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Abstract

Background

Recent studies have suggested an association between H. pylori and metabolic-disfunction

associated fatty liver disease (MASLD). However, epidemiologic studies have yielded incon-

sistent results. We aim to evaluate the association of H. pylori and G-allele PNPLA3 in

MASLD diagnosis, and markers of severity.

Methods

A multi-center cross-sectional study was conducted. A total 224 functional dyspepsia (FD)

patients cohort who underwent gastroscopy was selected. Biochemical, clinical parameters,

ultrasound, FIB-4 score, LSM by VCTE, gastric biopsies, H. pylori status, and rs738409

PNPLA3 were evaluated. A second retrospective cohort of 86 patients with biopsy-proven

MASLD who underwent gastroscopy with gastric biopsies was analyzed.

Results

In the FD cohort MASLD was observed in 52%, and H. pylori-positive in 51%. H. pylori infec-

tion was associated with MASLD prevalence, but in multivariate analyses adjusted for G-

allele PNPLA3, it became not significant. Then in MASLD-only dyspeptic cohort, H. pylori

infection was significantly linked to elevated serum AST levels and increased liver stiffness

measurements, suggesting a potential role in liver injury and fibrosis. Histopathological anal-

ysis in biopsy-proven MASLD patients further supported these findings, showing a signifi-

cant association between H. pylori infection and increased NAS score, fibrosis stage, and

prevalence of MASH. Notably, the combination of H. pylori infection and G-allele PNPLA3

appeared to exacerbate MASLD severity beyond individual effects.
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Conclusions

Our results suggest that H. pylori infection may play a role in the progression of liver injury

and fibrosis in patients with MASLD, especially in those with specific genetic

predispositions.

Introduction

Metabolic-dysfunction-associated steatotic liver disease (MASLD), previously known as non-

alcoholic fatty liver disease (NAFLD), has emerged as a significant public health concern glob-

ally and is currently the most common chronic liver disease [1]. The global prevalence of

MASLD has been steadily increasing in parallel with the rising rates of obesity and metabolic

comorbid disease such as metabolic syndrome and type-2 diabetes mellitus [2, 3]. MASLD

encompasses a spectrum of liver disorders ranging from simple steatosis to metabolic-dysfunc-

tion associated steatohepatitis (MASH), fibrosis, cirrhosis, and hepatocellular carcinoma

(HCC) [1, 4, 5]. MASLD is a complex disorder influenced by multiple mechanisms, including

genetic, environmental, and metabolic factors [6, 7]. Among the genetic factors implicated in

the pathogenesis of MASLD, the single nucleotide polymorphism (SNP) rs738409 in the

PNPLA3 gene has attracted considerable attention. Numerous studies have demonstrated a

strong association between individuals carrying the rs738409 G-allele in the PNPLA3 and the

development and progression of MASLD [8–10]. This SNP results in the substitution of isoleu-

cine for methionine at position 148 (I148M) in the PNPLA3 protein, leading to altered lipid

droplet remodeling and increased hepatic triglyceride accumulation [11]. Yet, how this variant

predisposes to inflammation and fibrosis is currently unclear [12]. In addition to traditional

risk factors such as obesity and insulin resistance, emerging evidence suggests a potential role

for microbial dysbiosis and chronic low-grade inflammation in the development and progres-

sion of MASLD [13, 14].

Helicobacter pylori (H. pylori) is a gram-negative, microaerophilic bacteria that colonizes

gastric mucosal epithelium and is a major cause of chronic gastritis, peptic ulcers, gastric

mucosa-associated lymphoid tissue lymphoma, and non-cardia gastric adenocarcinoma [15,

16]. H. pylori is also the main infectious-related ethological cause of functional dyspepsia (FD)

[17]. Indeed, dyspeptic symptoms associated with H. pylori, as per the Kyoto consensus, may

also be considered as a separate entity [18]. Similarly to the high prevalence of MASLD, H.

pylori has highly global prevalence, affecting nearly 50% of the world’s population, with a

higher prevalence in developing countries, and is a key constituent of the human microbiome

[15, 19, 20]. H. pylori infection not only affects gastric mucosa but is also linked to a number of

extra-gastric diseases, indicating that H. pylori may cause disease far from the primary site of

infection by a different pathogenic process [21]. In recent years, there has been growing inter-

est in the potential association between H. pylori infection and MASLD, fueled by the overlap-

ping risk factors and shared pathophysiological mechanisms between these two conditions

[22–25]. However, the existing literature on the association between H. pylori infection and

MASLD is conflicting, with some studies reporting a positive association while others finding

no significant relationship [26–29]. Several studies have suggested that H. pylori infection may

contribute to the pathogenesis of MASLD through various mechanisms, including chronic

low-grade inflammation, alterations in gut microbiota composition, and modulation of insulin

sensitivity [19, 30–34]. It is noteworthy that H. pylori infection per se is linked to gut dysbiosis,

including alterations in bacterial diversity and abundance that may influence metabolic
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derangements [32, 35]. Notably, H. pylori promotes hepatocyte cytotoxicity through internali-

zation of the virulence genes cagA and vacA [36, 37]. The interaction between H. pylori and

human genetic polymorphisms in the pro- and anti-inflammatory cascade appear to play a

role in the host’s susceptibility to H. pylori gastritis and duodenitis [38–40]. Considering afore-

mentioned data, we can consider that H. pylori infection may exacerbate the effects of the

PNPLA3 rs738409 variant on hepatic milieu, thereby increasing the risk and severity of

MASLD. Thus, our aim was to evaluate the association of H. pylori and rs738409 G-allele in

the PNPLA3 in MASLD severity.

