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Resumen  
 
Las columnas de adsorción de lecho fijo son el método más aplicado a nivel industrial en el proceso de tratamiento 
de aguas residuales contaminadas. En este trabajo se propone un modelo matemático que describe las curvas 
ruptura del proceso de adsorción. El modelo fue aplicado para describir la adsorción del metal Cr (VI), altamente 
toxico, sobre el biopolímero quitosano, extraído de descartes pesqueros. Para ello se obtuvieron datos 
experimentales utilizando una columna a escala, a diferentes caudales y alturas del lecho, obteniendo en cada 
caso la curva de ruptura correspondiente y el tiempo de ruptura tb (tiempo de saturación de la columna). En base 
a estos datos se desarrolló un modelo matemático probabilístico con un enfoque bayesiano utilizando el programa 
R. El modelo propuesto representó una buena descripción general del proceso de adsorción y en todos los casos 
el tb experimental se encontró próximo o dentro del intervalo de credibilidad del modelo. Asimismo, estableciendo 
la concentración inicial del adsorbato y la velocidad de flujo, los parámetros del modelo obtenidos, se podrían 
usar para escalar la curva y el tiempo de ruptura para diferentes alturas del lecho. Por lo expuesto el modelo 
representa una opción para el diseño de columnas de adsorción de contaminantes. 

 

Statistical Modelling of Fixed-Bed Columns for Heavy Metal 
Adsorption 

 
Abstract  
 
Continuous Fixed-Bed Column Adsorption for wastewater treatment provides the most practical application for 
the industry. The objective of this work was to develop a statistical model capable of simulating the dynamic 
behavior of the fixed-bed adsorption. The model was applied to describe adsorption mechanism of Cr(VI), one of 
the most toxic metals in water, onto chitosan flakes, obtained from the waste of crustacean industry. For the 
design of a column adsorption system, the basic information is the determination of the breakthrough curve and 
the breakthrough point time tb (Saturation time of the column). The experimental data were obtained using a glass 
column in which the chitosan particles were introduced. The continuous passage of Cr(VI) was carried out at 
different initial concentrations and bed heights. Then, the model projections were compared with experimental 
data in a Bayesian framework, programmed in software R. The proposed model represented a good description 
of the column adsorption. In all cases, the experimental tb was into or near to credibility interval.  According to the 
model, setting initial concentration and flow velocity, the model parameters obtained can be used to scale up the 
breakthrough curve and the breakthrough time for different bed heights.  Therefore, the model represents an 
option for the design of adsorption columns for wastewater treatment. 
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INTRODUCTION  
 
Water pollution by heavy metals is considered one of the major environmental problem due to the adverse effects 
of these contaminants on ecosystems and on human health. The adsorption method is the most used for its 
versatility and low cost. Adsorption can be classified into static adsorption (batch adsorption) and dynamic 
adsorption (continuous adsorption). Although batch adsorption studies provide useful information on the 
application of adsorption to the removal of specific waste constituents, continuous column studies provide the 
most practical application of this process in wastewater treatment (Xu et al., 2013). A dynamic adsorption usually 
occurs in an open system where adsorbate solution continuously passes through a column packed with adsorbent.  
 
For column adsorption, how to determine the breakthrough curve is a very important issue because it provides 
the basic but predominant information for the design of a column adsorption system (Xu et al., 2013). In these 
sense, computational simulation has proven to bring an advantage in terms of costs and time, helping to optimize 
the adsorption process. In general, the prediction of column dynamics behavior requires the simultaneous solution 
of a set of coupled partial differential equations (PDEs) representing material, energy, and momentum balances 
over a fixed bed with the appropriate boundary conditions. Because the simultaneous solution of a system of 
PDEs is tedious and time consuming, the use of simplified models capable to predict fixed-bed behavior is 
desirable (Saleh Shafeeyan et al., 2014). 
 
In column adsorption, concentrations of the solute in fluid phase and of the solid adsorbent phase change with 
time and with position in the fixed bed, as adsorption proceeds (Geankoplis, 1993).   Taking into account this kind 
of process, a statistical model may be suitable to describe the probability that the solute is adsorbed at different 
heights of the column, as well as the proportion of solute adsorbed as a function of time. The statistical model can 
be confronted with experimental data and adjusted using tools of classical statistics, as well as Bayesian statistics. 
Bayesian inference in particular, is being used in different areas of science like economic, health, biological and 
engineering studies (Gelman et al., 1992, Condit, 2007). Bayesian statistic natively incorporates the idea of 
confidence, it performs well with sparse data, and the model and results are highly interpretable and easy to 
understand. It is simple to use what you know about the process along with a relatively small or messy data set 
to project what you should expect about the process in the future.  
 
