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Abstract 

Patient-derived xenograft (PDX) and CTC-derived explant (CDX) models are 

powerful methods for the study of human disease. In cancer research, these 

methods have been applied to multiple questions including the study of metastatic 

progression, genetic evolution and therapeutic drug responses. Since PDX and CDX 

models can recapitulate the highly heterogeneous characteristics of a patient tumor, 

as well as their response to chemotherapy, there is considerable interest in 

combining them with next-generation sequencing (NGS) in order to monitor the 

genomic, transcriptional, and epigenetic changes that accompany oncogenesis. 

When used for this purpose, their reliability is highly dependent on being able to 

accurately distinguish between sequencing reads that originate from the host, and 

those that arise from the xenograft itself. Here we demonstrate that failure to 

correctly identify contaminating host reads, when analyzing DNA- and RNA-

sequencing (DNA-Seq and RNA-Seq) data from PDX and CDX models is a major 

confounding factor that can lead to incorrect mutation calls and a failure to identify 

canonical mutation signatures associated with tumorigenicity. In addition, a highly 

sensitive algorithm and open source software tool for identifying and removing 

contaminating host sequences is described. Importantly, when applied to PDX and 

CDX models of melanoma, these data demonstrate its utility as a sensitive and 

selective tool for the correction of PDX- and CDX-derived whole exome and RNA-

Seq data. 

 

Implications: This study describes a sensitive method to identify contaminating host 

reads in xenograft and explant DNA and RNA sequencing data, and is applicable to 

other forms of deep sequencing. 

 

Introduction 
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Human xenograft models have been widely used to study cancer. They provide an 

excellent tool with which to investigate the dynamics of oncogenesis, tumour 

heterogeneity, evolution and responses to therapy (1-8). This has led to considerable 

interest in combining them with NGS. This is challenging because downstream 

analyses are highly dependent on the quality and purity of the samples (9), leading to 

poor mutation calling accuracy and poor estimates of gene expression. While efforts 

can be made to mitigate these effects experimentally, high levels of infiltrating 

stromal cells often render this impractical. Consequently, levels of contamination as 

high as 73% have been observed in pancreatic cancer PDX models (10), and data 

are often variable (11). Instead, studies have typically addressed read-heterogeneity 

in silico (9,12). Although the precise filtering strategy differs between studies, these 

studies all compare reads to both the mouse and human genomes and then 

eliminate those that match strongly to the mouse genome.   

 

Despite the importance of reliable read filtering, only one method, Xenome, is 

implemented and readily available as a software tool (13). It is a computationally 

efficient approach that works by identifying 25-mer matches between the 

experimental data and the two candidate genomes, and using these to partition the 

data into host, graft, and ambiguous sets.  

 

Here we describe a new algorithm for de-convolving host and graft reads. Unlike 

Xenome our algorithm makes use of full-length alignments and their scores, and can 

use values extracted from the CIGAR string or mapping quality scores when 

alignment scores are unavailable. With paired end data, in which two reads are 

generated for each DNA or RNA fragment, corresponding to its 5' and 3' ends, the 

algorithm resolves conflicts at the individual read level, not the fragment level, 

allowing more data to be retained. These approaches allow a weak but significant 

match to one organism to be ignored in favour of a stronger match to the other. 
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Together these enhance its discriminatory power. We demonstrate its utility for the 

analysis of human melanoma CDX models. The algorithm is freely available and 

released as an open source tool at https://github.com/CRUKMI-

ComputationalBiology/bamcmp.git. 

 

Materials & Methods 

DNA/RNA from xenografts is always contaminated, and while an assay has been 

published (10) to quantify the proportion of human/mouse DNA in the samples from 

pancreatic cancer, a generalised method is still lacking. Various studies have 

reported the need to pre-process xenograft data before performing downstream 

analysis (9,13).  

 

This method was developed to address the issues involving the analysis of both 

DNA/RNA xenograft data with a high accuracy. The model was designed so as to be 

generally applicable to any type of genomic data and also to a subset of common 

aligners. The method is based on filtering the host reads from the graft reads after 

aligning the reads to both host and graft genome using pre-existing alignment 

methods such as Burrows Wheel Aligner (BWA) (14), Bowtie2 (15) for DNA-Seq or 

Mapsplice2.0 (16), Tophat2 (17), STAR (18), and others, for RNA-Seq data.  

 

Full experimental details for the BRAFV600E mutated cutaneous melanoma sample, 

patient information, ethics approval, and animal procedures, are available in 

reference (3). 