Materials and methods

We consecutively recruited patients newly diagnosed with FD symptoms based on Rome-IV

[41] criteria who underwent upper endoscopy at IOT Medical Center (Posadas, Province of

Misiones) and University Hospital San Juan Bautista (Santo Tomé, Province of Corrientes),

Argentina, were evaluated in this study. We consecutively recruited patients diagnosed with

FD who were scheduled to undergo upper gastrointestinal endoscopy from December 14th

2021 to December 15th 2023.

The criteria for inclusion were: (1) age between 18 and 70 years, (2) symptoms meeting

Rome-IV criteria. The criteria for exclusion before gastroscopy were: (1) progressive, severe

diseases requiring active medical management (e.g. uncontrolled diabetes, congestive heart

failure, end-stage renal failure, neurological disease, advanced cancer, or psychiatric disorder),

(2) those with known causes of chronic liver diseases and significant alcohol consumption

(defined as � 140 g/week for women and � 210 g/week for men), (3) autoimmune medical

conditions (inflammatory bowel disease, celiac disease, vasculitis, connective tissue disease),

(4) patients who had taken steatogenic medications (corticosteroids, tamoxifen, amiodarone,

methotrexate, amiodarone), (5) patients who had taken antibiotic within the past 3 weeks and

(7) history gastric or bariatric surgery. Patients receiving proton pump inhibitors (PPI),

H2-blockers or non-steroidal anti-inflammatory drugs (NSAID) were advised to suspend

them 14 days before endoscopy. The criteria for exclusion after upper endoscopy were: (1) evi-

dence of active peptic ulcer disease, (2) evidence of malignant gastric disease, (3) signs of celiac

disease, and (4) not available gastric biopsies. The study was approved by local ethical commit-

tee (Comité de Ética del Instituto Universitario en Ciencias de la Salud, CEI IUCS Resol N˚

252/21). The study was performed in accordance with the ethical standards as laid down in the

1975 Declaration of Helsinki and its later amendments. Written informed consent was

obtained from all participants.

Clinical variables

Clinical conditions and anthropometric variables were obtained by a pre-endoscopy interview

and medical records, data regarding age, sex, body mass index (BMI), medication history,

including presence of hypertension, type-2 diabetes (type-2 DBT), surgery, malignancy, regu-

lar physical activity (�150min/week of moderate intensity aerobic physical activities in� 3

sessions) and chronic liver disease were collected. Medication history was evaluated by pre-

endoscopy interview, medical records and self-reported questionnaire that involved the regu-

lar utilization of NSAIDs, PPI, H-2 blockers, anti-hypertensive medications, anti-diabetic

medications, alcohol consumption, smoking habits and daily coffee intake. The laboratory

parameters were assessed before upper endoscopy: total cholesterol, HDL-cholesterol, LDL-

cholesterol, triglycerides, glucose, insulin, homeostasis model assessment-insulin resistance

index (HOMA-IR), aspartate aminotransferase (AST), alanine aminotransferase (ALT),

gamma-glutamyl transferase (GGT), alkaline phosphatase (ALP), platelets, serum ferritin and
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viral hepatitis serology (HBsAg, Anti-HBc and Anti-HCV). The FIB-4 index was calculated

using the formula: FIB-4 = Age (years)×AST (IU/L)/[PLT(109/L)×
p

ALT (IU/L)] [42]. Previ-

ously published FIB-4 cut-off value were used to rule-out (<1.3) advanced fibrosis (AF) [43].

Cut off of FIB-4�1.3 is recommended to identify patients with MASLD as intermediate-high

risk of AF requiring referral to the specialist liver clinic [43].

Abdominal symptom evaluation

The Izumo Scale is a self-administered questionnaire designed to assess the effects of abdomi-

nal symptoms on quality of life over the past week [44]. The survey has been shown to have

good internal consistency, reproducibility, as well as good correlations with the visual analogue

scale of abdominal symptoms [45], and is routinely used by our group in clinical practice to

evaluate abdominal symptoms [40]. All participants completed the EPS and PDS domain of

the Izumo questionnaire scale of abdominal symptom-related quality of life at entry [44]. Each

question is rated on a 6-point Likert scale from 0 to 5, with higher values indicating more

severe symptoms [46]. Domain-specific scores range from 0 to 15 [44]. Higher scores indicate

worse symptoms. Since FD comprises EPS and PDS, we evaluated the severity of FD symptoms

by adding both domains in a score ranging from 0 to 30 [47]. FD patients satisfied the Rome-

IV criteria for the past three months with symptom onset at least six months before diagnosis

[41]. FD was divided into two subtypes depending on the symptoms: Epigastric pain syndrome

(EPS) is associated with epigastric pain or epigastric soreness that does not necessarily occur

after meal ingestion at least one day a week, and postprandial distress syndrome (PDS) is asso-

ciated with meal-induced early satiety or postprandial fullness at least three days a week.

MASLD definition

MASLD was defined according to the multi-society expert group consensus statement on new

fatty liver disease nomenclature [48], the diagnosis of MASLD required the following: (1)

hepatic steatosis detected by ultrasonography; (2) no significant alcohol consumption (defined

as<140 g/week for women and <210 g/d for men); (3) the presence of one cardiometabolic

risk factor; and (4) no other discernible cause of steatosis.

Vibration controlled transient elastography

Vibration controlled transient elastography (VCTE) was performed by FibroScan-402 (Echo-

sens, Paris, France) medical device using the M or XL probe as appropriate. Liver stiffness

measurement (LSM) by VCTE was assessed after a diagnosis of MASLD by ultrasound, by an

expert operator. Measurements were performed on the right lobe of the liver through intercos-

tal spaces guided by ultrasonography with the patient lying in dorsal decubitus with the right

arm in abduction. LSM was expressed in kilopascal (kPa) and calculated as the median value

of ten successful acquisitions, defined by a success rate of at least 60%, and by an interquartile

range lower than 30% [49]. Previously published LSM cut-offs were used to rule-out Fibrosis

stage-2 or greater stage (significant fibrosis, SF)�5.8 kPa, and to rule-out Fibrosis stage-3 or

greater stage (advanced fibrosis, AF)�8 kPa respectively [50–52].

