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PROCESS DESIGN AND CONTROL

Design of Dynamic Experiments in Modeling for Optimization of Batch Processes

Ernesto C. Martinez,*" Mariano D. Cristaldi," and Ricardo J. Grau®

INGAR (CONICET—UIN), Avellaneda 3657, Santa Fe S3002 GJC, Argentina, and INTEC (CONICET—UNL),
Guemes 3450, Santa Fe 3000, Argentina

Finding optimal operating conditions fast with a scarce budget of experimental runs is a key problem to
speeding up the development of innovative products and processes. Modeling for optimization is proposed as
a systematic approach to bias data gathering for iterative policy improvement through experimental design
using first-principles models. Designing dynamic experiments that are optimally informative in order to reduce
the uncertainty about the optimal operating conditions is addressed by integrating policy iteration based on
the Hamilton—Jacobi—Bellman optimality equation with global sensitivity analysis. A conceptual framework
for run-to-run convergence of a model-based policy iteration algorithm is proposed. Results obtained in the
fed-batch fermentation of penicillin G are presented. The well-known Bajpai and Reuss bioreactor model
validated with industrial data is used to increase on a run-to-run basis the amount of penicillin obtained by
input policy optimization and selective (re)estimation of relevant model parameters. A remarkable improvement
in productivity can be gain using a simple policy structure after only two modeling runs despite initial modeling

uncertainty.

1. Introduction

The best use of a model through proper handling of its
inherent uncertainty is a recurrent issue in the vast literature
related to optimization methods for batch processes.' 2> There
are two extreme assumptions which can be made regarding
modeling uncertainty and available measurements in model-
based dynamic optimization.'* One of the idealized situations
is the perfect model assumption. In this case, it is assumed that
it is feasible to find an optimal parametrization of a structurally
correct model comprised of all thermodynamic and kinetic
relationships required to comprehensively describe the batch
process dynamics of interest. Under this postulate there is no
need for optimal operation to measure and feedback key
variables from the batch process. The nominal optimal policy
derived from the perfect model is applied “open loop” since it
is robust enough to compensate in advance for any source of
process variability and to anticipate the detrimental effect of
any disturbance. The other extreme situation is the comprehen-
sive instrumentation condition. This condition refers to the case
where all state variables of the process can be readily measured
online with sufficient accuracy and frequency. If everything that
matters can be properly measured, it can be easily argued that
the need for an accurate first-principles model is lessened and
measurement-based dynamic optimization® is a much more
appealing alternative.

Unfortunately, neither of the above idealized assumptions is
valid in batch industrial environments.' ~ Thus, migration from
laboratory conditions to production runs is often made with high
levels of uncertainty about the best input policy. Modeling for
optimization®> has become of crucial concern as the limited
number of costly runs performed during process development
and scale-up leave little room for accurate modeling of batch

* To whom correspondence should be addressed. Tel.: +54 (342)
4534451. Fax: +54 (342) 4553439. E-mail: ecmarti @santafe-conicet.
gov.ar.

TINGAR.

*INTEC.

10.1021/ie8000953 CCC: $40.75

processes. One central concern in modeling for optimization is
how experimental design in the model development life cycle
should be addressed considering poor knowledge about phe-
nomena involved, poor reproducibility of batch run outcomes,
and modeling bias inherited from laboratory scale experimenta-
tion. Modeling for optimization constitutes thus a shift from
the traditional modeling approach based on the separation
between a process model and its intended use for simultaneous
model development and process optimization. In the latter case,
the purpose of modeling is to bias experimentation and data
gathering to help achieve a near-optimal operating condition.
Different model hypotheses comprising structure and param-
etrization upon selectively obtained data are postulated, refined,
and discharged in the search for iterative improvement of the
operating policy. Each new experiment in the sequence of batch
runs must be able to bring new data to significantly reduce the
uncertainty regarding optimal operation.

