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Abstract 

Background  Soil-transmitted helminths infect an estimated 18% of the world’s population, causing a significant 
health burden. Microscopy has been the primary tool for diagnosing eggs from fecal samples, but its sensitivity drops 
in low-prevalence settings. Quantitative real-time polymerase chain reaction (qPCR) is slowly increasing in research 
and clinical settings. However, there is still no consensus on preferred qPCR targets.

Methods  We aimed to compare soil-transmitted helminth (STH) DNA detection methods by testing naïve stool 
samples spiked with known quantities of STH eggs and larvae. DNA extracts from spiked samples were tested using 
independent quantitative realtime PCR (qPCR) assays targeting ribosomal or putative non-protein coding satellite 
sequences.

Results  For Trichuris trichiura, there was a strong correlation between egg/larvae counts and qPCR results using 
either qPCR method (0.86 and 0.87, respectively). Strong correlations also existed for A. lumbricoides (0.60 and 0.63, 
respectively), but weaker correlations were found for Ancylostoma duodenale (0.41 for both assays) and Strongy-
loides stercoralis (0.48 and 0.65, respectively). No correlation for Necator americanus was observed when testing 
with either qPCR assay. Both assays had fair-to-moderate agreement across targets when using field-collected stool 
samples (0.28–0.45, for all STHs), except for S. stercoralis (0.12) with slight agreement.

Conclusions  There is a strong correlation between qPCR results and egg/larvae counts. Our study confirms 
that qPCR is an effective diagnostic tool, even with low-intensity infections, regardless of the DNA-based diagnostic 
marker used. However, the moderate agreement between the two different qPCR assays when testing field samples 
highlights the need to understand the role of these targets in the genome so that the parasite burden can be quanti-
fied more accurately and consistently by qPCR.
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Background
Soil-transmitted helminths (STHs) (Ascaris lumbri-
coides, Trichuris trichiura, Necator americanus, Ancy-
lostoma duodenale) and Strongyloides stercoralis infect 
more than 1.4 billion people worldwide [1], resulting 
in years of disability and extensive morbidity. The most 
widely used techniques for diagnosing STH infections 
are microscopy-based, despite the repeated demonstra-
tion of their shortcomings [2]. Microscopy is still recom-
mended by the World Health Organization (WHO) for 
use in epidemiological interventions and monitoring pro-
gress in deworming programs [3]. Advances in molecu-
lar testing have spurred interest in developing new tools 
for monitoring STH infections, such as assays utiliz-
ing real-time polymerase chain reaction (qPCR) [4–6]. 
There is a need for more sensitive tools to complement 
WHO efforts to monitor the elimination of STHs [7]. 
Intervention success and impact assessment are highly 
reliant upon sensitive and accurate diagnostic tools for 
STH detection. However, attempts to evaluate molecu-
lar methods remain incomplete, including assessing 
one or more microscopic techniques against molecular 
methods [8–10]. Different real-time PCR assays target-
ing various DNA regions [ribosomal internal transcribed 
spacer sequences (ITS), ribosomal subunit sequences, 
or mitochondrial genes] have been developed to detect 
STHs [11]. Assays targeting mitochondrial and riboso-
mal sequences leverage their relatively high copy num-
bers, providing moderate-to-high sensitivity for real-time 
PCR. Ribosomal assays have been validated in numerous 
studies and clinical settings for STH detection [6, 8, 12, 
13]. However, ribosomal targets tend to be conserved 
between species and present in lower copy numbers than 
other genome repeats. Given their conservation, they are 
frequently less specific than targets designed from other 
repeat types. Other nuclear tandemly arranged repeats 
can reach up to 37% of the parasite’s genome in certain 
species of STHs [14]. The development of new bioinfor-
matics tools [15] and the assembly of improved genomes 
for the various STHs [16] has facilitated the exploration 
of the function of these target sequences and the genetic 
variation. Novel, optimized assays targeting highly repet-
itive elements in a parasite’s genome have the potential to 
reduce time and cost through high throughput automa-
tion [14]. Such targets have enhanced the sensitivity and 
specificity of qPCR assays, allowing for the differentiation 
of closely related species and facilitating target detection 
at copy numbers below those found within a single egg 
[5, 17].

This study assesses the agreement when two different 
molecular assays utilize different target sequences and 
compares results across a panel of samples spiked with 
known quantities of STH eggs or larvae. Similar testing 

was also performed on a panel of field-collected samples 
to assess the transferability of results.

