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Abstract

Background and Objective: The accurate diagnosis of schizophrenia spectrum disorder plays an im-
portant role in improving patient outcomes, enabling timely interventions, and optimizing treatment plans.
Functional connectivity analysis, utilizing functional magnetic resonance imaging data, has been demon-
strated to offer invaluable biomarkers conducive to clinical diagnosis. However, previous studies mainly
focus on traditional machine learning methods or hand-crafted neural networks, which may not fully cap-
ture the spatial topological relationship between brain regions.

Methods: This paper propose an evolutionary algorithm (EA) based graph neural architecture search
(GNAS) method. EA-GNAS has the ability to search for high-performance graph neural networks for
schizophrenia spectrum disorder prediction. Moreover, we adopt GNNExplainer to investigate the explain-
ability of the acquired architectures, ensuring that the model’s predictions are both accurate and compre-
hensible.

Results: The results suggest that the graph neural network model, derived using genetic algorithm
search, outperforms under five-fold cross-validation, achieving a fitness of 0.1850. Relative to conventional
machine learning and other deep learning approaches, the proposed method yields superior accuracy, F1
score, and AUC values of 0.8246, 0.8438, and 0.8258, respectively.

Conclusion: Based on a multi-site dataset from schizophrenia spectrum disorder patients, the findings
reveal an enhancement over prior methods, advancing our comprehension of brain function and potentially
offering a biomarker for diagnosing schizophrenia spectrum disorder.

Keywords: Graph neural network, graph neural architecture search, evolutionary algorithm, schizophrenia

spectrum disorder, brain functional connectivity.
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1. Introduction

Schizophrenia spectrum disorder (SSD) is a serious mental illness that ranks among the leading causes
of disability and affects more than twenty million individuals globally [1]. Individuals diagnosed with SSD
often face challenges in integrating with their communities. They have a low quality of life due to the severe
impairment in social and occupational functioning, often exacerbated by persistent delusions, hallucinations,
and cognitive deficits [2]. An accurate diagnosis of SSD allows patients to receive timely and appropriate
treatment and support, improving their quality of life, alleviating social functional barriers, and reducing the
psychological and economic burdens on families. Therefore, developing an accurate SSD diagnostic method
has significant clinical importance and also brings positive benefits to societal health and well-being.

In recent years, research on SSD has concentrated on understanding the underlying brain abnormalities
and mechanisms through morphological and neurobiological characteristics. Several prevalent neuroimag-
ing techniques, including functional magnetic resonance imaging (fMRI), magnetoencephalography (MEG),
positron emission tomography (PET), and magnetic resonance spectroscopy (MRS), are utilized for brain
structure and function analysis in individuals with SSD [3, 4, 5]. Among them, resting-state fMRI (rs-fMRI)
is primarily used to measure blood oxygen level-dependent signals in the brain at rest. This technique does
not require any specific task stimulation but records brain activity in its resting state. Researchers have
found that brain functional connectivity (FC) constructed using rs-fMRI can distinguish between the SSD
group and the healthy group [6, 7, 8]. Hence, how to design robust classification methods based on brain
FC is a topic of interest for many researchers currently.

For over a decade, traditional machine learning (ML) techniques have played a pivotal role in brain
network classification. The support vector machine (SVM), a supervised technique, is the most prevalently
used ML method in this field. Ma et al. employed SVM to classify 44 schizophrenia patients and 40 healthy
controls, achieving an accuracy of 0.8137 [6]. Ramkiran et al. employed the anticorrelation after mean of
Antilog (AMA) method to simplify the fully connected FC matrices. Subsequently, they utilized SVM for
classifying 112 subjects, achieving an average accuracy of 0.74 [9]. Gao et al. assessed the utility of the
amplitude of low-frequency fluctuation (ALFF) via SVM as a means of diagnosing SSD [10]. Besides SVM,
other ML methods, such as logistic regression (LR) and random forests (RF), are also mentioned in some
SSD prediction approaches. Srinivasagopalan et al. utilized independent component analysis for feature

selection and subsequently integrated it with the LR and RF techniques. In the classification of 75 controls
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and 69 patients, they achieved accuracies of 0.8277 and 0.8333, respectively [11]. In [12], features were
extracted from the gray matter volume (GMV) and ALFF. Then, the Xgboost classifier, combined with the
information fusion method, was employed to identify 38 healthy controls, 16 deficit schizophrenic patients,
and 31 non-deficit schizophrenic patients. These examples exhibit the practical applications of various ML
methods. However, the quality and relevance of feature selection profoundly impact the performance of ML,
and biased feature extraction can lead to imprecise class discrimination [13, 14].