Endoscopy

All recruited participants underwent upper gastrointestinal endoscopy performed by experi-

enced endoscopists (FJB and AS). Upper endoscopy was done using Pentax EG-2990i series

scope. Biopsy specimens were collected from the lesser curvature of the gastric body (two
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biopsies) and lesser curvature of the gastric antrum (two biopsies) using a Radial Jaw 3 forceps

(Boston Scientific, MA, USA).

Histopathologic analysis

Gastric biopsies were fixed in 10% formalin and processed to paraffin embedding for hematox-

ylin and eosin (HE) staining by routine methods. The presence of H. pylori was assessed on

gastric biopsies using Giemsa staining in all patients.

Biopsy-proven MASLD population

Our cohort comprised 101 patients who underwent liver biopsy by medical indication for

MASLD evaluation between January 2018 and December 2023 at the Liver Unit, IOT Medical

Center (Posadas, Province of Misiones). Grading and staging of MASLD were determined

using the NASH Clinical Research Network scoring system [53]. MASH was defined as NAS

(NAFLD Activity Score)� 4. Fibrosis staging was performed according to the Kleiner classifi-

cation [54]. Significant fibrosis was defined as Fibrosis stage�2. All patients underwent evalu-

ation for H. pylori infection via upper endoscopy and gastric biopsies performed within a

range of 6 months after the liver biopsy.

Extraction and Polymerase Chain Reaction (PCR)

DNA extraction from gastric biopsies was carried out following the manufacturer’s instruc-

tions with the ADN PuriPrep-T kit (InbioHighway, Argentina). The extracted DNA was stored

at −20˚C until used. Polymerase Chain Reaction (PCR) was then performed by using specific

primers. Target gene, amplicon size, primer names, and sequences are presented in Table 1.

For the PCR amplification, 50 ng of DNA was added to a PCR mixture containing 20 μmol for-

ward and reverse primers, 15 μL of MINT Master Mix2x (InbioHighway, Argentina) to the

total volume of 25 μL. The PCR conditions, optimized for each primer set (as outlined in

Table 1), included an initial denaturation at 94˚C for 4 minutes, followed by 35 cycles of dena-

turation at 95˚C for 30 seconds, annealing for 30 seconds (specific temperatures listed in

Table 1), an extension at 72˚C for 30 seconds, and a final extension at 72˚C for 5 minutes,

using a Labnet MultiGene MiniThermocycler. The PCR products were then subjected to elec-

trophoresis on a 2% agarose gel (InbioHighway, Argentina) and the resulting bands were visu-

alized using Eco-Gel staining (InbioHighway, Argentina). To define the rs738409 PNPLA3
genotype, we performed a restriction fragment length PCR [55]. NlaIII restriction enzyme

(ThermoFisher Scientific, Waltham, MA, USA) was used to digest PNPLA3.

Statistical analysis

Sample size calculation was performed assuming a prevalence of MASLD in general popula-

tion of 25% [56] and 44.5% in H. pylori infected subjects [57]. With 80% of power and alpha

level of 0.05, we calculated that at least 194 patients would be needed for the study.

Table 1. The primer sequences, annealing temperatures, restriction enzymes, and cleavage temperatures used in this study. F–forward; R–reverse.

Target site Amplicon size

(bp)

Primer names and sequences Annealing

temperature

Restriction

enzymes

Cleavage temperatures

(˚C)

References

PNPLA3
rs738409

CC 213

GG 129, 93

PNPLA3-F

(5-CCTGCAGGCAGGAGATGTGT-3)

60˚C NlaIII 37 55

PNPLA3-R (5-GCCCTGCTCACTTGGAGAAA
-3)

https://doi.org/10.1371/journal.pone.0310361.t001
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Data were presented as mean ± SD (standard deviation), median IQR (interquartile range),

or number of subjects (% of total) as appropriate. Differences between groups were analyzed

by Students’ t-test or ANOVA for normal distribution, Wilcoxon rank sum test or Kruskal

Wallis test for non-normal distribution. Categorical values were compared using Chi-square

tests. The relationship with H. pylori with MASLD, and with risk of significant-advanced fibro-

sis (FIB-4 and LSM by VCTE cut-off�1.3 and�8kPa), were examined by binomial logistic

regression model (binary response variable). Univariate models and multiple predictor vari-

able models including model 1) obesity, type-II DBT, hypertriglyceridemia and hypertension;

Model 2) obesity, type-II DBT, hypertriglyceridemia, hypertension and rs738409 PNPLA3 (G-

allele) as covariates were assessed. Data were analyzed using SPSS 22.0, and Jamovi 2.5.1. Two-

tailed P< 0.05 was considered statistically significant. Manuscript and data followed the

STROBE guidelines for cross-sectional studies (S1 Table)

Results

Study population

Two hundred and thirty-two patients with FD who met Rome-IV criteria were evaluated

before upper endoscopy. Eight patients were excluded, and 224 patients were included for

analysis. A flowchart of the study and baseline characteristics of patients appears in Fig 1 and

Table 2. The cohort comprised 145 (65%) women and 78 (35%) men with a median age of 52

(IQR, 42–60) years. Regarding clinical comorbidities, 45 (20%) patients had type-II DBT, 77

(34%) had hypertension, and the median BMI was 27.4 (IQR, 24–30) kg/m2, with 70 (31%)

classified as obese (BMI� 30 kg/m2). Additionally, hypercholesterolemia was present in 129

(58%) patients, hypertriglyceridemia in 85 (38%), regular physical activity in 96 (43%) patients,

Fig 1. Study flow-chart. Functional dyspepsia (FD), H. pylori negative, H. pylori positive, metabolic dysfunction-associated steatotic

liver disease (MASLD).

https://doi.org/10.1371/journal.pone.0310361.g001
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smoking was present in 30 (13%), daily coffee intake in 26 (12%), and moderate alcohol con-

sumption in 82 (37%) subjects. The FD syndromes were as follows: 115 (52%) patients had

EPS, 75 (33%) had PDS and 33 (15%) exhibited EPS/PDS overlap. H. pylori-positive gastric

biopsies were detected in 115 (51%) patients. The prevalence of MASLD was 116/224 (52%)

(Table 2). The viral serologic status of the study population for HBV and HCV was negative.