Methods
Spiked sample preparation
Known numbers of parasitic eggs (1, 2, 5, 10, 15, 20, 40 
egg or larvae) were used to spike 10 mg samples of naïve 
stool at Baylor College of Medicine (BCM), followed by 
DNA extraction using the FastDNA Spin Kit for Soil (MP 
Biomedicals, Santa Ana, CA) and a high-speed homoge-
nizer (FastPrep-24, MP Biomedicals). In total, 19 samples 
containing A.  lumbricoides eggs were created, as were 
20 containing T.  trichiura eggs, 24 containing S.  sterc-
oralis larvae, and 10 containing hookworm eggs. Details 
on the number of replicates per egg/larvae quantity used 
for spiking can be found in Supplementary Table S1. Ali-
quots of the same DNA extracts were shipped from the 
BCM to the Natural History Museum (NHM) for testing.

qPCR testing
Two independent laboratories, BCM and NHM, tested 
aliquots of the same DNA extracts. The NHM assay was 
initially developed at Smith College in Northampton, 
MA, USA [5], and the BCM assay was initially developed 
at the National Institutes of Health (NIH) in Bethesda, 
MD, USA [6]. The assays used for testing target repeti-
tive genomic elements, except for the A.  lumbricoides 
assay, which targets the internal transcribed spacer 1 
(ITS1) region. The assays used at BCM all target riboso-
mal genes (ITS1 for A. lumbricoides, ITS1 for T. trichiura, 
18S for S.  stercoralis, ITS2 for N.  americanus, and ITS2 
for A. duodenale).

Field sample testing
A panel of 130 samples was collected as part of ongoing 
field studies in Orán, Argentina (approved by the bioeth-
ics committee of Colegio de Médicos de la Provincia de 
Salta and the IRBs of BCM; protocol number H-34926). 
All samples underwent direct smear stool microscopy 
and were frozen, without preservatives, until 50  mg of 
each sample was subjected to DNA extraction. Aliquots 
were sent to BCM and NHM for qPCR analysis using the 
above assays.

Statistical analysis
The correlation between target concentration (fg/µl 
or copies/µl, for the BCM assays and the NHM assays, 
respectively) and spiked egg numbers was assessed by 
the Kendall rank correlation test [18]. Correlations were 
visualized in R v.4.2.2; N. americanus was excluded from 
the graphs due to too few data points, but the correlation 
values are still presented in Table 1. P-values < 0.05 were 
considered statistically significant. Comparisons between 
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the two qPCRs were depicted using unweighted Cohen’s 
kappa agreement [19]. Fleiss kappa was calculated to 
evaluate the agreement between microscopy and the two 
qPCR tests (three raters), treating results as categorical 
values (presence/absence).

Results
Concordance between qPCR and egg/larvae counts
The Kendall Tau-b values for the NHM and BCM assays 
were 0.86 and 0.87 for T. trichiura and 0.60 and 0.63 for 
A.  lumbricoides, indicating strong concordance between 
DNA quantity measured using qPCR and egg numbers 
as determined by microscopy for both STHs. Using both 
assays, the Tau-b values for A. duodenale (0.41 for both, 
but not significant) and S.  stercoralis (0.48 and 0.65, 
respectively) were less strong but still significant. With 0 
and −0.816 Tau-b values for the NHM and BCM assays, 
respectively, results for N.  americanus are probably 
due to ineffective extraction or insufficient eggs/larvae, 

making it difficult to draw any conclusions (Table  1). 
The graphs in Additional File 1: Fig. S1.  also show the 
linearity and correlation between the qPCR quantitative 
method and eggs or larvae spiked (N. americanus graph 
not shown).

Two‑ and three‑rater agreement on field samples
We calculated the overall percentage agreement (total 
number of agreed positives or negatives in a given sample 
set). Cohen’s kappa for agreement on a sample-by-sample 
case, for both sets of qPCR assays, treats data as categori-
cal values (presence/absence) since the qPCR output 
interpretation (i.e., quantitation) still does not corre-
spond directly to worm burden or worm intensity [9, 20]. 
Fleiss kappa was calculated to show the greater discord-
ance between microscopy and both qPCR assays; the 
results are presented in Table 2. Between the two sets of 
qPCR assays, there was a moderate agreement for A. lum-
bricoides (kappa = 0.43) and fair agreement for N. ameri-
canus (kappa = 0.33), T.  trichiura (kappa value = 0.366), 
and A.  duodenale (kappa value = 0.28). However, both 
assays showed a slight agreement for S. stercoralis (kappa 
value = 0.121). As expected, Fleiss kappa showed weak 
agreement between microscopy (ranging from 0.06 to 
0.22) and qPCR assays (Table 2).