Unlike traditional ML techniques, deep learning (DL) obviates the need for complex feature engineering
and strives to establish an end-to-end model for data processing and prediction. It has garnered increasing
popularity for diverse biomedical applications, including medical image analysis and disease prediction [15,
16]. The BrainNetCNN, proposed in [17], is a convolutional neural network (CNN) framework designed
for predicting clinical neurodevelopmental outcomes based on brain networks. This framework leverages
the topological locality inherent in structural brain networks and has demonstrated effectiveness in recent
biomedical engineering approaches [18, 19, 20]. Moreover, brain FC is essentially the graph-structured data,
where nodes signify brain regions and edges denote either the structural or functional link between these
regions. Therefore, several studies have employed the graph neural network (GNN), a powerful DL model
capable of generating embeddings for a node by aggregating features from its neighboring nodes, for tasks
such as node classification, graph classification, or link prediction. Chen et al. utilized a graph convolutional
network (GCN) to classify schizophrenia patients based on brain region and connectivity features extracted
from a combined functional MRI and connectomics analysis [21]. Yu et al. proposed an improved graph
attention network (GAT) with the bilinear convolution for diagnosis of schizophrenia [22]. GNN-based
methods are also been employed in the diagnosis of other diseases, including autism spectrum disorder
(ASD) and major depressive disorder (MDD) (23, 24]. Han et al. proposed the FCbasedGCN model for the
early prediction of dementia using fMRI data [25]. Zhang et al. proposed the LGGNN model to achieve the
precise classification of ASD [26]. Although researchers can optimize the network to enhance recognition
accuracy, it is necessary to test the effects of a large number of GNN components (such as convolutional
layers, aggregators, and activation functions). This requires researchers to have a deep understanding of
network architecture design and a substantial time investment. Thus, how to effectively determine the
proper GNN architecture from numerous design choices presents a significant challenge.

Neural architecture search (NAS) can automatically seek high-performance deep neural networks (DNN),
and it has achieved remarkable advancements in many fields such as computer vision [27] and natural

language processing [28] in recent years. Unlike NAS, GNAS is designed to generate the optimal GNN
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model for extracting features from graph-structured data. Through the establishment of a predefined search
space, GNAS enables the efficient exploration of possible architectures, the assessment of their performance,
and the systematic refinement of the search process grounded in acquired knowledge, ultimately yielding
the ideal model. To date, most of the GNAS methods are based on reinforcement learning (RL) and EA.
RL-based GNAS methods (e.g., GraphNAS [29], Auto-GNN [30]) generally require training a controller to
generate component strings describing the structure of GNN. However, training both the controller and
the GNN model simultaneously requires more computational time. Additionally, the controller typically
generates candidate GNN models in a sequential manner, making it difficult to scale to a large search space
and perform parallel model evaluations. EA-based GNAS methods employ an iterative process whereby
individuals (i.e., GNN models) are selected from an initialized population and evaluated according to a
fitness function. Subsequently, a new population is generated using the best-performing individual from
the preceding generation. Since all individual models in the population are independent, EA-based GNAS
methods can be easily scaled to a large search space and models can be evaluated simultaneously. AGNAS
[31] employs a genetic algorithm for the GNAS process and evaluates individuals in parallel, yet it does not
treat the optimizer as a hyper-parameter in the search space. Genetic-GNN [32] includes the optimizer in
the search space, but the GNN search process remains limited by the genetic algorithm framework. There
are certain obstacles when attempting to extend to other advanced evolutionary algorithms.

To address the aforementioned problems, this paper proposes a novel GNAS framework, named EA-
GNAS. It identifies the optimal model through a search within a vast GNN architecture space, and the model
is applied for SSD prediction. Different from the exiting GNAS methods that utilize the specific evolutionary
algorithm, EA-GNAS is designed to be generic and adaptable to various evolutionary algorithms, enabling a
more flexible and comprehensive exploration of the GNN architecture space. Unlike existing SSD prediction
methods, the SSD prediction model proposed in this paper is obtained through an automated search process,
rather than traditional manual design. The advanced GNAS technology allows for the automatic exploration
of the model structure most suitable for specific tasks, which not only reduces the professional knowledge and
time cost required to design effective models but also discovers innovative solutions that might be overlooked
by manual design methods in a broad architectural space. Moreover, although many studies use DL models
to predict SSD, they usually only report the performance of the model without detailing which features
within brain FC significantly influence the prediction outcomes. Therefore, to achieve more accurate SSD
predictions and a clearer understanding of the underlying factors, it is necessary to develop a robust GNN

model and undertake explainability analysis for the model. The principle contributions of this paper are
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listed as follows:

(1) We propose a novel generic evolutionary GNAS framework named EA-GNAS, designed to automati-
cally identify high-performance GNN architectures from a well-defined search space. Within this framework,
six popular evolutionary algorithms are compared to evaluate their search performance in the task of SSD
prediction.

(2) We utilize a GNN explainability analysis method, GNNExplainer, to conduct in-depth exploration
and explanation of the searched GNN model. Through this approach, the most critical brain region features
can be identified, allowing for a detailed understanding of the neural mechanisms that significantly contribute
to SSD prediction.

(3) In comparison with four ML-based and six DL-based methods tested on multi-site SSD datasets, our
proposed method demonstrates superior performance across several metrics. The source code is publicly

available on GitHub at https://github.com/Shurun-Wang/EA-GNAS.

2. Problem definition

The purpose of this paper is to propose a framework for searching graph neural network architectures
based on evolutionary algorithms, and to apply the discovered optimal network to predict SSD. Additionally,
we employ a graph-based explainability method to explain the prediction results. Therefore, the problem
definition can be categorized into three aspects: GNN-based disease prediction, GNAS, and graph explain-
ability.

Definition 1 (GNN-based disease prediction): The objective of GNN-based disease prediction is to
classify the specific property of interest for an entire graph G = (V, &), where V = {Ui}izl,z,...,v is a set

of V' unique nodes and £ = {e; ;} Vi is a set of edges. Specifically, edges can be represented by

i,j=1,2,..
a binary adjacency matrix of size V x V, where A; ; = 1 when e; ; € £, otherwise A; ; = 0. In addition,
F € RV*F is a feature matrix containing all V' nodes with their associate I features. In this work, the
brain function connectivity of each subject forms a graph, with each brain region represented as a node, the
connection between two brain regions represented as an edge, and the correlations between a brain region
and other brain regions serving as node features. Therefore, for M subjects, we obtain the input space of

graphs {Gm},,_1 o s and a set of class labels ) (i.e., disease types). The objective of the classification

task is to learn a mapping function p : {G,,} . — Y, and p is the GNN model derived by GNAS.

m=1,2,..

