two-Sided: JBL 4.350 0.113
Joint One-Sided: KW 2.040 0.020
Joint One-Sided: SNS 2.085 0.018
Random Effect One-Sided: BP 2.040 0.020
Serial Correlation One-Sided: SC 1.456 0.072
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Testing Persistence in the Error Component Model 2609

proposed in this article. Both tests reject the joint null, with much lower p-values.
Interestingly, the one-sided version of the standard Breusch-Pagan (BP) test rejects its
null, with a lower p-value than its robust counterpart, and slightly lower than the one-
sided SNS test. The one-sided version of the test for serial correlation (SC) rejects at
10% but not at 5%. According to the results of the previous section, this may be due
to the presence of random effects more than serial correlation.

The relevant point of this example is the fact that the joint test suggests
accepting the null of no persistence, not because of its veracity but very likely
because of its inability to detect its falseness. By focusing on the one-sided
alternative, the more powerful one-sided test strongly suggest rejecting the null. The
example also highlights the fact that ‘contaminated’ test may appropriately serve
the purpose of being informative about departures of the joint null in spite of not
being necessarily informative about the direction of the misspecification.

5. Monte Carlo Results

We performed a Monte Carlo study to explore the small sample behavior of the
proposed test statistics. To facilitate comparisson, the adopted experimental design
is the same as in previous work on the subject, in particular Bera et al. (2001) and
Baltagi et al. (1992) where a more detailed description can be found.

We use a special case of the error component model:

yit = �+ �xit + uit� i = 1� 2� � � � � N� t = 1� 2� � � � � T�

uit = �i + �it�

�it = ��i�t−1 + �it� 0 ≤ � < 1�

We set � = 5 and � = 0�5, and xit was generated as a trended autorregresive process
as in previously quoted work. The strength of the serial correlation effect is controled
by the parameter � whereas that of the random individual effect is controlled by
the variance of the random effect as a proportion of the total variance, that is,
by � = 
2

�/

2 with 
2 = 
2

� + 
2
� . We set 
2 = 20. Replications of the model were

generated for � and � varying over (0,0.4) with increments of 0.05. Sample sizes �N� T	
considered are (25,10), (25,20), (50,10), and (50,20), which are similar to those found
in empirical applications. The test statistics considered are: the King-Wu (KW) and
the sum of normalized scores (SNS) one sided joint tests, the Baltagi-Li two sided joint
test (JBL), the one-sided version of the Baltagi-Li test for serial correlation (SC) and
the corresponding modified version by Bera et al. (2001) (MSC), the Honda one-sided
test for random effects (BP) and its robustified version by Bera et al. (2001) (MBP),
the two-sided serial correlation test of Baltagi and Li (SC2) and its Bera et al. (2001)
robustified version (MSC2), and finally the Breusch/Pagan two sided test for random
effects (BP2) and the Bera et al. (2001) robustied version (MBP2).

For each sample size and each parameter setting we generated 1,000 replications
of the model, computed all the test statistics, and counted the proportions of
rejections using a nominal size of 0.05 for the corresponding quantiles of the
asymptotic distributions of each test statistic under the null.

Under the null hypothesis H0 � 

2
� = � = 0, the proposed one-sided statistics

have asymptotic standard normal distribution. The statistics generated for these
values of the parameters were used to evaluate the accuracy of the normal
approximation for the samples sizes considered in the experiment. Table 2 presents
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2610 Sosa-Escudero

Table 2
Empirical sizes �nominal size = 0�05	

Tests

(N,T) KW SNS

(25,10) 0.053 0.054
(25,20) 0.051 0.045
(50,10) 0.059 0.057
(50,20) 0.049 0.047

the estimated empirical sizes of the tests, using a nominal size of 0.05, that is, we
used the 0.95 quantile of the standard normal distribution as the lower limit of the
critical region and counted the proportion of rejections. All estimated values are
close to the nominal. Since we used 1,000 replications, the maximum standard errors
for the estimates are

√
0�5�1− 0�5	/1000 	 0�015 so for all cases, a 90% confidence

interval includes the nominal value. We also computed Kolmogorov-Smirnov tests
(not shown) to explore the null of no differences between the empirical distribution
and the standard normal for both tests, and in all cases we do not find significative
differences, so the normal approximation seems to be accurate even for very small
samples like those considered in the experiment.