One of the heavy metals that has been a major focus in wastewater treatment is hexavalent chromium Cr(VI) 
(Hena, 2010). The use of chromate and dichromate has many industrial applications such as in textile, 
electroplating, leather tanning, cement preservations, paints, pigments and metallurgy industries. Cr(II), Cr(III) 
and Cr(VI) are the three oxidation states for chromium in nature, but only the last two are stable (Aydın and Aksoy, 
2009). Chromium is considered as a priority hazardous pollutant and the European Union defined severe 
environmental regulations to set the maximum level of hexavalent chromium allowed in industrial and civil 
wastewaters (200 g L−1), as well as in superficial and underground water bodies (5 g L−1) (Di natale et al., 2015). 
The United States Environmental Protection Agency has laid down the maximum contaminant level for Cr (VI) 
into inland surface waters as 0.1 mg/L and in domestic water supplies to be 0.05 mg/L (Sivakami et al., 2013). 
Commonly techniques to remove chromium from industrial wastewaters include precipitation, membrane filtration, 
solvent extraction, ion exchange, activated carbon adsorption electro deposition and biological processes (Di 
natale et al., 2015). In the past, activated alumina, active carbon, polymeric hybrid, and natural solids have been 
used as adsorbents for the removal of heavy metals from water. In the last years, the use of biopolymers as 
adsorbents is an emerging technique because they are cheap, abundant and environmentally safe. Chitosan is a 
natural polymer obtained from crustacean waste and has proved to be an effective chromium hexavalent (Cr(VI)) 
adsorbent (Dima et al., 2015).  
 
The objective of the present work was to develop a statistical model capable of simulating the dynamic behavior 
of a fixed bed adsorption. The model proposed was applied to describe adsorption mechanisms of Cr(VI) onto 
chitosan flakes. 
 
EXPERIMENTAL STUDIES  
 
Chitosan production 
 
Shrimps shells (Pleoticus muelleri) were used for the extraction of chitosan. The shells were provided by the 
seafood industries from Puerto Madryn, Patagonia-Argentina. Chitosan particles (CH) were obtained by 
deacetylation of chitin according to technic proposed by Dima et al (2015).  
 
Fixed-bed column adsorption studies 
 
The fixed-bed column studies were performed using a laboratory-scale glass column with an internal diameter of 
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2 cm and a length of 25 cm. Column was packed with 0.27, 0.42 and 0.72 g of CH to obtain  defined bed heights 
of the adsorbent (0.7, 1.5 and 2 cm of bed depths respectively). Cr(VI) solution at pH=4 and at different initial 
concentrations (C0= 90, 150 and 200ppm) was fed continuously at  the bottom of the  column with a flow rate of 
3 ml/ min using a pump. Exit chromium solution (effluent solutions) (Ct) was collected at regular time intervals, 
until saturation. The effluent concentration was measured by 1,5- diphenylcarbazide method using a UV–visible 
spectrophotometer operated at 540 nm. The obtained data were included in a breakthrough curve (Ct/C0 vs time) 
for further analysis.  
 
Column data analysis 
  
As the adsorbate solution travels through the column, the adsorption zone (where the bulk of adsorption takes 
place) starts moving out of the column and the effluent concentration starts rising with time. The time necessary 
for the effluent concentration to reach a specific breakthrough concentration of interest is called the breakthrough 
point time (tb) (Chen et al., 2012).  
 