In modeling for optimization, it is convenient to differentiate
between two building blocks for model identification: (i) first-
principles hypotheses about the inner workings (conservation
equations, constitutive laws, etc.) of the process and (ii) data
bias that characterizes the actual (observed) behavior of the
process under study through parameter identification. As a result,
model development for batch process optimization cannot be
entirely knowledge-driven or measurement-driven alone. Instead,
the strategy for model development should necessarily be one
that takes the best of both worlds. One avenue for doing this in
a reaction system (the most ubiquitous for batch systems),
initially proposed by Georgakis et al.,”® is tendency modeling.
A “tendency model” is a low-order, nonlinear, dynamic model
that approximates the stoichiometry and kinetic relationships
of a process using the available plant data along with funda-
mental knowledge of the process characteristics. The model
structure and parameters are incrementally updated as more data
become available.

The main use of a tendency model is to determine a direction
toward the optimum. For this to be feasible, the model should
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Figure 1. Integration of model development with input policy optimization. (a) Traditional approach. (b) Modeling for optimization approach.

be able to extrapolate to operating conditions quite different
from those initially used for model identification. First-principles
and constitutive laws incorporated while building the model
hopefully provide this capability by constraining the degrees
of freedom available for data fitting. Since tendency modeling
was first proposed,”® a number of new developments and
successful applications have been reported.” 2 The issue of
model structure identification from process data has attracted a
great deal of attention.'°”!” Singular value decomposition'®''
and structured target factor analysis'*'®72° have proved to be
very successful tools for many examples. Also, a methodology
to quantify the impact of model parametric uncertainty on the
uncertainty of the predicted optimal operating condition has been
developed.'> 8720

In order to achieve the goal of optimal operation of batch
processes in the face of modeling uncertainty, a number of
requirements are imposed on modeling for optimization to make
an impact on industrial practice. A key issue is how to design
dynamic experiments that are optimally informative in order to
reduce the uncertainty about the most profitable input policy.
As data gathering is biased toward the most profitable operating
condition, model parameters and structure may conveniently be
updated. Despite the importance of this problem, there is no
previous work on the development of experimental design
techniques addressing the more specific objective of model
development for optimization. The problem of increasingly
biasing data gathering in modeling for optimization is formulated
here as follows: How does one adjust the time-varying controls,
initial conditions, and length of each dynamic experiment to
generate the maximum amount of information for the purpose
of significantly reducing the uncertainty regarding the location
of the process optimum? The notion of a dynamic experiment>*
highlights the fact that some control variables are time-varying
during the experiment, which rules out using standard experi-
mental design techniques such as response surface methodology.
In this work, systematic design of dynamic experiments is aimed
at not reducing parametric uncertainty comprehensively but at
the more specific objective of process optimization rather than
accurate modeling.

2. Modeling for Optimization

Most optimization techniques are model based, and since
reliable models are rarely available for batch processes, seeking
to operate them optimally is a difficult problem to solve.'*?’

In the attempt to compensate for any process—model mismatch,
optimal operation under uncertainty requires using measure-
ments from carefully designed experiments to improve on a run-
to-run basis from an initial input policy. The standard procedure
consists of iteratively using new measurements to increasingly
bias model parameter estimation and later resorting to the
updated model for policy improvement.>* The underlying idea
of “modeling for optimization”*?*’ is to identify an imperfect
model that allows computing inputs that are nearly optimal for
the process. In contrast, the goal of parameter precision in
detailed process modeling is to come up with a model that, for
given inputs, can accurately predict the outputs of the process
over a wide range of operating conditions.?” Since the utility
of model for a system or process must be assessed with regard
to a purpose, in modeling for optimization the model is
understood as a means to find a near-optimal operation policy
despite incomplete understanding of process dynamics and
uncontrollable disturbances affecting the state evolution of a
batch. Thus, the process model is not an end in itself as it is in
kinetic studies?® where experiments are designed to reduce
parametric uncertainty in an accurate model.>***>