Definition 2 (GNAS): The graph set {G,,} . can be partitioned into training set Diyqin, vali-

m=1,2,..

dation set D41, and test set Diesr. Given a predefined collection containing all graph neural architectures
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P, GNAS aims to find an optimal neural architecture p* € P, so that the model can be trained on Diyqin
to achieve the best performance, thereby minimizing the fitness on D,,;. Formally, it can be represented as

a following bi-level optimization problem:

p* = argmin L1 (p(w*), Dyar)
peEP

(1)

s.t. : w* = argmin L3(p(w), Dirain)

w

Here, p denotes a graph architecture generated by a search method, w is the weights of the model p, £a(+)
is the training loss, and £4(+) (i.e., the fitness of the search method) measures the performance of p on Dyq;.
Finally, the generalization performance of the optimal model p* is evaluated on Dj;.

Definition 3 (Graph explainability): For a specific graph G = (V, ) and feature matrix F, the goal of
the graph explainability is to identify and score the parts of G and F that are most influential in the model’s
prediction for graph-level classification. In this study, the important brain regions and the connectivity

relationships are defined as G, and the crucially features are given as Fs.

3. Preliminaries

In this section, we separately introduce the preliminary knowledge about graph neural networks, evolu-

tionary algorithms, and the GNNExplainer method.

3.1. Graph neural networks

Hidden

//
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Figure 1: The illustration of the general GNN framework for graph classification.
GNN is a category of neural network models capable of directly integrating graph topology and node
attributes to facilitate efficient learning of graph representation. Fig. 1 illustrates a typical schematic of
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using GNN for graph-level binary classification on a graph, and the model contains the following three basic
GNN structure components:

a. Graph Convolution. Most popular graph convolution operations employ a neighbor aggregation (or
message-passing) mechanism, where the updating of node features initially involves aggregating messages
from neighboring nodes of the current node, followed by combining the aggregated messages with the node’s
own features. The updating process of the I-th graph convolution layer for each node v € V is formulated

as:

a{!) = AGGREGATE® ({ £ sue N (v)})
£ = COMBINE®) ( FO, ag)) ’ (2)

where N (v) represents the set of all neighboring nodes of node wv. a,(,l) and f,gl) are the message vector and

feature vector of node v at the I-th layer, respectively. Most graph convolutions such as GCN [33], Graph-
SAGE [34], GAT [35], and others can be implemented within this framework through various aggregation
and combination mechanisms.

b. Transformation Block. This block is comprised of normalization, activation function, and dropout,
designed in sequence to enhance the model’s performance. Normalization involves scaling node features,
which improves the training stability and convergence. Typical normalization methods include batch nor-
malization, layer normalization, among others. Activation functions like ReLLU and Sigmoid introduce
non-linearity into the model, aiding in capturing intricate patterns and relationships in graph-structured
data. Dropout is a regularization technique that, during network training, randomly sets a node’s hid-
den representation to zero with a probability p, aimed at preventing overfitting and improving the model’s
generalization capacity.

c. Readout Strategy. In graph-level tasks, after updating the node features f, within the graph, it is
typically necessary to employ a readout strategy to aggregate the information of the entire graph structure

into a single feature vector h. This process can be described as follows:
h = READOUT ({f,,v € V}). (3)

Commonly used readout strategies include mean, sum, max, and others [36]. Different readout strategies

have varying effects on the fusion of node features within the entire graph.
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3.2. Evolutionary algorithms

Initialization
" .--*Individuals-~,

Evaluation

~~---Fitness «--

Population

\
\
v

v
Valid?tion

i
,
/

Best individual

v Selection

Test result

Figure 2: The typical optimization cycle of evolutionary algorithm.

Evolutionary algorithms are a family of population-based meta-heuristic optimization method, which is
originally inspired by the process of evolution in nature. In general, most existing evolutionary algorithms
(e.g., genetic algorithms [37], particle swarm optimization [38], etc.) share a common framework, as illus-
trated in Fig. 2, primarily consisting of five components: initialization, evaluation, selection, update, and
testing. Specifically, the population represents a collection of candidate individuals, and the selection and
update operations continuously iterate the population, selecting the best individual based on evaluation
criteria for testing. In the context of evolutionary neural architecture search, each individual represents a
specific neural network model, typically measured by its accuracy on a validation dataset, referred to as the
fitness value. Throughout the evolution process, environmental selection incorporates evaluated individuals
into the population, while underperforming models are eliminated. Furthermore, updating the evaluated
individuals ensures the diversity of the population. Through the continuous iteration of the evolutionary
population, the model with the best performance in the final population will be used for practical testing

tasks.

3.3. GNNEzxplainer method

After training the model obtained through the GNAS process, it is insightful to identify the brain
regions that are critical for the final prediction. GNNExplainer, proposed by Ying et al. [39], is employed
to obtain the significant subgraph through graph masking. The main idea is to obtain the subgraph G, and
its associated features Fs by masking the relevant part of the input entire graph. The mask is determined

through an optimization algorithm that iteratively seeks to identify the subgraph that maximizes the mutual
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information objective:
HéaxMI(Y,(QS,fS)) =HY)-HY|G=6,F=F,), (4)

where Y represents the predicted label distribution. Random variables are represented by bold letters, while

their instantiations are indicated by non-bold letters.