 

 

As the alignment to both the host and graft is performed using the same aligner, the 

alignment scores from the aligner can be easily utilized to differentiate the origin of 

the reads. The reads are filtered on the basis of any of the four different parameters 
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described below, ordered on the basis of stringency (parameter names are in 

parentheses). In each case reads are assigned to the genome with the highest 

score. Consequently, no explicit thresholds are required:  

 

1. Alignment scores (AS) if generated by the software (as). 

2. CIGAR string values along with NM and MD tags discerned by the aligner 

(match).  

3. Mapping Quality (MAPQ) scores of the alignments (mapq). 

4. Remove everything that matches the host genome (balwayswins). 

 

The reads are categorised into human only, mouse only and both. The latter 

category is further categorised into align better to human or align better to mouse 

after filtering. The reads that align only to human as well as those that align better to 

human (from the both category) are merged and returned as human reads; those 

that remain are assigned to mouse. The method can be used as a standalone 

application for filtering the contaminated reads or incorporated in the pipelines of 

routine NGS analysis. It has been implemented in C++ utilizing the htslib library from 

SAMtools (19). 

 

Filtering process: 

1. Align the fastq files to both human and mouse genomes. 

2. Filter the mouse reads on any of the four filtering parameters. 

3. Downstream processing as applicable (Mutation calling/read count 

generation/peak calling). 

 

Usage: 
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bamcmp -n -1 ABC_human.bam -2 ABC_mouse.bam -a ABC_humanOnly.bam -A 

ABC_humanBetter.bam -b ABC_mouseOnly.bam -B ABC_mouseBetter.bam –C 

ABC_humanLoss.bam -D ABC_mouseLoss.bam -s [as/match/mapq/balwayswins] 

 

All analyses for this study were performed with default parameters for Mapsplice2 

(version 2.1.6), BWA-mem (version 0.7.11), Picard (version 1.96), GATK (version 

3.3), Samtools (version1.3.1) and Mutect (version 1.1.7). Output files from Xenome 

required minor additional processing in order to format them correctly for subsequent 

use by BWA and Mapsplice; results from Xenome were calculated from the graft 

reads only. 

 

Results & Discussion 

The data utilized in this study were derived from a cutaneous melanoma (20) patient 

(Patient 10) with a BRAFV600E mutation (3). The patient presented with primary 

melanoma on the back and bilateral axillary nodal metastasis. A PDX was derived 

from the bilateral axillary nodal metastasis. The patient relapsed after 3 months with 

liver, spleen and lymph node metastases. A CDX (CDXF1) was established from the 

patient’s CTCs taken at the time of relapse and grown in subsequent passage 

(CDXF2) that developed macro-metastases in liver, lymph nodes, kidneys, lungs, 

brain and distant subcutaneous tissue (3). Whole exome sequencing (WES) and 

RNA-Sequencing (RNA-Seq) were used to profile the lymph node tumour 

(Tumour/Primary Tumour), PDX, CDXF1, CDXF2, CDXF2 Liver metastasis (Liver 

Met) and CDXF2 Lymph Node metastasis (LN Met). WES was also performed for 

patient whole blood (Germline) and Mouse kidney. 

  

Here and throughout, all data were processed through the same pipeline 

(Supplementary Figure 1), with summary statistics computed in R (21) and 

Bioconductor (22). WES data were first aligned to human (hg19) and mouse (mm10) 
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genomes separately using BWA (14) with default parameters. While 99.81% human 

germline (i.e. never in mouse) reads aligned to the human genome, 42.68% of these 

mapped also to mouse; similar patterns were also observed for the mouse germline 

data (99.66%; 40.08%). Similar proportions of cross-species matches were also 

observed for the mouse xenograft material (Figure 1A). Together these data illustrate 

how a naïve filtering strategy that simply discards reads that map significantly to the 

mouse genome will be driven largely by orthology between human and mouse, and 

will thus discard substantial proportions of the data. We therefore sought to develop 

a filtering strategy better able to distinguish between host and graft reads.   

 

WES data were processed using the default GATK framework (23) with mutations 

called using Mutect (24). Following filtering, using our new algorithm a minimum of 

99.5% of human and mouse germline reads were correctly assigned to the right 

organism, while at most 0.20% reads could not be reliably mapped to either genome 

(Figure 1A). Similar improvements were observed for the xenograft material. 