 
Fig. 1. Scheme of the adsorption zone progress through a fixed bed column and breakthrough curve in the 

continuous system 
 
In the present work, the breakthrough point time (tb) for the column operation was defined as the time necessary 
for the Cr(VI) concentration at the exit  (Ct) to be 0.1% of the feed concentration (C0). Breakthrough curves were 
plotted in terms of the ratio of concentrations (Ct/C0) vs.  time (t) for different  operating conditions (Chen et al., 
2012). The breakthrough curves showed the performance of the fixed bed column. The time for breakthrough 
appearance and the shape of the breakthrough curve are very important characteristics for determining the 
operation and dynamic response of an adsorption column (Chen et al., 2012). The column performance was 
investigated by calculating the breakthrough time and adsorption capacity. The adsorption capacity (qb) was 
calculated according to Lara et al (2016):  
 

𝑞𝑏 =
𝑄𝑣𝑡𝑏𝐶0

1000𝑚
                                                                                                                                           (1) 

 
where qb is the bed capacity at breakthrough point (mg/g), tb is the breakthrough point time (ie to reach  
Ct/C0=0.1), m is the bed mass (g), C0 is the initial adsorbate concentration (mg/L), and Qv (m3/min) is the 
volumetric fluid  
 
STATISTICAL MODELLING 
 
Bayesian statistical methods use Bayes' theorem to compute and update probabilities after obtaining new data. 
This theorem describes the conditional probability of an event based on data as well as prior information or beliefs 
about the event. In Bayesian inference, Bayes' theorem can be used to estimate the parameters of a probability 
distribution or statistical model. Since Bayesian statistics treats probability as a degree of belief, Bayes' theorem 
can directly assign a probability distribution that quantifies the belief to the parameter or set of parameters. 
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General adsorption model  
 
Let us assume that we have a column of height h and a solute is starting to flow at time t = 0, with a linear flow v. 
To model the adsorption process in the column, the solute is considered to be adsorbed by the adsorbent at height 

x at time t, with a probability distribution  𝐹𝑎(𝑥, 𝑡)  and density fa(x, t). The distribution fa(x, t)  is modeled as a 
combination of two processes: the displacement of the adsorption zone and the trajectory of the solute through 
the unsaturated zone. The displacement of the front of the adsorption zone is modeled through a probability 
density fd(x, t)  that represents the probability that the adsorption front is at the height x at time t. The solute path 
is modeled through a density fr (x) that represents the probability that the solute travels a distance x, from an 
available adsorption zone until it is adsorbed. Taking into account these processes fa(x, t) can be calculated as: 
 

𝑓𝑎(𝑥, 𝑡) = ∫ 𝑓𝑑
𝑥

0
(𝑥 − 𝑦, 𝑡 −

𝑦

𝑣
) 𝑓𝑟 (𝑦)𝑑𝑦                                                                                                          (2)

  
representing the multiplication  of the probability that the solute exceeds the adsorption front at the height x - y, at 
time t – (y / v), by  the probability that then, moving at speed v, it travels a height y until it is absorbed at the height 
x at time t. 
 
For a given time t, the complement of the cumulative probability  1 − 𝐹𝑎(𝑥, 𝑡)  represents the concentration profile 
in the fluid, that is the relative concentration C/C0 at a height x, when x varies between 0 and h (Geankoplis, 1993). 
Then 𝐶(𝑡) = 1 − 𝐹𝑎(ℎ, 𝑡) is the function that represents the breakthrough curve, and the breakthrough time of the 
model is t= tb such that C(tb) = 0.1. 
 
Normal Model 
  
As a first simplification we will assume that the column extends between −∞ and + ∞ beyond the region occupied 
by adsorbent between 0 and h. We will model the probability distributions with normal densities fN (x|μ, σ) having 
mean μ  and  standard deviation σ that depend on certain parameters to be estimated. Specifically, for the 
displacement of the adsorption zone we will consider a normal density with mean 𝑣𝑑𝑡  and standard deviation σd,   
fd(x, t) = fN(x|vdt, σd), where vd corresponds to the linear velocity of the adsorption zone displacement and vd.t is 
the mean height of the adsorption front. For the distance of the solute displacement, until it is absorbed,   we will 
consider a normal density with mean μr and standard deviation σr, fr(x) = fN (x | μr, σr). With these considerations, 
and integrating Eq. (2) from −∞ to x, fa(x, t) has a normal distribution: fa(x, t) = fN(x | μa, σa), with a mean: 
 

𝜇𝑎(𝑡) = 𝑣𝑑𝑡 + 𝜇𝑟 (1 −
𝑣𝑑

𝑣
)                                                                                                                                    (3) 

 
and standard deviation 
 

𝜎𝑎 = √𝜎𝑑
2 + 𝜎𝑟

2 (1 −
𝑣𝑑

𝑣
)
2

                                                                                                                                     (4) 