4. The proposed method

This section presents EA-GNAS framework to evolve the GNN model. We first define the search space
for GNN, then outline the working principle of EA-GNAS. Subsequently, we provide a detailed description
of the implementation process, and finally introduce performance evaluation metrics and some comparison

methods.

4.1. Search space

In general, a complete GNN model is composed of multiple components, and the combination of different
components can affect the model’s performance. Additionally, different optimizers can also lead to variations
in the training results of the model. To ensure that the evolutionary algorithm can search for suitable GNN
models, we need to define the search space (2) for network components and optimizers, as described in
Table 1. In the search space, there are nine components: c¢; to cg represent convolution type, channel,
normalization, activation function, dropout, and readout, respectively. These components are essential for
constructing a GNN. Different combinations of these components within the search space can generate
various GNN models. o1, 02, and o3 represent the optimizer, learning rate, and weight decay, respectively,
used for training the GNN model. Specifically, a total of six different graph convolutional types (c1) are
selected to learn node features. Among them, GraphConv [33] employs spectral-based convolutional filters
to recursively aggregate information from all the direct neighbors of each node and utilizes this information
to update the features of each node. ChebConv [40] utilizes the Chebyshev polynomial basis to represent the
spectral-based convolutional filters. SAGEConv [34] is a general inductive framework that uses node features
to efficiently generate node embeddings for previously unseen data. GATConv [35] incorporates a masked
self-attention mechanism, which assigns appropriate weights to various neighboring nodes, thereby directing
attention towards nodes of greater significance while attenuating the influence of nodes with comparatively
lesser relevance. ResGatedGraphConv [41] introduces residual connections and recurrent neural networks

into graph convolution, enabling it to handle variable-length graph tasks. Meanwhile, the number of output
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channels (c2) in graph convolution determines the output dimensionality of node features, and we offer a
total of seven selectable options. Furthermore, the search space encompasses three common normalization
methods (c3), five activation functions (c4), and five different dropout rates (c5), where 'None’ indicates
that the component is not selected. In the readout strategy (cg), five statistical methods are employed to
aggregate node features into graph features. Finally, three commonly used optimizers (i.e., Adam, SGD,
and RMSprop) (01), along with different learning rates (02) and weight decay rates (03), are provided as

candidate components for training the GNN model.

Table 1: The search space for GNN components and optimizer.

Components Search space (Q2)

Convolution type (¢1) GraphConv, ChebConv, SAGEConv, GATConv, ResGatedGraphConv

Channel (c») 4, 8,16, 32, 64, 128, 256
Normalization (c3) None, Batch Normalization, Layer Normalization, Instance Normalization
Activation (c4) None, Sigmoid, Tanh, ReLLU, ELU, Leaky ReLLU
Dropout (c5) None, 0.1, 0.2, 0.3, 0.4, 0.5
Readout (cg) Sum, Mean, Max, Var, Std
Optimizer (01) Adam, SGD, RMSprop
Learning rate (o2) le-2, le-3, le-4
Weight decay (o03) le-3, le-4, le-5
4.2. EA-GNAS

To describe the architecture of GNN clearly, we treat the components ¢; to ¢; within the GNN as a single
graph convolution block and represent all the components to be searched as a tuple. Assuming we search
for the optimal model with L graph convolution blocks, the architecture p can be represented as follows:

(L) (L)

(Cgl) o Cz(),l) CgL)704 ,C5 5 C6,01,02,03), (5)

(CORNQY
aCQ bl C4 765 ’ .

- 40P

) c

where the first block and last blocks are indexed by (1) and (L), respectively. It is worth noting that the
variables in p are discrete, so some evolution algorithms based on continuous space position updates, such
as PSO and snake optimization (SO) [42], cannot be directly applied to GNAS. To address this issue, we
implement a floor operation following the position updates in the evolutionary algorithm, resulting in an
integer value that uniquely corresponds to the candidate positions of the components within the search

space. The proposed generic GNAS framework based on EA is shown in Algorithm 1.
10
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Algorithm 1 A generic graph neural architecture search algorithm based on evolutionary algorithm.

Input: The hyper-parameter set ® of EA, graph block number L, learning iteration NNV, individual number
I, search space 2, training set Dyyqin, validation set D,q;, architecture memory P + &.
Output: The best architecture p* in P
1: Obtain the lower bound Ib and upper bound wb through L and 2
2: Initialize the individuals S < Uniform(lb, ub)
3: for iteration = 1 to N do
4:  Obtain all architectures P through decoding S

5 for i =1to I do

6 Construct the GNN models according to p; € P

7 P <+ PUp;

8 Compute the fitness ¢; < 1 — CrossValidation(p;, Dtrains Dyai)
9 end for

10:  Update S < EA(®, S, ¢)
11:  Limit boundary S <« Limit(S, b, ub)
12: end for

The algorithm’s inputs include the hyper-parameter set ® of the evolutionary algorithm, the hyper-
parameters (L, N, I) for training the GNN model, and the training and validation sets. Among them, ®
represents the specific hyper-parameters of different evolutionary algorithms, such as the crossover rate and
mutation rate for GA, and the cognitive factor, social factor, and inertia weight for PSO. The algorithm’s
output is the optimal architecture p* with the best performance in the architecture memory P. The
algorithm initializes a population of individuals using a uniform distribution within the search space, and
then iteratively updates the population using the evolutionary algorithm. In each iteration, the algorithm
decodes the individuals to obtain a set of GNN architectures, constructs the corresponding models, and
evaluates their fitness using cross-validation on the training and validation sets. The fitness values are then
used to update the population using the EA algorithm, which searches for the optimal architecture. The
algorithm terminates after N iterations, and the best architecture is selected from the final population.