The main objective of modeling for optimization is stated here
as designing informative experiments to guide the search for the
optimum operating policy with minimum experimental effort based
on tendency models. The model identification strategy chosen for
reducing parametric uncertainty will influence greatly the number
of modeling runs, the cost involved, and the length of time required
to accomplish the objective of near-optimal operation. Ideally, data
gathering and model identification need to be progressively biased
toward the most profitable operating policy by selectively reducing
the uncertainty in model parameters that affect significantly the
chosen performance index. As expected, such bias will give rise
to a model parametrization which is less capable of providing
accurate performance predictions when the process is run far from
normal operating conditions. Accordingly, model identification
bearing in mind optimization differs significantly from increasing
parameter precision in detailed model development. It is worth
noting that if there is process—model mismatch due to structural
errors, as is often the case in batch processes, seeking to improve
parameter precision may become a futile and very costly undertak-
ing from the point of view of input optimization.**

As shown in Figure 1, modeling for optimization proposes
an entirely different approach for relating experimental design
with model-based dynamic optimization.” Traditionally (see



Figure la), an accurate process model is developed first and,
only once the model parameters have been comprehensively
validated, dynamic optimization is undertaken. Consequently,
a great deal of experimentation is spent aiming to reduce both
structural and parametric uncertainty by obtaining data over a
wide range of operating conditions which permit derivation and
testing of an accurate model hypothesis. This course of action
is acceptable only if choosing far from optimal operating policies
is not an issue from the safety or economy point of view and
when the budget for experimentation is not tightly constrained
in terms of time and money. However, due to an incomplete
understanding of the inner workings of the process and limited
room for exploring dangerous or low performance operating
conditions, model development for optimization should be
conveniently integrated with policy iteration to quickly bias data
gathering toward near-optimal operation as shown in Figure 1b.
Experimental design for optimization thus has a very different
scope and objectives to satisfy for uncertainty reduction as
emphasized in the next section. It is worth noting the shift from
experimental design for comprehensive parameter precision to
the design of experiments seeking to increasingly reduce
uncertainty for run-to-run policy improvement based on ten-
dency models.

As was pointed out by Srinivasan and Bonvin in ref 24, model
parameters may converge to values that minimize errors in
model outputs, but there is no guarantee that this parameter
precision give rises to accurately predicting the performance
index and constraints of the optimization problem. As a result,
if the objective and constraints of the optimization problem are
not predicted properly, the solution obtained by optimizing the
model does not necessarily optimize the process. To address
this issue, it was proposed in ref 24 to modify the objective
function of the identification problem to include the cost function
and the constraints of the optimization problem. The weights
of the various terms in the extended objective function are based
on Lagrange multipliers. Optimization bias can also be intro-
duced by including optimality conditions in the parameter
estimation problem, as has been proposed by Zhang and
Forbes.?” This solution is somewhat similar to a well-known
approach used to solve the “dual control” problem in the area
of system identification and adaptive control (see ref 24 and
references therein). Even though modifying the estimation
problem may help reduce the performance prediction mismatch
the issue still remains of persistent excitation of inputs used in
modeling runs. This problem becomes much harder as the
number of parameters and their degree of uncertainty are
increased. To this aim, it is proposed here that data sampling
along each dynamic experiment must account for the sensitivity
of performance prediction when selectively reducing parametric
uncertainty. Also, persistent excitation in modeling for optimiza-
tion requires addressing the tradeoff between exploitation
(optimization) and exploration (identification).*

Optimizing a real process using the iterative approach of
Figure 1b poses the question of convergence of the input policy
toward an optimum. Assuming the model has the right structure,
it can be shown that the performance prediction mismatch can
be narrowed down to the intrinsic variability of the process and
a local near-optimal policy will be found (see section 5).
However, due to noisy data and optimization constraints, the
performance response surface is typically multimodal and
nonsmooth, which makes it very difficult to guarantee global
optimality of the iterative identification—optimization loop in
Figure 1b. Lacking the correct model structure, the performance
prediction mismatch may not be reduced to the intrinsic process
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variability, yet the iterative approach will converge to a
significantly improved but not necessarily plant optimal policy
(see section 5). A possibly avenue to overcome policy subop-
timality would be resorting to a library of alternative tendency
models for experimental design which allows including explic-
itly a safe exploration dimension in each iteration of the
modeling for optimization strategy.