The frequencies of the PNPLA3 rs738409 alleles were as follows: CC 33%, CG 47% and GG

20%, respectively, and the distribution of the genotypes was in Hardy-Weinberg equilibrium.

H. pylori infection, clinical variables, and MASLD

We first evaluated the association of H. pylori infection and clinical variables in our cohort. No

differences were observed regarding H. pylori status in age, gender, hypertension, hypercholes-

terolemia, hypertriglyceridemia, ferritin, glucose, PNPLA3 genotype, regular physical activity,

smoking, Izumo scale, coffee intake and moderate alcohol consumption (p>0.05, ns: non-sig-

nificant) (Table 2). In FD syndromes, H. pylori-positive status was significantly associated with

EPS (p<0.05), while H. pylori-negative status with PDS (p<0.05). No association at H. pylori
status was observed in overlap EPS/PDS (p: ns). H. pylori infection was significantly associated

with high BMI, obesity, high HOMA index, elevated LDL, low HDL values, and MASLD

(p<0.05) (Table 2).

Table 2. H. pylori infection, and clinical variables in FD subjects. Data are expressed as median (IQR, interquartile range), mean (SD, standard deviation), or percentage

(%) of the total. For parametric continuous variables, Students’ t-test was used. For non-parametric continuous variables, Wilcoxon rank sum test was used. For categorical

variables, Chi-square test was used. ns: non-significant.

Variable Total cohort H. pylori (-) H. pylori (+) p

n (%) n: 224 n: 109 (49) 115 (51)

Age, years Median (IQR) 52 (41.5–60) 52 (39.8–61) 52 (43.5–60) ns

Gender, female n (%) 146 (65) 73 (67) 73 (63) ns

PDS n (%) 75 (33) 44 (40) * 31 (27) 0.047

EPS n (%) 115 (51) 47 (43) 68 (59) * 0.024

Overlap n (%) 33 (15) 17 (16) 16 (14) ns

Izumo scale Median (IQR) 10 (7–12) 9 (7–11) 10 (8–12) ns

BMI Median (IQR) 27.4 (24.6–30.9) 26.7 (24.5–29) 28.7 (24.8–32.6) * 0.005

BMI� 30 n (%) 70 (31) 23 (21) 47 (41) * 0.002

Type-II DBT n (%) 45 (20) 20 (18) 25 (22) ns

Hypertension n (%) 77 (34) 37 (34) 40 (35) ns

Triglycerides� 150 mg/dl n (%) 43 (19) 20 (22) 21 (18) ns

Cholesterol� 200 mg/dL n (%) 129 (58) 58 (53) 71 (68) ns

Regular physical activity n (%) 96 (43) 44 (40) 52 (45) ns

Coffee intake n (%) 26 (12%) 15 (14%) 11 (10%) ns

Smoking n (%) 30 (13) 12 (11) 18 (16) ns

Moderate alcohol consumption n (%) 82 (37) 36 (33) 46 (40) ns

MASLD n (%) 116 (52) 45 (41) 71 (62) * 0.003

Ferritin mg/dL Median (IQR) 143 (75.4–256) 143 (75.4–231) 145 (75.8–296) ns

HDL mg/dL Median (IQR) 46.5 (40–56.2) 51 (43–60) 44 (37–51) * <0.001

LDL mg/dL Median (IQR) 115 (96–142) 111 (91–134) 121 (99–143) * 0.043

Glucose mg/dL Median (IQR) 94 (87–102) 92.5 (88–98) 95 (87–105) ns

HOMA Median (IQR) 1.6 (0.9–2.8) 1.5 (0.8–2.5) 1.9 (1–3.2) 0.026

PNPLA3 CC, n (%) 73 (33) 41 (38) 32 (28) ns

CG, n (%) 106 (47) 48 (44) 58 (50)

GG, n (%) 45 (20) 20 (18) 25 (28)

https://doi.org/10.1371/journal.pone.0310361.t002
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Since, rs738409 PNPLA3 (G-allele), was linked with MASLD in the general population [8],

we explored the association of H. pylori and G-allele PNPLA3 with MASLD in our cohort

(Fig 2). H. pylori-positive subjects harboring G-allele PNPLA3 increased the proportion of

MASLD subjects to 71% (p<0.05), compared to H. pylori positive G-allele-negative (37%), H.

pylori-negative harboring G-allele (50%), and H. pylori negative G-allele-negative (26%)

(Fig 2). Likewise, the combination of H. pylori-negative status and G-allele-negative status was

associated with a higher proportion of subjects without MASLD (74%, p<0.05). Moreover, we

evaluated by univariate and multivariate binary logistic regression analysis if H. pylori infec-

tion was an independent risk factors for MASLD (Table 3). Univariate analysis indicated that

the odds ratio (OR) for MASLD with H. pylori-positive infection was 2.29 (1.34–3.92;

p = 0.002). After adjusting for the most important MASLD risk factors (obesity, type-II DBT,

hypertriglyceridemia and hypertension [1]), the OR for MASLD with H. pylori-positive infec-

tion was 1.98 (1.08–3.64; p = 0.028). However, this association became not significant when G-

allele PNPLA3 was added to the model (Table 3). Collectively, these data suggest that the

Fig 2. MASLD patients stratified according to H. pylori status and G-allele PNPLA3. Data are expressed as (%)

percentage of subjects. Chi-square test was used. * p< 0.05.

https://doi.org/10.1371/journal.pone.0310361.g002

Table 3. Univariate and multivariate binary logistic regression of H. pylori infection and MASLD. Data are

expressed as median (IQR, interquartile range), or percentage (%) of total. ns: non-significant.