Moreover, several important considerations are worth mentioning. First, when we have a graph block
number denoted as L, it’s essential to note that the dimensions of the lower and upper bounds for optimiza-
tion variables are identical, each being 5L+4. Specifically, Ib = (0,0,...,0), and ub = (uby, ubs, ..., ubsr44).
Here, the i-th upper bound element in ub is represented as ub;, which is equal to the candidate number of
the i-th component in (5). Secondly, we randomly select a set of I individuals from the interval between
Ib and ub, and we represent this population as S = {s;|i € [1,I],7 € NT}. During the construction of the
GNN model, the decoding process includes rounding down each individual s; € R>*¥*4 and this resulting

integer value serves as an index for the search space 2. Finally, the evolutionary algorithm will iteratively

11
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update the population S while limiting upper and lower bounds throughout N iterations.

4.8. Dataset construction

Table 2: Demographic characteristics of subjects included in the SRPBS Dataset.

Site Healthy group  SSD group
No., M:W 75, 48:27 44, 25:19

KTT
Age 28.9 (9.1) 37.3 (9.7)
No., M:W 159, 93:66 44, 20:24

KUT
Age 36.5 (13.6) 41.3 (10.9)
No., M:W 101, 86:15 19, 15:4

SWA
Age 28.4 (7.9) 42.9 (8.4)
No., M:W 170, 78:92 35, 23:12

UTO
Age 35.6 (17.5) 31.7 (10.4)

M, men; W, women

The rs-fMRI datasets in this study were obtained from the Japanese Strategic Research Program for the
Promotion of Brain Science (SRPBS) dataset 1 [43]. This dataset consists of 142 SSD patients (83 men versus
59 women) and 505 health subjects (305 men versus 200 women) from 4 sites (KTT, KUT, SWA, and UTO).
Subject demographics information are listed in Table 2, and data are shown as means (standard deviation).
The brain features pertaining to individual subjects, specifically functional connectivities (FC), were derived
from 10-minute rs-fMRI BOLD signals that had undergone identical transformation procedures. The pro-
cedures include slice-time correction, realignment, co-registration, segmentation of T1-weighted structural
images, normalization to the Montreal Neurological Institute space, and spatial smoothing using an isotropic
Gaussian kernel with a 6 mm full-width at half-maximum. In order to calculate these subject-specific func-
tional connectivities, the BrainVISA Sulci Atlas parcellation scheme was utilized, which subdivided each
individual image into 140 regions as detailed by Perrot et al. [44]. For the extraction of time series data and
the computation of the connectivity matrix, the standard Pearson correlation coefficient (PCC) method was
employed. As a result, 9,730 connectivity features were computed for each subject, thereby constituting a
weighted brain feature matrix with dimensions [647, 140, 140].

FC data contains a large amount of feature information, but too much information can cause feature
redundancy and prolong training time. Therefore, effective preprocessing of FC data is crucial for the GNAS
process. After data collection, we performed a series of data preprocessing steps to construct a graph dataset
suitable for training GNN models. First, we randomly partitioned all subjects into training and test sets in

a 4:1 ratio. Then, we averaged the FC matrices of all training set and used minimum spanning trees (MST)
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[45] to search for nodes in the averaged graph. The threshold of MST is used to control the scale of the
generated minimum spanning tree to filter out important connection relationships. Next, we transformed the
results of MST into binary form, creating a binary adjacency matrix, which serves as the node connectivity
for the graph dataset. Additionally, the 140-dimensional weighted features of each brain region are used as
node features. The combination of node connectivity and node features forms the foundation of the graph
dataset. Finally, The training and test graph datasets were constructed according to the binary adjacency
matrix and node features. It is important to note that the training set includes a validation set, which is
used for both the exploration of GNN models and the prediction of SSD in the optimal GNN model. The

test set is exclusively used to evaluate the performance of the optimal GNN model.
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Figure 3: A generic EA-GNAS framework for SSD prediction and graph explainability.

4.4. Implementation details

Fig. 3 illustrates in detail the implementation framework of the proposed method, including data col-
lection, data preprocessing, EA-GNAS, SSD prediction, and the explainability of prediction results. In the
data preprocessing stage, we randomly selected 142 healthy subjects to balance the sample data, avoiding

selection bias when training the GNN model. In EA-GNAS, we employed five-fold cross-validation to assess
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model performance, set the training epochs to 10, batch size to 64, and used cross-entropy as the loss func-
tion. Furthermore, we selected six popular evolutionary algorithms, namely, genetic algorithm (GA) [37],
particle swarm optimization (PSO) [38], whale optimization algorithm (WOA) [46], grey wolf optimization
(GWO) [47], snake optimization (SO) [42], and salp swarm algorithm (SSA) [48]. In GA, the crossover
rate and mutation rate were set to 0.8 and 0.01, respectively. In PSO, the cognitive factor, social factor,
and inertia weight were set to 2, 2, and 0.9, respectively. In WOA, the constant coefficient was set to 1.
In SO, the two threshold values were 0.25 and 0.6, and the three constant coefficients were 0.5, 0.05, and
0.5. Additionally, the learning iteration number N and the number of individuals I for all evolutionary

algorithms were set to 100 and 10, respectively.