3. Experimental Design for Optimization

In modeling for optimization, it will be assumed hereafter
that initially the model predictive capability of a performance
index J along state trajectories induced by alternative operating
policies is qualitatively correct but quantitatively uncertain due
to model parametrization errors and data bias. Model discrimi-
nation to handle uncertainty regarding model structure in
modeling for optimization will be addressed in a forthcoming
paper. Thus, only model parameters will be updated as new
data are gathered in policy evaluation experiments. Modeling
for optimization thus revolves around iteratively improving the
input policy based on the proper design of dynamic experiments
upon which process performance is incrementally improved on
a run-to-run basis and parametric uncertainty is increasingly
reduced by an appropriate selection of model parameters to be
reestimated.

3.1. Model-Based Policy Iteration. In what follows let us
assume that the dynamic behavior of the batch process under
study is modeled by the set of ordinary differential equations
(ODEs)

% = fx(t), Pw,1),0); 0 =t = 1, x(0): given (1)
and the optimization objective to be minimized is
t -
J(t x) = h(x(1p) + fo g(x, L(w, 1) dt 2

where x(#) is an nge-dimensional vector of time-dependent state
variables, w is an m-dimensional vector of parameters for the
input policy &, 0 € © is a p-dimensional vector of model
parameters, and f; is the final time of a batch run which in turn
may also be optimized. The initial definition of the parameter
space O is defined by some a priori knowledge or belief. The
function g is the instantaneous cost function along the state
trajectory defined by a given policy parametrization, whereas
the function £ is the specific cost for the final state of the batch
run. It is worth noting that eq 2 defines the cost-fo-go of a policy
parametrization in the dynamic programming jargon.”® Accord-
ingly, a policy defined by the set of parameters w, with value
J, is better than (or preferred to) a policy defined by w; with
value J; if and only if J, < J;. The sensitivity of process
performance to policy parametrization is a central issue for
designing optimally informative dynamic experiments to bias
data gathering in modeling for optimization and when deciding
which subset of model parameters should be reestimated using
data gathered in the current iteration.

For a given model parametrization 6, the optimal policy
parametrization &°(w*,f) for the deterministic continuous-time
optimal control problem defined by eqs 1 and 2 should satisfy
the well-known Hamilton—Jacobi—Bellman (HIB), which is a

sufficient optimality condition:***°

. 9T, x)
— Pl oJ LX)
0 glmlg{g(x(t),»/’(w D)+ T

[%]Tﬂx, LW, 1), 0)} )



3456 Ind. Eng. Chem. Res., Vol. 48, No. 7, 2009

Policy )
Policy lPlr ifh‘j:
RN il ation
oplinization . _‘1
[Eq.19)] [Ly. 473
Experimental
Model Data

Model update
[Eq. (8]]

Figure 2. Model-based policy iteration.

for all ¢, x, along with the boundary condition J*(#;,x) = h(x)
for all x.

The HJB optimality condition is a partial differential equation
which must be satisfied for all time—state pairs (¢, x) by the
cost-to-go function J* corresponding to the optimal policy
parametrization w*. For any suboptimal policy “°(w,t) there
exists an error term which can be characterized by rewriting
the right-hand side of eq 3 as follows:

dJ(@. £(1))

0 < g(X(0), L0, 1) + dr

C))
where d(+)/dr denotes the total derivative of J with respect to .