Univariate Adjusted for Obesity,

Type-II DBT,

Hypertriglyceridemia and

Hypertension

Adjusted for Obesity,

Type-II DBT,

Hypertriglyceridemia,

Hypertension and G-

allele PNPLA3

MASLD, n (%) OR (95% CI) p OR (95% CI) p OR (95% CI) p
H. pylori (-) 45 (41)
H. pylori (+) 71 (62) 2.29 (1.34–3.92) 0.002 1.98 (1.08–3.64) 0.028 1.86 (0.98–3.51) ns

https://doi.org/10.1371/journal.pone.0310361.t003
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association of H. pylori with MASLD is influenced by the prevalence of G-allele PNPLA3, and

together may synergize to increase the risk of MASLD.

H. pylori infection, markers of liver injury, and fibrosis in MASLD subjects

Next, we evaluated the influence of H. pylori infection on non-invasive markers of liver injury

and fibrosis in our cohort of MASLD subjects (n: 116) (Table 4). H. pylori-positive status

showed no difference in total bilirubin, ALT, ALP, GGT, platelets, albumin, ferritin and

PNPLA3 genotype. Serum AST levels were significantly increase in H. pylori-positive subjects

(p<0.05) (Table 4). To further evaluate liver injury, non-invasive markers of fibrosis—FIB-4

score and liver stiffness measurement (LSM) by vibration control transient elastography

(VCTE)—was determined. H. pylori-positive status showed no difference in FIB-4 (Table 4).

LSM by VCTE was significantly increased in H. pylori infection (p<0.05) (Table 4). Further-

more, using cut-off values to rule-out significant/advanced fibrosis (FIB-4�1.3, LSM�5.8

kPa and LSM�8 kPa), we observed a significant trend of higher proportion of H. pylori-posi-

tive subjects with FIB-4�1.3 (44%, p 0.04), LSM�5.8 kPA (66%, p 0.027), and LSM�8 kPa

(39%, p 0.013) compared to H. pylori-negative patients (FIB-4�1.3 21%; LSM�5.8 kPa 40%,

LSM�8 kPa 13%) (Fig 3A and 3B).

Then, we assessed the association with H. pylori and G-allele PNPLA3 with non-invasive

markers of liver fibrosis, focusing on the MASLD G-allele PNPLA3-positive cohort (n: 92/116,

79%). H. pylori infection was significantly associated with elevated AST (p<0.05), but no dif-

ference was observed at ALT values (p ns) (Fig 4A and 4B). Non-invasive markers of liver

fibrosis, FIB-4, and LSM by VCTE, were increased in H. pylori-positive patients (p<0.05)

Table 4. H. pylori infection, non-invasive markers of liver injury and fibrosis in MASLD subjects. Data are expressed as median (IQR, interquartile range), or percent-

age (%) of total. For parametric continuous variables, Students’ t-test was used. For non-parametric continuous variables, Wilcoxon rank sum was used. For categorical

variables, Chi-square test was used. ns: non-significant.

Variable H. pylori (-) H. pylori (+) p

n (%) 45 (39) 71 (61)

Age, years Median (IQR) 52 (42–59) 53 (48.5–60) ns

Gender, female n (%) 27 (60%) 39 (55%) ns

BMI Median (IQR) 27.6 (26.8–31.1) 31.2 (27.4–34.1) ns

BMI� 30 n (%) 17 (38) 41 (58%) 0.036

Type-II DBT n (%) 15 (33) 23 (32) ns

HOMA Median (IQR) 2.5 (1.5–3.33) 2.8 (1.9–3.7) ns

Hypertension n (%) 17 (38%) 29 (41%) ns

Triglycerides� 150 mg/dl n (%) 13 (29%) 20 (28%) ns

Total bilirubin, mg/dL Median (IQR) 0.6 (0.5–0.9) 0.7 (0.6–1) ns

AST, IU/L Median (IQR) 21 (18–29) 28.0 (20–42)* 0.047

ALT, IU/L Median (IQR) 27 (17–43) 31 (21–48) * ns

ALP, IU/L Median (IQR) 84 (72–110) 96 (75–119) ns

GGT, IU/L Median (IQR) 33 (22–44) 39 (26–50) ns

FIB4 Median (IQR) 0.9 (0.8–1.3) 1.1 (0.9–1.7) ns

Platelets, 109/L Mean (SD) 235 (61) 236 (74) ns

Albumin, mg/dL Median (IQR) 4.1 (3.9–4.4) 4.0 (3.9–4.2) ns

Ferritin, mg/dL Median (IQR) 219 (115–304) 178.0 (96–350) ns

LSM, kPa Median (IQR) 5 (4.2–7.2) 6.8 (4.9–8.8)* 0.015

PNPLA3 CC, n (%) 10 (27.0) 8 (13.1) ns

CG, n (%) 16 (43.2) 32 (52.5)

GG, n (%) 11 (29.7) 21 (34.4)

https://doi.org/10.1371/journal.pone.0310361.t004
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(Fig 4C and 4D). Likewise, H. pylori infection was associated with a higher proportion of

patients with FIB-4�1.3 (49%, p<0.001), LSM� 5.8 kPa (73%, p 0.0013) and LSM� 8 kPa