4.5. Comparison methods and performance metrics

In the comparative study of SSD prediction, we have selected four common ML methods and four DL
methods mentioned in Introduction. The ML methods include SVM, KNN, RF, and LR. Among them,
SVM aims to find the optimal hyperplane for classifying data points of different categories; KNN relies on
distance metrics for data point classification and we set the number of nearest neighbors to 3; RF improves
classification performance by combining the prediction results of multiple decision trees and we set the
number of trees to 100; LR is a widely used linear model for binary classification problems, estimating the
probability that an observation belongs to a certain category using a logistic function. The DL methods
include BrainNetCNN [17], LGGNN [26], FCBasedGCN [25], and three other classical GNN models, namely
GCN, GAT, and SAGE. Following the structure in [21], the number of layers for GCN [33], GAT [35], and
SAGE [34] is set to three, with the number of features in the intermediate layers set to 128.

Five metrics are reported to evaluate the performance of all ML-based and DL-based SSD prediction
methods. Accuracy is a measure of the overall performance of a classification model, representing the ratio
of correctly predicted samples to the total number of samples, typically used when dealing with evenly
distributed classes. Precision refers to the proportion of true positive samples among those predicted as
positive by the model, assessing the prediction accuracy of the model. Recall is the ratio of correctly
identified positive samples to the total number of true positive samples, evaluating the model’s sensitivity.
F1 score is the harmonic mean of precision and recall, providing a comprehensive assessment of the model’s

accuracy and sensitivity. The calculation formulas for these performance metrics are as follows:

TP+TN
TP+TN+FP+FN’

Accuray =
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Precision = TP FP’ (7
TP
Recall = m, (8)

Precision x Recall
F1- =2 . 9
seore * Precision + Recall ©)

Here, TP refers to the healthy samples that are correctly classified. T'N represents the SSD samples that
are correctly classified. FP indicates the SSD samples that are incorrectly classified, while F'N signifies the
healthy samples that are incorrectly classified. In addition, the relationship between TP rate and F P rate
at different thresholds can be represented by the ROC curve, and AUC represents the area under the ROC

curve, typically ranging from 0 to 1, with a higher value indicating better model performance.

5. Results and discussions

In this section, we first compare the GNAS results of different evolutionary algorithms and obtain the
optimal model. Secondly, we compare the SSD prediction performance of different models. Then, we conduct

an explainability analysis of the GNN model. At last, the limitation of this work is discussed.

5.1. Parameter selection and network architecture search results

Fig. 4 displays the binary adjacency matrix graphs under various MST thresholds and the optimization
process of various evolutionary algorithms. In this adjacency matrix, red areas represent the connections
between brain regions, while non-red areas indicate no connection. The MST threshold determines the
number of brain region connections, with a larger threshold resulting in more brain region connections. When
the threshold is 1, it indicates that all 140 brain regions are fully connected pairwise. However, excessive
connections can lead to information redundancy and increase the computational burden. Therefore, we
selected three thresholds of 0.1, 0.2, and 0.3. To compare the search efficiency of each evolutionary algorithm,
Fig. 4 also presents the change curves of the mean fitness of all individuals with each iteration. For a more
intuitive comparison, these curves were processed with a moving average, with a sliding iteration number
of 10. In each iteration, 10 individuals (i.e., 10 GNN models) are trained and their fitness are calculated.
The mean fitness reflects the search effect of the evolutionary algorithm: the lower the value, the better

the search effect. The results show that, in most cases, the mean fitness curve of SSA starts to fluctuate
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dramatically and then gradually stabilizes, while the curve of GA converges faster, indicating that GA can
find efficient GNN models and optimizers more quickly. Furthermore, all curves show a downward trend
because evolutionary algorithms search based on diversity and selection. In the early stages of exploration,
due to higher diversity, the algorithm will broadly explore various combinations, which may result in lower
accuracy. However, as iterations progress, the algorithm will focus on high-performance areas, thereby

improving accuracy.
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Figure 4: The curves of the mean fitness of all individuals versus iteration under different evolutionary algorithms. (a), (e),
and (i) represent the adjacency matrix graphs when the MST threshold is 0.1, 0.2, and 0.3, respectively; (b) to (d) are the
mean fitness values under MST 0.1 with block numbers ranging from 1 to 3; (f) to (h) are the mean fitness values under MST
0.2 with block numbers ranging from 1 to 3; (j) to (i) are the mean fitness values under MST 0.3 with block numbers ranging
from 1 to 3.

Table 3 reports the comparison results of the best fitness obtained by six evolutionary algorithms un-
der different parameter settings. The number of graph blocks typically influences the network’s feature
extraction performance. As shown in Table 3, an increase in the number of graph blocks leads to a certain
decreasing trend in the mean fitness of the algorithms, indicating that during the GNAS process, most GNN

models perform better with a larger number of graph blocks. Among all these algorithms, GA consistently
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Table 3: Best fitness comparison of different evolutionary algorithms under various MST thresholds and block numbers.