 
Since σa

2 is a linear combination of σd
2 and σr

2 these two variances cannot be estimated independently (that is, 
deviations for each particular process cannot be obtained). Then, a single parameter σa is considered to describe 
the standard deviation associated with both processes. Therefore, the breakthrough curve projected by this model 
is given by the function 
 

𝐶(𝑡|𝑣𝑑,𝜇𝑟, 𝜎𝑎) = 1 − 𝑓𝑁(𝑥|𝜇𝑎(𝑡), 𝜎𝑎)  

 

                           =
1

2
+

1

2
 erf (

𝜇𝑎(𝑡)−ℎ

√2𝜎𝑎
)      

 

                           =
1

2
+

1

2
 erf (

𝑣𝑑𝑡+𝜇𝑟(1−
𝑣𝑑

𝑣⁄ )−ℎ

√2𝜎𝑎
)                                                                                                         (5) 

     
where erf is the error function.  
 
Considering a change of variables in eq (5), given by  
 

𝑣̃𝑑 = 𝑠. 𝑣𝑑 
 



PUCP 14° Congreso Interamericano de Computación Aplicada a la Industria de Procesos 
del 21 al 24 de octubre 

 

 765  

 

𝜇̃𝑟 =
𝑠(𝜇𝑟(1−

𝑣𝑑
𝑣⁄ )−ℎ)

(1−𝑠
𝑣𝑑
𝑣

)−ℎ
                                                                                                                                              (6)  

 
𝜎̃𝑎 = 𝑠𝜎𝑎 
 
it follows that  𝐶(𝑡|𝑣𝑑 , 𝜇𝑟, 𝜎𝑎) = 𝐶(𝑡|𝑣̃𝑑 , 𝜇̃𝑟 , 𝜎̃𝑎).  Therefore there are infinite combinations of the parameters that 

produce the same function C(t), and as a consequence   𝑣𝑑 , 𝜇𝑟, and  𝜎𝑎  cannot be simultaneously estimated from 
the data of the experimental breakthrough curve. Then assuming μr = 0 (since it is considered that the adsorption 
kinetics of the solute is instantaneous when it meets the available adsorbent), a model with two independent 
parameters is obtained. The applied model is then: 
 

𝐶(𝑡|𝑣𝑑,𝜎𝑎) = 1 − 𝐹𝑁(ℎ|𝑣𝑑 . 𝑡, 𝜎𝑎) =
1

2
+

1

2
 erf (

𝑣𝑑𝑡−ℎ

√2𝜎𝑎
)                                                                                             (7) 

 
The parameters of the model are:  vd the speed of movement of the adsorption zone and σa the standard 
deviation of the position of the adsorption zone front. Likewise, the breakthrough point of this model can be 
calculated by solving: 
                                                   

𝐶(𝑡𝑏|𝑣𝑑,𝜎𝑎) = 1 − 𝐹𝑁(ℎ|𝑣𝑑 . 𝑡𝑏, 𝜎𝑎) = 0.1, that is , 𝐹𝑁(ℎ|𝑣𝑑 . 𝑡𝑏, 𝜎𝑎) = 0.9, resulting: 

 

𝑡𝑏 =
1

𝑣𝑑
(ℎ − 𝜎𝑎Φ

−1(0.9)), were Φ-1 is the Probit function                                                                                   (8) 

 
Parameters Estimation 
 
A Bayesian approach was used in which, based on prior probability distributions of the parameters and a likelihood 
function, the projections of the model are compared with the experimental data to obtain posterior distributions of 
the parameters (Gelman et al., 1992). Given the conditions of the column: initial concentration C0, linear flow rate 
v and height h, and given a series of experimental observations of the output relative concentration {xi}, taken at 
times {ti} respectively, a normal likelihood function was used to confront it with the projections of the model. The 
logarithm of the likelihood function was calculated as 
 