(47%, p<0.001) (Fig 5A and 5B). Moreover, we assessed by logistic regression model the

impact of H. pylori status with FIB-4�1.3 and LSM� 8 kPa (Table 5). The OR for FIB-4�1.3

and LSM� 8 kPa with H. pylori infection was 2.76 (1.16–6.59; p = 0.022) and 3.97 (1.56–10.1;

p = 0.004), respectively. After adjusting for the most clinical relevant MASLD risk factors for

fibrosis (hypertension, hypertriglyceridemia, obesity and type-II DBT [1]), the OR for FIB-4

Fig 3. Non-invasive markers of high risk of significant/advanced fibrosis in patients with MASLD stratified

according to H. pylori status. A) FIB-4 score� 1.3 or<1.3. B) Liver stiffness measurement by vibration controlled

transient elastography (LSM by VCTE), stratified by LSM cut-offs to rule-out significant fibrosis< 5.8 kPa,

intermediate risk�5.8 kPa-<8 kPa, and to rule-out advanced fibrosis�8 kPa [50–52]. Data are expressed as (%)

percentage of MASLD subjects. Chi-square test was used. * p< 0.05.

https://doi.org/10.1371/journal.pone.0310361.g003
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�1.3 and LSM� 8 kPa with H. pylori-positive infection was 3.41 (1.28–9.01; p = 0.014) and

4.59 (1.55–13.65; p = 0.006), respectively. Remarkably, when G-allele PNPLA3 was added to

the model, this association remain unchanged (Table 5). Collectively, these data suggest that

H. pylori infection is associated with markers of liver fibrosis and may increase the risk of sig-

nificant/advanced fibrosis in MASLD subjects.

Fig 4. Non-invasive markers injury and fibrosis in patients with MASLD harboring G-allele PNPLA3 stratified according to H. pylori
status. A) AST values, UI/L. B) ALT values, IU/L. C) FIB-4. D) Liver stiffness measurement by vibration controlled transient elastography

(LSM by VCTE), kPa. Data are expressed as median (IQR, interquartile range). Wilcoxon rank sum test was used. * p< 0.05.

https://doi.org/10.1371/journal.pone.0310361.g004
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H. pylori infection, MASH, and fibrosis in biopsy-proven MASLD subjects

To more directly address the association of H. pylori infection with liver inflammation and

fibrosis, we next evaluated MASLD histological severity by NAS score and fibrosis stage in a

cohort of biopsy-proven MASLD (Table 6). The cohort comprise 101 patients with biopsy-

proven MASLD, with a median age of 54 years (IQR, 47–62), 41% female, with a mean BMI of

31.2 (SD, 4), and H. pylori-positive infection were detected in 37 out of 101 (36.6%) patients.

In this cohort, H. pylori-positive infection was significantly associated with higher GGT and

LSM (p<0.05) (Table 6). Histopathology from H. pylori-positive infection patients displayed

Fig 5. Non-invasive markers of high risk of significant/advanced fibrosis in patients with MASLD harboring G-

allele PNPLA3 stratified according to H. pylori status. A) FIB-4 score� 1.3 or<1.3. B) Liver stiffness measurement

by vibration controlled transient elastography (LSM by VCTE), stratified by LSM cut-offs to rule-out significant

fibrosis< 5.8 kPa, intermediate risk�5.8 kPa-<8 kPa, and to rule-out advanced fibrosis�8 kPa [50–52]. Data are

expressed as (%) percentage of MASLD subjects. Chi-square test was used.

https://doi.org/10.1371/journal.pone.0310361.g005
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increased ballooning grade, NAS score, and higher proportion of MASH subjects. Moreover, a

significant association with H. pylori-positive infection and increased fibrosis stage was also

observed (Table 6). Then, we focused on the interplay between H. pylori infection and G-allele

PNPLA3 with severity of MASLD histology (Fig 6). H. pylori-positive infection with G-allele

PNPLA3 was significantly associated with higher proportion of patient with MASH (84%),

versus H. pylori-negative status with G-allele PNPLA3 (47%), H. pylori-positive infection with-

out G-allele PNPLA3 (17%), and H. pylori-negative status without G-allele PNPLA3 (6%)

(p<0.001) (Fig 6A). Furthermore, consistent with our observation by non-invasive test in the

FD-MASLD cohort, the presence of significant/advanced fibrosis (Fibrosis stage�2) was sig-

nificantly increased in H. pylori-positive infection with G-allele PNPLA3 (61%), versus in H.

pylori-negative infection with G-allele PNPLA3 (39%), H. pylori-positive infection without G-

allele PNPLA3 (17%), and H. pylori-negative status without G-allele PNPLA3 (6%) (p: 0.001)

(Fig 6B). Collectively, these data suggest that H. pylori infection is associated MASLD histolog-

ical severity and fibrosis. Moreover, the combination of H. pylori infection and G-allele

PNPLA3 seems to increase MASLD severity higher than each trait alone.

Discussion

The principal findings of this study pertain to the potential association of H. pylori with

MASLD severity. Our results suggest that H. pylori infection is associated with: (i) cardiometa-

bolic risk factors for MASLD, (ii) steatotic liver phenotype influenced by the prevalence of G-

allele PNPLA3, (iii) increased AST and LSM by VCTE in MASLD subjects, (iv) an independent

risk of significant/advanced fibrosis by FIB-4 and LSM in MASLD subjects, (v) increased NAS

score and fibrosis stage, and (vi) the combination of H. pylori infection and the G-allele

PNPLA3 genotype appeared to exacerbate MASLD severity, indicating a synergistic effect.