One-block model

Two-block model

Three-block model

EA
MST=0.1 MST=0.2 MST=0.3 MST=0.1 MST=0.2 MST=0.3 MST=0.1 MST=0.2 MST=0.3

SSA 0.2028 0.2202 0.2161 0.2071 0.2204 0.2028 0.2071 0.2114 0.1895
WOA 0.2024 0.2072 0.2069 0.2025 0.2116 0.1895 0.2072 0.2027 0.1853
GWO 0.2163 0.2207 0.2290 0.2026 0.2070 0.1938 0.2023 0.2026 0.2073
PSO 0.1983 0.2073 0.2073 0.2026 0.1899 0.2116 0.1894 0.2070 0.1984

SO 0.2027 0.2159 0.2069 0.1853 0.2026 0.2071 0.1897 0.1942 0.1984
GA 0.1895 0.2027 0.1985 0.1939 0.1850 0.1939 0.1851 0.1939 0.2026
Mean 0.2020 0.2123 0.2108 0.1990 0.2028 0.1998 0.1968 0.2020 0.1969

demonstrates superior performance across multiple settings, achieving the best fitness values in both the

one-block and three-block models at most MST thresholds. This implies that GA has the the better robust-

ness and adaptability to varied model complexities and threshold constraints in GNAS. Conversely, while

algorithms like WOA and SO exhibit optimal performance in specific scenarios (e.g., SO for the two-block

model at MST=0.1 and WOA for the three-block model at MST=0.3), their efficacy isn’t consistent across

the board. As a result, we select the GNN model and optimizer found by GA with MST=0.2 and block=2

for subsequent SSD prediction comparisons, at which point the best fitness reaches its lowest at 0.1850.

o
%
S

Accuracy

4
9
G

PSO

SO

SSA

WOA

GWO

Evolutionary algorithms

GA

Figure 5: Validation accuracy boxplots of the GNN models searched by six evolutionary algorithms. The t-test was applied to
compare GA with other algorithms. The one asterisk * and two asterisks ** denote 0.01 < p < 0.05 and p < 0.01, respectively

Fig. 5 compares the validation accuracies of the optimal models obtained during the search process by
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different evolutionary algorithms. The t-test is employed to compare whether there is a significant difference
between the accuracies of the two sample groups. The findings reveals that the average accuracy of the
GNN model obtained through the GA search process is close to 0.80, substantially surpassing the average
accuracies of the GNN models derived from other algorithmic searches. Meanwhile, the results yielded by

the GA exhibits statistically significant deviations from those of the SSA, WOA, and GWO algorithms

(p < 0.05).
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Figure 6: The search process of all components in the optimal architecture obtained through GA-GNAS.

Fig. 6 shows the changes in the components of the best architecture during the GNAS process with
GA. Most components, such as the optimizer and layers in the second block, are determined in the early
stages of exploration, indicating that these specific components provide a significant performance boost to
the network. At the same time, some components in the first block only stabilize after the middle of the
exploration phase. This suggest that the algorithm might get stuck in a local optimum initially but later
jumps out in search of a better solution. Therefore, in the early stages of the search, the evolutionary
algorithm determines the main structure of the network, and afterwards, it continuously optimizes the
construction details of the architecture.

To further demonstrate the differences among the GNN models searched by different evolutionary al-
gorithms, Table 4 reports their performance on the SSD prediction task. Bold values indicate the best

scores, while underlined values denote the second-best scores. The GNN model searched by GA achieves
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an accuracy of 0.8246, a recall of 0.8182, an F1 score of 0.8438, and an AUC of 0.8258, performing the
best overall. The model searched by WOA has the highest precision of 0.8800. According to the accuracy
and comprehensive metric AUC, on this SSD prediction task, the GNN model searched by GA outperforms
those by other algorithms, followed by SO, while GWO performs the worst. The results are consistent with

the cross-validation results in Fig. 5.

Table 4: Comparison results of performance metrics for the GNN models searched by different evolutionary algorithms

EA Accuracy  Precision Recall F1 score AUC

SSA 0.7544 0.8519 0.6970 0.7667 0.7652
WOA 0.7544 0.8800 0.6667 0.7586 0.7708
GWO 0.7193 0.8400 0.7241 0.6364 0.7348
PSO 0.7719 0.8333 0.7937 0.7576 0.7746

SO 0.7895 0.8621 0.7955 0.7576 0.8065

GA 0.8246 0.8710 0.8182 0.8438 0.8258

5.2. Comparison results with baseline methods

Table 5: Comparison results of performance metrics for different methods.

Methods Accuracy Precision  Recall  F1 score AUC

SVM [6] 0.7368 0.8462 0.6667 0.7458 0.7500

ML-based KNN [14] 0.6491 0.8421 0.4848 0.6154 0.6799
RF [11] 0.6667 0.8500 0.5152 0.6415 0.6951

LR [11] 0.7368 0.8750 0.6364 0.7368 0.7557

BrainNetCNN [17] 0.7719 0.7632 0.8788 0.8169 0.7519

GCN ([33] 0.7368 0.7647 0.7879 0.7761 0.7273

GAT [35] 0.7544 0.7879 0.7879 0.7879 0.7481

DL-based SAGE [34] 0.7544 0.8276 0.7273 0.7742 0.7595
FCBasedGCN [25] 0.7368 0.7368 0.8485 0.7887 0.7159

LGGNN [26] 0.8070 0.8846 0.7419 0.8070 0.8133

GA-GNAS (Ours) 0.8246 0.8710 0.8182 0.8438  0.8258

Table 5 reports the performance metrics of various ML-based and DL-based methods. Among the ML-
based methods, LR has the highest precision of 0.8750, while SVM and LR both achieve the same top
accuracy of 0.7368. KNN performs the worst among all ML-based methods. Among the DL-based methods,
GA-GNAS outperforms others in terms of accuracy, F1 score, and AUC. LGGNN has the highest precision

of 0.8846, and ranks second in accuracy and AUC. However, this method’s recall is not outstanding, implying
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that its predictions may result in more false negatives. Overall, GA-GNAS displays balanced performance
across all metrics, indicating that it can provide robust prediction results under various evaluation conditions.
Such balance is particularly important for practical applications because it ensures reliable predictions in
various scenarios and conditions.