By integrating the right-hand side of the above expression over
t € [0,t], the Bellman residual BR is defined:

BR(D.w) = [ " o(R(1), POh, 1) dt + h(i(t) — JO,x(0)) >0
(5

By subtracting from the BR(@,W*) for the special case where
0= 0,ea and W* is the estimated “optimal” policy parametriza-
tion based on an imperfect model from the BR(0,¢q,w*) (Which
has the minimum possible value of zero for the optimal policy
P (w*,1)), the Bellman residual can be rewritten as

BR(0, %) — BR(O, %) = [ [((0), L (0¥, 1) —
(X (D, LOV*, )] dt + [A(R(tp) —
h(x, (t))] = BR(O, W) = J(t;, £) — J*(t;, X,.,); for any f;
(6)

Based on eq 6, the optimal policy Z?(w*,f) can be found by
iteratively minimizing the performance prediction error resulting
from applying an estimated optimal policy to the real process
using a model-based policy iteration approach, as shown in
Figure 2. Each iteration starts with a given policy ./2(W*,f) from
the previous iteration which is evaluated in a specifically
designed dynamic experiment (see section 3.2) by calculating
the performance prediction error E using data from samples and
a model with a given parameter vector 0 as follows:

Sp

EO) =Y (51, D) = Sty %))’ Y

r=1

As long as the performance error E is greater than a
predefined tolerance (which accounts for measurement noise),
there exists some room for policy improvement by reducing
further the performance prediction mismatch defined in eq 7. It
is worth noting that in order to minimize the performance

prediction error, data gathering and model update should reduce
selectively parametric uncertainty by defining at each iteration
which are the most sensible sampling times along with the subset
of model parameters that are most influential for performance
prediction. Let us denote by § the subset of parameters for
which uncertainty is going to be selectively reduced using
measurements y"(k), j = 1,..., sp gathered in the nth evaluation
experiment with sp samples. The following least-squares
minimization problem is solved to reestimate o

sp
0] = arg min y"(r) — $"(nll (8)

S.t.

L — RE@, 0,87,

0 <1t =1, £'0) = given
(k) = Y&, 0%; k=1,..sp

Based on the updated process model the operating policy, is
then reoptimized by solving

w)" = ar§Drgln J(t, X)) = ar%urgln h(X'(tp) +
t no
Jo g, 20w, ) de - (9)

S.t.

dxAVl
dr

SE", 6", w) < 0;

= f(F(1), P(w,0,0"; 0 <1< 1, £0) = given
T(#'(t), 0" < 0

where S and T are path and terminal constraints whereas Q
corresponds to the constraint set for policy parameters. The
reader is referred to the seminal work of Srinavasan et al.*!
and references therein for techniques available to solve the
dynamic optimization problem in eq 9.

As soon as the performance prediction mismatch E can be
driven to zero, policy iteration will converge to the optimal
policy &?(w*,r) which gives rise to optimal performance. Should
model structure and parameters be perfectly known a priori for
the problem being addressed, model-based policy iteration is
able to provide the optimal policy parametrization once the first
iteration has been completed. As model parametric uncertainty
is significantly high for batch processes, an optimally informa-
tive dynamic experiment for policy evaluation must be designed
in each iteration step. To deal with the issue of enough input
excitation® for data gathering in the policy evaluation experi-
ment, (re)estimation is only done for the subset 67 of model
parameters and the functional form of the policy “’should allow
some room for time-varying controls. To determine which
parameters are in the subset 8, global sensitivity analysis32 is
used as explained below. The evaluation—identification—
optimization cycle is shown in Figure 2 with due reference to
relevant equations in the text.