Regarding power, Table 3 presents results for a sample size of N = 25� T = 10,
for selected values of the parameters. Estimated rejection probabilities for higher
values of � and � are all very close to one, so they are not reported. Besides, as
clarified later, the optimality properties of the tests are expected to hold in a small
neighborhood of the null hypothesis, so we concentrate the analysis on small values
of the alternative. Also, results for sample sizes (25,20), (50,10), and (50,20) only
reinforce the conclusions of the (25,10) case, so they are not shown in order to save
space, and can be obtained from the author.

Table 3 shows the estimated rejection frequencies for different tests. First, we
compare the power performance of the proposed one-sided statistics (KW and SNS)
with that of the two-sided LM test of Baltagi and Li (JBL). Results are shown
graphically in Fig. 1. Each plot presents differences in power for selected tests, for
several relevant values of the alternative hypothesis. Regarding the comparisson
between the KW and the JBL tests, overall the difference in power is positive,
suggesting a power gain by focusing on the one sided alternative, except along the
� > 0� � = 0 axis (random effects but no serial correlation), where the JBL procedure
dominates. Similarly, the SNS test induces, overall, positive power differences when
compared to the JBL test, except along the positive serial correlation but no random
effects axis. It is important to remark that along each axis of the alternative
hypothesis, all the joint tests are, obviously, dominated by the single parameter
procedures designed specifically for that purpose. When both serial correlation
and random effects are present, the one-sided joint tests unambiguously dominate
the two-sided joint version, with the SNS test inducing larger power gains in the
direction of random effects and the KW in the direction of serial correlation.

As stressed in Sec. 2, single parameter tests have power against random effects
and serial correlation and hence may compete against the joint tests. We concentrate
the analysis on the Honda one-sided test for random effects (BP), and the one-
sided version of the Baltagi-Li test for serial correlation (SC). Since these tests are
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Testing Persistence in the Error Component Model 2611

Table 3
Estimated rejection probabilities of different tests; Sample size: N=25; T=10