In this study, the GNN-based methods outperforms traditional machine learning methods in most eval-
uation metrics. This phenomenon is primarily because the connections between brain regions exhibit clear
spatial structures and interdependent characteristics. GNN can capture long-distance dependencies through
iterative node updates and message-passing mechanisms, thus fully utilizing the relational information in
these structured data, enhancing the results of SSD prediction. Additionally, the proposed method shows
superior performance compared to hand-crafted GNN models. This superiority is mainly because hand-
crafted architectures are often limited by the designer’s experience and prior knowledge, whereas evolution-
ary algorithms are not constrained by these factors. They can explore excellent architectures that human
designers might overlook or not consider. Therefore, using evolutionary algorithms can not only obtain a
high-performance GNN model for SSD prediction but also save the time and effort required for manually

designing and adjusting GNN models.

5.3. Explainability analysis of the GNN models

Although the proposed methods and some comparative methods can effectively distinguish between
the healthy group and the SSD group, the key factors behind the inference of these models remain un-
clear. Therefore, we utilized the GNNExplainer method for explainability analysis of GNN models. Since
GNNExplainer is a technique specifically designed for the explainability analysis of the GNN model, and
BrainNetCNN and ML-based methods are not GNN models, we did not perform explainability analysis on
them. BrainVISA has defined 140 brain regions, and we present the top five brain regions that have the
greatest impact on the different GNN models for both the healthy group and the SSD group, as shown in
Figs. 7 and 8. The x-axis represents the brain region annotations defined by BrainVISA, and the y-axis
represents the importance scores of each brain region. It is found that the brain regions of interest differ
among models, yet there are similarities. For the healthy group, GCN, SAGE, and LGGNN all identify
the Intraparietal Sulcus (brain regions abbreviated with F.I.P) and Pallidum as two important areas. GAT
and FCBasedGCN both recognize the Thalamus as having a high impact. For the SSD group, the Ven-
tricle is very important for predicting SSD, identified by all GNN models. This is consistent with existing
research indicating that ventricle enlargement is a key indicator for diagnosing SSD [49, 50]. Additionally,

the Temporal Sulcus (brain regions abbreviated with S.T.) reveals another piece of evidence impacting the
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Figure 7: Results of the GNNExplainer methods under different GNN models in the healthy group. From (a) to (f) are the
results of GA-GNAS, GCN, GAT, SAGE, FCBasedGCN, and LGGNN, respectively.
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identification of SSD. This finding is consistent with research reporting differences in the connectivity of

the posterior superior temporal sulcus in social cognition between SSD patients and healthy individuals

[51]. Other brain regions identified by the GNN models may also be meaningful for the diagnosis of SSD,

providing valuable references for neuroscientists.
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Figure 8: Results of the GNNExplainer methods under different GNN models in the SSD group. From (a) to (f) are the results
of GA-GNAS, GCN, GAT, SAGE, FCBasedGCN, and LGGNN;, respectively.

5.4. Limitation

Although this study proposes a effective deep learning method for accurately predicting SSD, there are
still some limitations. On one hand, the size of the dataset we used may not be sufficient to capture all
the complexities of SSD. A smaller dataset might lead to model overfitting, reducing its generalizability on
broader and more diverse data. On the other hand, we conducted experimental comparisons of MST and
graph block at different values and selected the GNN model searched by GA-GNAS with MST at 0.2 and
graph block at 2. This parameter combination is predefined and might not be optimal, potentially limiting
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enhancements to the model’s performance. Therefore, future research will consider using larger datasets to

increase data diversity and further optimizing and expanding the search space to overcome these limitation.

6. Conclusion

In this study, we propose a novel framework, EA-GNAS, to search for an optimal GNN model and its
associated optimizer. This model aims to classify SSD patients and healthy individuals using rs-fMRI data.
Specifically, we compare multiple evolutionary algorithms, with GA demonstrating superior performance
in the majority of cases. Additionally, when juxtaposed with conventional ML techniques and other DL
methodologies, GA-GNAS exhibits enhanced performance in accuracy, Fl-score, and AUC metrics. These
comparative findings underscore the efficacy and robustness of the proposed method. Furthermore, we
employ GNNExplainer to illustrate which brain regions and connections the GNN model pays more attention
to when classifying SSD patients and healthy individuals. This offers valuable insights for neuroscientists

delving into SSD analysis.
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Highlights

e We propose a generic graph neural architecture search framework based on the evolutionary algorithm

to construct GNN model for schizophrenia spectrum disorder prediction.

e We compare our model with other popular machine learning and deep learning models on multi-site

datasets.

We introduce the GNNExplainer method to provide the explainability results for the model prediction.

The explainability analysis results provide valuable insights for future diagnosis and treatment

The source code is publicly available on GitHub at https://github.com/Shurun-Wang/EA-GNAS.
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