 

We next asked what effect the software had on mutation calling. Somatic mutations 

were called relative to the human germline control using Mutect. Without filtering, 

data were highly variable  (631 to 8465 SNVs/sample), and concordance poor, 

despite the fact that all samples were derived from the same patient (Figure 1B). The 

number of Single Nucleotide Variants (SNV) predicted for each sample was also 

correlated with the level of host read contamination  (r = 0.98) in the xenograft 

samples (Figure 1C). Consistency increased dramatically after filtering (Figure 1A, B, 

D, E). Importantly, this was achieved with minimal effect on sensitivity: only one SNV 

called in the human primary tumour was lost and no false positives were obtained 

when the data was passed through the filtering pipeline (Figure 1F). On performing 

the same analysis using Xenome, fewer SNVs were detected; 4 SNVs were lost after 

filtering and an additional 6 false positives were obtained in the primary tumour 
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(Figure 1G). We also calculated the variant allele frequency (VAF) using primary 

tumour before and after filtering. Since in the primary tumour data, no reads should 

be removed, optimal performance would result in no changes to the VAF. This 

analysis revealed higher agreement before and after filtering using our algorithm 

(Figure 1H), than with Xenome (Figure 1I). Similar analysis of CDX data reveals a 

similar trend, as expected (Supplementary Figure 2). 

 

UV-related melanoma is strongly associated with a UV mutation signature 

comprising a disproportionate number of G>A/C>T transitions (25). Although 

detected in the primary tumour, this signature was not evident in the xenograft 

samples prior to filtering. After filtering it emerged strongly (Figure 1J).  

 

RNA-Seq data from the same study were then aligned using MapSplice2.0 (16), and 

filtered using values extracted from the CIGAR string to provide mapping scores. As 

with the WES data, cross-species mappings were substantially reduced following 

filtering (Figure 2A), with levels of mouse contamination concordant to those of the 

WES data, but at an overall higher level (~15%). In order to investigate the effect of 

filtering on expression changes, we calculated fold-changes between the human 

primary and the mouse CDX model CDXF1, and compared those to the fold changes 

calculated after filtering. Fold changes for majority of the loci remained consistent, 

with 17 protein coding genes differing more than 2-fold between filtered and 

unfiltered sets (Figure 2B). When mouse filtering was applied to the human tumour 

data 202 protein coding genes were removed due to sequence homology. 1394 

protein-coding genes exhibited greater than 4-fold difference between the unfiltered 

CDX and the filtered CDX data (values were computed for the mean of CDXF1 and 

CDXF2). Over-enrichment analysis of this set using gProfiler (26) found significant 

enrichment for genes associated with the extra cellular matrix (Figure 2C), indicating 

that the reads filtered from the data set are of mouse stromal cell origin. Broadly, 
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similar results were obtained with Xenome (Supplementary Table 1), although a 

small portion of reads that mapped better to the mouse genome remained, even after 

filtering. 20 protein coding genes exhibited more than 2-fold change between filtered 

and unfiltered sets (Supplementary Figure 3), and a similar number of protein-coding 

genes (1405) displayed greater than 4-fold difference between the unfiltered CDX 

and the filtered CDX data. However, 988 protein-coding genes were absent from the 

filtered tumour dataset, vs. 202 with our algorithm, again confirming the improved 

selectivity of the bamcmp-based pipeline. 

 

Conclusion 

In conclusion, we present a sensitive and selective tool for identifying contaminating 

host reads in deep sequencing data from xenograft and explant models. While the 

results we present here focus on WES and RNA-seq data, the approach is equally 

applicable to other deep sequencing analyses including ChIP-seq and WGS. 
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Figure Legends 

 

Figure 1. Filtering reads of mouse origin improves sensitivity and selectivity of 

mutation calling from CDX models 

A. Proportion of reads mapping to human and mouse genomes before and after 

filtering. Mouse: mouse germline sequenced from kidney; LN Met: lymph node 

metastasis; Liver Met: liver metastasis; CDXF1, CDXF2: CTC derived xenografts; 
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PDX: patient derived xenograft; Tumour:  Patient primary tumour; Germline: patient 

whole blood.  

B. Number of Single Nucleotide Variants (SNVs) called relative to human germline 

sequence, before and after filtering. 

C. Number of SNVs called increases linearly with the number of mouse reads 

detected. 

D. Correspondence in SNVs before filtering. 

E. Correspondence in SNVs after filtering. 

F. Filtering patient primary tumour against mouse removes only one SNV 

erroneously, and does not lead to others being detected.  

G. As F, but filtering using Xenome. 

H. Comparison of Variant Allele Frequency (VAF) before and after filtering for the 

primary tumour data.  

I. As H, but filtering using Xenome. 

J. The canonical C>T transition signature of UV damage is only detectable with 

correct read processing. 

 

Figure 2. Filtering removes mouse reads from RNA-sequencing data without 

systematically disrupting expression levels. 

A. Substantial reduction in cross-species mappings following filtering of RNA-

sequencing data. 

B. High correspondence in fold changes between human primary and CDX model 

before and after filtering. Loci no longer detected following filtering have been 

removed from the figure. 

C. Over-representation analysis of loci no longer detected in xenograft data following 

filtering (BP: Biological Process; CC: Cellular Component; MF: Molecular Function).  
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