Discussion
We present a comparative study evaluating two inde-
pendent qPCR assay platforms for four STH species and 
S.  stercoralis using laboratory-spiked and field-collected 
samples. We showed concordance and moderate-to-
strong correlation between the presence of helminth eggs 
or larvae and the amount of parasite DNA. A strong cor-
relation between spiked eggs and qPCR output has been 
demonstrated previously in similar settings [21]. Greater 
discordance between both qPCR platforms and micros-
copy illustrates the superior sensitivity (true positives) 

Table 1  Kendall correlation, as Tau-b value and respective 
P-values, between the number of larvae/eggs and the 
quantitative qPCR method for each soil-transmitted helminth for 
NHM and BCM assays

Kendall Tau-b values range between −1 (all pairs discordant) and 1 (all 
concordant); a higher Tau-b value indicates more concordance than discordant 
pairs of individual egg counts, and therefore, a higher overall correlation. 
Interpretation as <  + or −0.10: very weak; + or −0.10 to 0.19: weak; + or −0.20 to 
0.29: moderate; and + or −0.30 or above: strong

Species Kendall Tau-b values: egg/larvae versus 
qPCR method

NHM P-value BCM P-value

Ancylostoma duodenale 0.41 0.44 0.41 0.44

Ascaris lumbricoides 0.60  < 0.01 0.63 < 0.01

Necator americanus 0 1 −0.81 0.12

Strongyloides stercoralis 0.48  < 0.01 0.65 < 0.01

Trichuris trichiura 0.86  < 0.01 0.87 < 0.01

Table 2  Performance comparison between (i) NHM and BMC qPCR methods and (ii) between the two qPCRs and microscopy in field-
collected stool samples

Cohen’s and Fleiss kappas were calculated to evaluate the agreement between the two qPCR assays (two raters) and the agreement between microscopy and the two 
qPCR tests (three raters), respectively, treating results as categorical values (presence/absence). Kappa < 0 means no agreement; 0–0.20 slight agreement; 0.21–0.40 
fair; 0.41–0.60 moderate; 0.61–0.80 substantial; and 0.81–1.0 perfect. All calculations for kappa (R package irr) and visuals for the correlations were conducted in R 
v.4.2.2

Two qPCRs—BCM and NHM (two raters) Fleiss kappa (three raters)

Unweighted Cohen’s kappa 
agreement

Percentage agreement P-value Fleiss kappa 
(categorical)

P-value

Necator americanus 0.33 82 < 0.01 0.21 < 0.01

Trichuris trichiura 0.37 96 < 0.01 0.18 < 0.01

Ancylostoma duodenale 0.28 64 < 0.001 0.15 < 0.01

Strongyloides stercoralis 0.12 77 < 0.001 0.06 0.02

Ascaris lumbricoides 0.45 92 < 0.001 0.22 < 0.01
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and specificity (true negatives) of the molecular methods 
compared with coprological tests. This comparative study 
demonstrates the benefits of qPCR when STH prevalence 
and intensity are low in a population. Molecular assays 
can be the foundation for reliable diagnostic results, irre-
spective of the target used, and opportunities for tech-
nological transfer, even to resource-limited areas, are 
expanding [22, 23]. We acknowledge that the number of 
spiked samples (eggs and larvae) used in this study was 
limited, requiring further scaling. This could partially 
explain the poor correlation observed for A.  duodenale. 
The poor concordance between larval counts and qPCR 
for S.  stercoralis could be explained by the low sensitiv-
ity of qPCR for Strongyloides [24]. We focused solely on 
spiking stool samples with small numbers of eggs/larvae, 
as the correlation between larger egg counts and qPCR 
in field-collected stool samples has already been demon-
strated [7, 9, 25]. Another limitation was that an extrac-
tion control to check the efficacy of the DNA extraction 
method was not available at the time of this study. Sub-
optimal extraction of the samples spiked with N. ameri-
canus could explain the 0 and negative correlations for 
both N.  americanus-targeting assays. Although DNA 
extraction products were sent to each institution, false 
negatives will impact both assays. One downside of using 
repeat-based assays is that the copy number of highly 
repetitive sequences can vary significantly between indi-
vidual organisms and even within different stages of the 
same organism’s life cycle. However, larger monomer 
repeats might be more consistent within species [14, 26]. 
Further and future genomic work will highlight structural 
and geographical differences in repeat-based diagnos-
tics. Currently, the full function of these nuclear repeats 
is mainly unknown. As a result, we are unsure how ran-
dom mutations affect these areas and whether this vari-
ability can lead to bias in the quantification of STHs. 
These mutations make it challenging to compare results 
between samples accurately. Another limitation was the 
lack of egg/larvae counts from stool microscopy. How-
ever, previous studies have shown that the amount of egg 
burden directly correlates with detecting parasite DNA 
with qPCR in field-collected stool samples [6, 9].

Conclusions
In summary, we present further evidence that qPCR is a 
valid alternative to fecal microscopy for the detection of 
STH, and our study supports current attempts [7] toward 
replacing coprological tools to assess low-intensity STH 
infections using qPCR. Results highlight assay-specific 
strengths and weaknesses. This study represents the 
first comparison of two distinct qPCR platforms with 
unique molecular targets. The study involved samples 
spiked with known quantities of STH eggs or larvae. The 

findings provide a framework for better understanding 
what constitutes a reliable diagnostic target. Developing 
standardized, accurate, and quality-controlled measures 
is crucial to successfully testing for STHs in fecal samples 
using qPCR. Standardization can be achieved through an 
External Quality Assessment Scheme (EQAS) program 
[27], which ensures consistency and diagnostic precision.
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