Ethiopathogenic association between H. pylori infection and MASLD is a matter of debate

that was intended to be answered by various researcher worldwide from the bench and clinical

stand point [34, 58]. It is important to note that murine models of H. pylori infection do not

have a fatty liver phenotype, but under a high-fat diet, H. pylori-positive mice had more hepatic

steatosis and release of inflammatory mediators [59]. In patients with H. pylori infection, an

unfavorable cardiometabolic lipid profile featured by high triglycerides, total cholesterol and

LDL-C and decreased HDL-C levels were displayed [32]. Our study showed a correlation with

H. pylori infection with cardiometabolic risk factors and steatotic liver by ultrasound. Since the

pathophysiology of MASLD is only partially revealed, it is considered as a multifactorial

Table 5. Univariate and multivariate binary logistic regression of H. pylori infection with FIB-4>1.3 and

LSM� 8kPa. OR: odds ratio, CI: confidence interval, ns: non-significant.

Univariate Adjusted for Hypertension,

Hypertriglyceridemia,

Obesity and Type-II DBT

Adjusted for Hypertension,

Hypertriglyceridemia,

Obesity, Type-II DBT and

G-allele PNPLA3

OR (95% CI) p OR (95% CI) p OR (95% CI) p
MASLD LSM >8kPa, n

(%)

H. pylori (-) 7 (16)
H. pylori (+) 30 (42) 3.97 (1.56–10.1) 0.004 4.59 (1.55–13.65) 0.006 3.92 (1.31–11.71) 0.0015

MASLD FIB-4 >1.3, n

(%)

H. pylori (-) 9 (20)
H. pylori (+) 29 (41) 2.76 (1.16–6.59) 0.022 3.41 (1.28–9.01) 0.014 2.98 (1.11–8.13) 0.031

https://doi.org/10.1371/journal.pone.0310361.t005
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disorder, attributed to multiple or parallel “hits”, both genetic and environmental [6]. In this

regard, we evaluated the association of an environmental risk factor like H. pylori infection

and the rs738409 G-allele PNPLA3, the most important genetic variant associated with

Table 6. H. pylori infection, and clinical variables in biopsy-proven MASLD subjects. Data are expressed as median (IQR, interquartile range), mean (SD, standard

deviation), or percentage (%) of the total. For parametric continuous variables, Students’ t-test was used. For non-parametric continuous variables, Wilcoxon rank sum

test was used. For categorical variables, Chi-square test was used. ns: non-significant.

Variable Total cohort H. pylori (-) H. pylori (+) p

n (%) n: 101 n: 64 (63) 37 (37)

Age, years Median (IQR) 54 (47–62) 56.5 (47–62) 53 (47.2–60) ns

Gender, female n (%) 41 (41) 27 (42) 14 (38) ns

BMI Mean (SD) 31.2 (4) 30.6 (3.5) 32.1 (4.7) ns

BMI� 30 n (%) 59 (58) 36 (56) 23 (62) ns

Type-II DBT n (%) 65 (64) 41 (64) 24 (65) ns

HOMA Median (IQR) 3.5 (2.3–4.9) 3.2 (2.3–4.7) 3.8 (2.2–5.6) ns

Hypertension n (%) 50 (49) 31 (48) 19 (51) ns

Triglycerides� 150 mg/dl n (%) 48 (47) 34 (53) 14 (38) ns

LSM, kPa Median (IQR) 7.5 (6–10.9) 7 (5.5–9.1) 8.1 (6.8–17.9) 0.013

AST IU/L Median (IQR) 30 (23–44) 30 (23–41) 35 (21–49) ns

ALT IU/L Median (IQR) 36 (26–53) 35.5 (26–51) 36 (32–53) ns

FAL IU/L Median (IQR) 89 (76–119) 85 (73–145) 99 (82–118) ns

GGT IU/L Median (IQR) 45 (29–76) 41 (28–65) 56 (36–91) 0.037

Ferritin mg/dL Median (IQR) 311 (142–539) 348-161-551) 265 (135–496) ns

Platelets, 109/L Mean (SD) 214 (65) 220 (62) 202 (69) ns

PNPLA3 CC, n (%) 24 (24) 18 (28) 6 (16) ns

CG, n (%) 51 (50) 34 (53) 17 (46)

GG, n (%) 26 (26) 12 (19) 14 (38)

Liver Histology

Steatosis Grade 1, n (%) 44 (43.6) 27 (42.2) 17 (45.9) ns

2, n (%) 52 (51.5) 35 (54.7) 17 (45.9)

3, n (%) 5 (5) 2 (3.1) 3 (8.1)

Lobular Inflammation Grade 0, n (%) 6 (5.9) 6 (9.4) 0 (0) ns

1, n (%) 80 (79.2) 50 (78.1) 30 (81.1)

2, n (%) 15 (14.9) 8 (12.5) 7 (18.9)

Ballooning Grade 0, n (%) 31 (30.7) 27 (42.2) 4 (10.8) <0.001

1, n (%) 50 (49.5) 33 (51.6) 17 (45.9)

2, n (%) 20 (19.8) 4 (6.2) 16 (43.2)

NAS Score 1, n (%) 2 (2) 2 (3.1) 0 (0.0) 0.01

2, n (%) 12 (11.9) 11 (17.2) 1 (2.7)

3, n (%) 37 (36.6) 28 (43.8) 9 (24.3)

4, n (%) 29 (28.7) 15 (23.4) 14 (37.8)

5, n (%) 16 (15.8) 6 (9.4) 10 (27)

6, n (%) 5 (5) 2 (3.1) 3 (8.1)

MASH (NAS� 4) 0, n (%) 51 (50.5) 41 (64.1) 10 (27) 0.001

1, n (%) 50 (49.5) 23 (35.9) 27 (73)

Fibrosis Stage 0, n (%) 19 (18.8) 14 (21.9) 5 (13.5) 0.003

1, n (%) 43 (42.6) 31 (48.4) 12 (32.4)

2, n (%) 15 (14.9) 11 (17.2) 4 (10.8)

3, n (%) 6 (5.9) 4 (6.2) 2 (5.4)

4, n (%) 18 (17.8) 4 (6.2) 14 (37.8)

https://doi.org/10.1371/journal.pone.0310361.t006
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MASLD. We observed that H. pylori-infected subjects harboring G-allele PNPLA3 dramati-

cally increased the proportion of MASLD subjects to 71%, and when H. pylori and G-allele

both were negative. a higher proportion of subjects without MASLD (74%) was detected.