𝐿𝑜𝑔𝐿(𝑣𝑑 , 𝜎𝑎|{𝑥𝑖 , 𝑡𝑖}) = ∑ log(𝑓𝑁(𝑥𝑖|𝐶(𝑡𝑖|𝑣𝑑, 𝜎𝑎), 𝜏))𝑖                                                                                             (9) 

 
where τ corresponds to a new parameter that represents the observation error associated with the model. In order 
to estimate the posterior parameters distributions, uniform prior distributions were assumed within certain 
admissibility intervals for each parameter. The intervals considered were: [0, v = 0.95] for vd, [0, 2] for σa, and [0, 
0.1] for τ.  A Gibbs sampler was adopted, that is a Markov chain Monte Carlo (MCMC) algorithm for obtaining a 
sequence of posterior observations, which are approximated from the multivariate posterior probability distribution 
(Carlin et al., 1992, Condit el al., 2007).  The result is a posterior sample of the values of each parameter, from 
which posterior samples of the breakthrough curves and the breakthrough time tb are obtained according to Eqs 
(7) and (8). Then, median and credibility intervals of 90% were calculated from posterior samples. Gibbs sampling 
was programmed in R (R Core Team 2019), using a metropolis algorithm. For this sampling, 100,000 simulations 
were run, discarding the first 10000 as burn-in and thinning the remaining by sampling every 10th (in order to refine 
the sampling and avoid autocorrelation), finally producing 9000 posterior samples.  
 
RESULTS AND DISCUSSION   
 
According to Eq (1) there was a good capacity of adsorption (qb) of Chromium (VI) onto chitosan particles. 
Likewise, a decrease in qb with the initial chromium concentration was observed (Table 1). 
 
Table 1. Adsorption capacity (qb), estimated values of parameters (𝑣𝑑 , 𝜎𝑎) (median and 90% credible interval), 
and fit error (RMSE) as a function of column height and initial chromium concentration 

C0 
Bed 

height 
(h) 

qb 
Experimental 

tb (min) 
vd σa RMSE 

Model 
tb (min) 

BDTS 
tb (min) 

90 0.7 108 100 
0.004 (0.003-

0.005) 
0.140 (0.116-

0.169) 0.044 
136 (125-

145) 103 

150 0.7 102   57 
0.008 (0.007-

0.009) 
0.206 (0.178-

0.242) 0.031 56 (51-60)   40 
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According to Gibbs sampler used for the model proposed, posterior estimates of the breakthrough curve fit to the 
experimental data well (Figure 2), indicating that the statistical model with two parameters is adequate to describe 
the adsorption process in general. The error parameter of the model was τ = 0.036 posterior median, with (0.033, 
0.040) 90% credible interval.  
The root-mean-square error (RMSE) was used to measure the error fit, that is the differences between predicted 

and experimental points: = √
∑(𝐶𝑒𝑥𝑝−𝐶𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)2

𝑁
  . The root mean square error of the breakthrough curve range 

between 0.019 and 0.056 for the 9 columns analyzed (Tabla1).  
 

 
Fig. 2. Breakthrough curve as a function of height of the column and the initial chromium concentration. 

Experimental data (Points). Model breakthrough curve (Full lines). Credible interval (Dotted lines) 
 
According to the model proposed, estimated values of both parameters (𝑣𝑑 , 𝜎𝑎) increased along with the initial 
concentration (Figure 3). This is the expected behavior since more concentration implies more solute per time 
unit traveling in the column. On the other hand, no clear trend between estimated parameters and bed height (h) 
was observed (Figure 3 and Table1). Moreover, according to Geankoplis (1993) the breakthrough curve slope 
(that represents the mass-transfer zone width) depends on the fluid velocity and is essentially independent of 
column height. This independence of h is clearly observed in the model parameters for low concentration (90 
ppm) with near identical estimated values of vd and very close values of σa for the different bed heights (Table1, 
Figure 3).  
 
It is interesting to note that the model proposed can be used to scale the height of the column.  Assuming 

200 0.7   15    6 
0.025 (0.024-

0.026) 
0.466 (0.419-

0.520) 0.056 4 (1-7) 0.4 

90 1.5 163 260 
0.004 (0.003-

0.005) 
0.215 (0.189-

0.245) 0.029 
291 (280-

300) 252 

150 1.5   84   76 
0.012 (0.011-

0.013) 
0.524 (0.468-

0.588) 0.027 71 (64-76) 119 

200 1.5   37   26 
0.016 (0.014-

0.017) 
0.843 (0.747-

0.948) 0.039 27 (19-33)  40 

90 2.0 128 341 
0.005 (0.004-

0.005) 
0.311 (0.260-

0.367) 0.019 
355 (337-

371) 346 

150 2.0 123 196 
0.007 (0.006-

0.008) 
0.493 (0.445-

0.548) 0.035 
201 (192-

210) 169 

200 2.0   62  74 
0.017 (0.016-

0.018) 
0.637 (0.574-

0.705) 0.028 71 (66-75)  65 
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independence from the bed height h and for a given column condition: initial concentration (C0) and flow linear 
velocity (v), model parameters, vd and σa, can be used in Eqs (7) and (8) to scale the breakthrough curve and the 
breakthrough point time for other height values,  at least as a first approximation. 
 