� � KW SNS JBL SC MSC BP MBP SC2 MSC2 BP2 MBP2

0.00 0.00 0.052 0.036 0.074 0.056 0.078 0.042 0.038 0.098 0.086 0.032 0.042
0.05 0.00 0.200 0.124 0.134 0.216 0.216 0.096 0.060 0.142 0.152 0.074 0.064
0.10 0.00 0.438 0.298 0.326 0.456 0.438 0.194 0.074 0.346 0.320 0.136 0.092
0.15 0.00 0.706 0.466 0.566 0.708 0.666 0.300 0.094 0.612 0.550 0.218 0.106
0.20 0.00 0.882 0.624 0.778 0.892 0.824 0.390 0.084 0.838 0.762 0.298 0.116
0.25 0.00 0.988 0.834 0.946 0.988 0.978 0.558 0.166 0.982 0.958 0.484 0.170
0.00 0.05 0.200 0.364 0.268 0.184 0.074 0.388 0.354 0.128 0.076 0.294 0.250
0.05 0.05 0.520 0.590 0.444 0.484 0.208 0.528 0.372 0.370 0.152 0.426 0.290
0.10 0.05 0.708 0.682 0.578 0.688 0.398 0.578 0.338 0.572 0.288 0.490 0.298
0.15 0.05 0.882 0.806 0.780 0.870 0.682 0.682 0.372 0.820 0.534 0.610 0.334
0.20 0.05 0.966 0.898 0.914 0.962 0.870 0.766 0.400 0.936 0.796 0.690 0.326
0.25 0.05 0.996 0.962 0.986 0.996 0.962 0.854 0.440 0.994 0.932 0.806 0.374
0.00 0.10 0.574 0.810 0.704 0.496 0.070 0.814 0.768 0.380 0.052 0.752 0.672
0.05 0.10 0.728 0.864 0.778 0.696 0.210 0.854 0.716 0.592 0.150 0.790 0.624
0.10 0.10 0.892 0.916 0.844 0.864 0.416 0.876 0.728 0.786 0.290 0.818 0.648
0.15 0.10 0.968 0.964 0.948 0.962 0.696 0.922 0.714 0.934 0.568 0.878 0.646
0.20 0.10 0.988 0.978 0.972 0.986 0.868 0.932 0.732 0.980 0.786 0.910 0.668
0.25 0.10 0.998 0.988 0.996 0.998 0.958 0.956 0.756 0.996 0.932 0.932 0.688
0.00 0.15 0.770 0.926 0.884 0.676 0.070 0.934 0.900 0.580 0.044 0.906 0.876
0.05 0.15 0.888 0.960 0.916 0.834 0.236 0.952 0.906 0.754 0.136 0.934 0.866
0.10 0.15 0.968 0.984 0.960 0.948 0.462 0.976 0.890 0.918 0.340 0.960 0.856
0.15 0.15 0.992 0.994 0.984 0.988 0.680 0.978 0.874 0.976 0.560 0.960 0.844
0.20 0.15 0.996 0.988 0.994 0.994 0.856 0.980 0.878 0.992 0.772 0.974 0.844
0.25 0.15 1.000 1.000 1.000 1.000 0.962 0.994 0.884 1.000 0.910 0.986 0.862
0.00 0.20 0.918 0.992 0.980 0.850 0.094 0.992 0.986 0.784 0.060 0.984 0.974
0.05 0.20 0.954 0.988 0.980 0.940 0.216 0.986 0.980 0.906 0.108 0.986 0.966
0.10 0.20 0.988 0.994 0.980 0.982 0.460 0.994 0.968 0.966 0.324 0.984 0.944
0.15 0.20 1.000 1.000 0.994 1.000 0.696 0.994 0.964 0.994 0.572 0.992 0.948
0.20 0.20 1.000 0.998 0.998 1.000 0.868 0.992 0.954 1.000 0.784 0.990 0.946
0.25 0.20 1.000 1.000 1.000 1.000 0.958 0.994 0.966 1.000 0.908 0.994 0.956
0.00 0.25 0.966 0.996 0.998 0.934 0.080 0.998 1.000 0.894 0.038 0.998 0.998
0.05 0.25 0.988 0.996 0.992 0.986 0.252 0.998 0.990 0.970 0.148 0.992 0.982
0.10 0.25 0.996 0.998 0.996 0.994 0.486 0.998 0.988 0.994 0.336 0.998 0.984
0.15 0.25 1.000 1.000 0.998 1.000 0.680 0.998 0.982 1.000 0.526 0.996 0.978
0.20 0.25 0.998 0.998 0.998 0.998 0.872 0.996 0.984 0.998 0.786 0.994 0.976
0.25 0.25 1.000 1.000 1.000 1.000 0.942 1.000 0.992 1.000 0.898 1.000 0.986

by construction optimal in the presence of the misspecification they were designed
to test for (solely random effects in the Honda test and serial correlation for the
Baltagi/Li test), the relevant comparisson with the joint test is when both sources of
misspecification are present. Figure 2 presents these comparissons graphically. The
KW and SNS tests have larger power than both the SC and the BP tests when both
misspecifications are present. It is interesting to see that the KW overall dominates

D
ow

nl
oa

de
d 

by
 [

W
al

te
r 

So
sa

 E
sc

ud
er

o]
 a

t 1
0:

57
 0

3 
Ju

ne
 2

01
3 



2612 Sosa-Escudero

Figure 1. Power comparisson with joint two-sided test. (color figure available online.)

the SC test in most directions away from the null, and that the SNS does similarly
with the BP test.

To summarize, the Monte Carlo experiment suggests that the KW test favors the
presence of serial correlation, with almost no power costs compared to the SC test,
specifically designed to detect this type of misspecification. The SNS favors random
effects, and performs no worse than the Honda test, the one with highest power
along this direction. When both sources of persistance are active, the proposed one-
sided tests have the highest power.

Figure 2. Power comparisson with single parameter one-sided tests. (color figure available
online.)
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Testing Persistence in the Error Component Model 2613

6. Concluding Remarks

This article proposes simple tests for the null of no serial correlation and random
effects in the error component model. Since the presence of random effects is
essentially a one-sided matter, and given that in the context of persistence models
researchers are usually worried about positive serial correlation, the proposed
statistics exploit this one-sided character of the alternative hypothesis, in contrast to
existing procedures that take the alternative as two-sided. Given the multiparameter
nature of our problem, there is no obvious optimality principle from which to derive
tests, so we implemented recent proposals that maximize power in different local
departures away from the null hypothesis.