Then, by multivariate analysis, we revealed that the association of H. pylori with MASLD is

influenced by the prevalence of G-allele PNPLA3. Based on this observation, H. pylori infec-

tion may facilitate some metabolic derangements that predispose to steatotic liver phenotype

in subjects harboring G-allele PNPLA3.

Fig 6. Metabolic dysfunction-associated steatohepatitis (MASH) (NAS score� 4), and significant/advanced

fibrosis (Fibrosis� 2) in patients with biopsy-proven MASLD stratified according to H. pylori status and G-allele

PNPLA3. A) NAS score�4 or<4. B) Fibrosis stage� 2 or<2. Data are expressed as (%) percentage of MASLD

subjects. Chi-square test was used.

https://doi.org/10.1371/journal.pone.0310361.g006
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Liver fibrosis is the most relevant prognostic factor in patients with MASLD [60]. Previous

studies on murine models showed that H. pylori-infected mice had increased markers of liver

injury and fibrosis compared to uninfected mice [61]. A clinical study in morbidly obese

patients demonstrated, on histopathological approach, that H. pylori infection increased NAS

score and fibrosis [62]. Also, in a recent study form China using serological test for H. pylori
diagnosis, ultrasound attenuation parameter (UAP) for diagnosis of MASLD, and transient

elastography using FibroTouch, observed that H. pylori infection is a risk factor for increased

liver stiffness [57]. The precise mechanisms underlying the connection between gastric H.

pylori infection and extra-gastroduodenal diseases remain unclear. For instance, local inflam-

mation in the gastric and duodenal mucosa may lead to release of proinflammatory cytokines

that increase gut permeability and access to portal circulation [32]. In this regard, H. pylori
and other bacteria and toxins as well as cytokines may directly affect the hepatic parenchyma

leading to and inflammatory milieu that may activate stellate cells to generate fibrosis [32].

Our study showed a correlation with H. pylori-infection with elevated non-invasive markers of

liver fibrosis by FIB-4 score and LSM by VCTE. Our observation was independent of risk fac-

tors of disease severity such as type-II DBT, obesity and G-allele PNPLA3. Noteworthy, this

observation was further confirmed in the biopsy-proven MASLD cohort, and appear to have a

synergistic effect with G-allele PNPLA3 exacerbating MASLD severity. Confirmation from

mechanistic studies is needed to clarify the clinical role of H. pylori infection and fibrogenesis

in MASLD. In this regard, the interaction between host genetic polymorphism background, H.

pylori virulence genes and low-grade duodenal inflammation could explain high-risk of fibro-

sis in MASLD, and will be evaluated in our future research. It is beyond the scope of this study

to evaluate the impact of H. pylori eradication on MASLD markers of liver injury and fibrosis.

However, information is available from four clinical controlled studies [33, 63–65]. While this

four studies had disparate design, follow-up, and end points making it difficult to compare, it

seems that eradication therapy as adjunct to lifestyle intervention may improve non-invasive

markers of steatosis, fibrosis and inflammation [33, 63–65]. Therefore, whether H. pylori eradi-

cation influences the progression of MASLD is still controversial and needs to be confirmed

by multicentric studies in the future.

The strengths of this study are that it is a prospective evaluation from a well-defined

FD-MASLD cohort. Endoscopists and Pathologists were blinded to medical history before

evaluation. Non-invasive marker of liver fibrosis, FIB-4, and LSM by VCTE were performed in

all subjects. We choose FD patients for the current study because gastric biopsy samples are

mostly available, which is the gold standard for H. pylori infection diagnosis [66]. Also, FD

etiopathogenesis is not related to MASLD and may not increase selection bias of the cohort

[7, 17]. In the retrospective cohort of biopsy-proven MASLD, active H. pylori gastric infection

and PNPLA3 genotype were performed in all subjects.

The limitations of the study include: (1) population studied: Our cohort comprised of

South-American population of functional dyspepsia. Though we tried to investigate a cohort

whose characteristics could resembled those of the general population, the modality of cohort

recruitment did not allow us to affirm that our cohort was fully representative of the general

population. However, our cohort was recruited independently from the hypothesis concerning

the high risk of MASLD severity. (2) Based on the non-invasive nature of the study design in

FD-cohort, hepatic steatosis was detected by ultrasonography and fibrosis by FIB-4 score and

LSM by VCTE but not liver histology, so the absence of histologic data prevents us from

reporting the exact prevalence of steatohepatitis and advanced fibrosis. Noteworthy, LSM by

VCTE is the most validated non-invasive method to accurately screen fibrosis in MASLD and

can predict the occurrence of liver-related events in MASLD [43, 67]. (3) The retrospective

nature of the biopsy-proven MASLD cohort renders it susceptible to recall bias, the duration
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of H. pylori gastric infection is unknown, and the sample size could be small, but sufficient to

show robust statistical significance in major MASLD-histological endpoints.

In conclusion, the results of the current study suggest that H. pylori infection may play a

role in the progression of liver injury and fibrosis in patients with MASLD, particularly in

those with specific genetic predispositions like G-allele PNPLA3, highlighting the importance

of further investigation into the underlying mechanisms and potential therapeutic

implications.
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