Fig. 3. Performance of Bayesian model parameters (vd, σa) as a function of initial chromium concentration, for 
different bed heights 

 
The applied model assumed that the adsorption kinetics of the solute is instantaneous when it meets the available 
adsorbent (μr = 0). This assumption is consistent with the observed results for chromium - chitosan system in 
batch studies (Dima et al., 2015). On the other hand, if we consider a positive value of μr this would  correspond 
to a displacement of the breakthrough curve, eq (5), and will only produce  a proportional increase in vd and σa 
parameters (eq 6) (without changes in the general parameters performance).  
 
Comparison with other adsorption models  
 
Different mathematical models have been used to describe and predict the breakthrough curves and breakthrough 
point time of an adsorption column. Mathematical equations such as Yoon–Nelson, Thomas, Bohart–Adams and 
BDTS (Bed-Depht Service Time analysis) are usually used to match experimental and model data (Chen et al., 
2012, Mohan et al., 2017).  
 
Thomas model assumes plug flow behavior in the bed, and uses Langmuir isotherm for equilibrium, and second-
order reversible reaction kinetics. This model is suitable for adsorption processes where the external and internal 
diffusion limitations are absent. The linearized form of Thomas model can be expressed as follows:  
 

ln (
𝐶0

𝐶𝑡
− 1) =

𝐾𝑇𝐻𝑞0𝑚

𝑣
− 𝐾𝑇𝐻𝐶0𝑡                                                                                                                     (10)                                                

where: KTH (mL/min mg) is the Thomas rate constant; q0 (mg/g) is the equilibrium of the adsorbate uptake per g 
of the adsorbent; C0 (mg/L) is the initial chromium concentration; Ct (mg/L) is the outlet concentration of chromium 
at time t; m (g) the mass of adsorbent, v (mL/min) the flow rate and t total (min) stands for flow time. 
 
On the other hand, the Bed-Depht Service Time analysis (BDTS) model is a widely used model, which is based 
on Bohart -Adams equation. The BDST model gives a simple relationship between breakthrough point time (tb) 
and bed height (h) in terms of BDTS parameters.  
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To compare these models with the statistical model proposed in the present work the evaluation of the 
breakthrough curves using the Yoon–Nelson, Thomas and Bohart-Adams models was carried out. The entire 
breakthrough curve was best predicted by Thomas model (eq.10), while the Bohart-Adam model described 
satisfactorily the initial portion of the curves. The RMSE for these models ranged between (0.03-0.17) for Thomas 
model and between (0.02-0.11) for Bohart-Adam model. These RMSE values are in the range, or are higher, than 
the RMSE values calculated for the Bayesian model proposed (Table 1). In contrast, the Yoon –Nelson model 
was the one that least fit the experimental data in comparison with the other applied models, showing the higher 
RMSE values (0.09-0.69).   
 
It can be observed, that in all cases, the tb experimental was into or near to credibility interval of model proposed 
tb, while BDTS model only predict the tb well at low concentrations (Table1).  
 
CONCLUSIONS  
 
A statistical model capable of simulating the dynamic behavior of the fixed-bed adsorption was developed. The 
model was applied to describe adsorption of Cr(VI), one of the most toxic metals in water, onto chitosan flakes, 
obtained from the waste of crustacean industry.  
 
Experimental data, for different operating conditions, were obtained using a glass column. Then, assuming normal 
distributions, the model projections were compared with experimental data in a Bayesian framework. 
 
The proposed statistical model represented a good description of the adsorption column. The root mean square 
error (error fit, RMSE) of the model was in the range, or even lower  than the error fit calculated for the other 
models described in the literature. In all cases, the experimental breakthrough point time (tb) was into or near to 
model credibility interval. 
 
As a first approximation, setting  the initial concentration and the flow linear velocity, the model parameters vd and 
σa can be used to scale the breakthrough curve and the breakthrough point time for different bed height values.   
 
Further analysis and investigations over the model and the Bayesian posterior estimators are needed to study its 
applicability to other column configurations. Therefore, the model represents an option for the design of adsorption 
columns for wastewater treatment. 
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