As stressed in Davidson and MacKinnon (1993, p. 428), tests that do not
reject the null are more reliable if they are known to have high power against
relevant alternatives. Since in the multiparameter case directions of the alternative
hypotheses are not obviously predefined, it is interesting to explore several directions
away from the joint null. As expected, when one-directional alternatives are
considered—only serial correlation or random effect—one-sided LM tests designed
for that purpose have the largest power. But when the alternative hypotheses moves
in the direction of both serial correlation and random effects, tests for the joint
null hypothesis have larger power than single directional tests, say, when � and �
are both small and different from zero, the one-sided joint tests have larger power
than the single directional tests, in the sense that they detect that both parameters
are different from zero and, consequently, reject strongly, while each of the single
direction rejects slightly. This increase in power is what makes joint tests attractive,
specially when in applied work they do not reject the joint null, providing stronger
support in favor of the joint null hypothesis. We recommend that researchers
compute all statistics, which can be easily performed in practice since the proposed
test statistics are based solely on simple least squares residuals.

Monte Carlo results show that, as expected, the use of one-sided tests imply
a power gain with respect to the two-sided Baltagi and Li (1991) test, especially
when the alternative moves locally in the direction of both serial correlation and
random effects, though this power gain is not uniform. In all cases the two-sided
test is dominated in power by at least one of the one-sided alternative procedures.

We share with some recent literature, in particular Inoue and Solon (2006), the
concern that checks for serial correlation in panel data are not as popular as their
time series regression counterparts, where such tests are part of the toolkit that
accompanies standard regression output. As dramatically highlighted by Bertrand
et al. (2004), neglected correlations in the error term may affect statistical inference
severely, for which we believe it is relevant to check the validity of standard methods
using powerful tests.

Appendix: Algebraic Details and Test Statistics

This appendix gives the analytic expressions used to derive the new test statistics in
this article.

I��̃	−1 = 2
̂4
�

N�T − 1	�T − 2	




1 −1/
2
� −1

−1/
2
� T/2
4

� −1/
2
�

−1 −1/
2
�

T 2−2T+2
T



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G1��̃	 =
2
̂4

�

N�T − 1	�T − 2	

[
1 −1/
2

�

−1/
2
� T

]

G1��̃	
−1 = N�T − 1	�T − 2	

2
̂4
�

[
T 2
2

�


2
� 
4

�

]

For the square root matrix we used the Cholesky factor P of G1��̃	:

P =
√
2
̂2

�√
N�T − 1	�T − 2	

[
1 1/
2

�

0
√
T − 2/

(√
2
2

�

)]

Regarding analytic expressions for the test statistics used in this article, besided
the ones decribed in Sec. 3, we used the following. The two-sided LM statistic test
for random effects of Breusch and Pagan (1980) is

BP2 = NTA2

2�T − 1	
�

and its adjusted version in Bera et al. (2001) is

MBP2 = NT�A+ 2B	2

2�T − 1	
(
1− 2

T

) �

where A and B are defined as in Sec. 3. The one-sided version of the Breusch-Pagan
statistic was derived by Honda (1985) and is given by:

BP = −
√

NT

2�T − 1	
A

and the corresponding one-sided version is derived by Bera et al. (2001):

MBP = −
√√√√√ NT

2�T − 1	
(
1− 2

T

) �A− 2B	�

The two-sided LM statistic to test the null of no serial correlation assuming no
random effects is given in Baltagi and Li (1991):

SC2 = NT 2B2

T − 1
�

and its adjusted version by Bera et al. (2001), valid under random effects, is

MSC2 =
NT 2

(
B + A

T

)2

�T − 1	
(
1− 2

T

) �
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Testing Persistence in the Error Component Model 2615

The one-sided versions are derived following Bera et al. (2001), by taking the signed
squared roots of the two-sided statistics, and are given by

SC =
√
NTB√
T − 1

�

and

MSC =
√

NT 2

�T − 1	�1− 2/T	

(
B + A

T

)
�
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