3.2. Global Sensitivity Analysis. Global sensitivity analysis
(GSA)* 73 takes into account the fact that parametric
uncertainty in complex models can propagate, compensate,
or suffer many kinds of interactions which may affect the
output of interest (i.e., the performance index J) in different
ways. GSA is a variance-based technique that decomposes
model output variability as a combination of uncertainty from
each ith independent input factor and its interactions with
other factors. This decomposition attempts to rank the



importance of uncertainty sources by mean of sensitivity
indices. Briefly, let us suppose that the value of a model
output of interest y is estimated with an uncertainty due to a
set of k independent parameters x;, i = 1, 2,..., k. Furthermore,
those parameters can interact among them and as a whole
influence model output y. The unconditional variance V(y)
of y is decomposed as follows:

o)=Y Vit Y

[

Vit ..tV (10)

ik

V= V(E_(x)
Vi = Vi (E, Olxx)) = V(E,_ () = V.(E,_(Olx)) (1)

where V; is the amount of the total variance in the model
response which can be explained only because of ith
parameter values and it is known as the main effect term for
the ith parameter; Vj; is the amount of variability generated
due to the interaction between the ith and jth parameters.
Note that, in computing V;, it is necessary to compute and
integrate over x_; (all factors except x;) and then a new
integral over the marginal distribution of x; to finally know
the conditional variance V;. The objective of applying GSA
is to rank factors to know how V(y) would be reduced if
some of those factors were fixed in their true values.
Accordingly, a first measure of the fraction of V(y) which
accounts for the uncertainty of x; is the so-called first-order
sensitivity index Si; defined as

1

S‘—Vi 12
= (12)

Estimators for Si’s can be obtained following different
approaches, and here they have been computed by Sobol’s
method*? which has been recently improved by Saltelli et al.>***
In this method a quasi-random sampling in the multidimensional
space spanned by the parameter space © is used in order to
find the sensitivity indices which ensures exploration over the
whole range of variation for all input factors. To facilitate
assessing the significance of sensitivity indices computed using
Monte Carlo simulations, it can be useful to normalize each Si
as follows:

Si; — min(Si))
Sit = Lo i=1,..k (13)

’ > si
J

3.3. Optimal Sampling. Due to the a priori significant
uncertainty about model parameters, their values should be
estimated selectively using data gathered in policy evaluation
experiments. Based on the optimal policy parametrization from
the previous iteration in the nth policy iteration of Figure 2,
optimal sampling times 1°" along a batch run must be calculated
to bring new information to selectively reduce parametric
uncertainty which affects the most the value estimation of the
performance index J. Assuming model parameters are set to
0! € O, the issue of optimal sampling is related to
calculating at which times 9" € W in a dynamic experiment
the values of measured process variables are most informative
in modeling for optimization assuming that each policy iteration
should help reduce the performance prediction mismatch E. To
this end, the following optimization problem is solved:
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P = max,qudetlM@" ', A py)l, M= 0’0
Siy -+ ¢ Sip

o=|: .
Sin, + v+ Siny (14)
where each entry of the matrix Q, Sij, measures the sensitivity of
the performance index at the ith sampling time with respect to jth
parameter of the operating policy. The number of samples taken
along each run will be defined in accordance with the budget for
processing samples and bearing in mind that this number should
be at least equal to the number of parameters defining the input
policy. This formulation for optimal sampling in modeling for
optimization has been inspired by a recent proposal in optimal
design of experiments using global sensitivity analysis.*

Figure 3 provides a comprehensive summary of the proposed
methodology for experimental design in modeling for optimization.
At each iteration a dynamic experiment is designed around the
previous iteration policy Z°((W*)"~!,f) and optimal sampling times
1 are calculated by solving eq 14. The experiment is carried out
and new data are collected. Based on these data} the subset 97’1 of
model parameters is reestimated to give 07 which reduces
parametric uncertainty in such a way that @ C ©"~!. With the
updated model a new policy parametrization °((W*)",¢) is defined
and a new iteration begins. The identification—optimization cycle
is continued until no performance improvement is obtained and
the defining parameters for the calculated input policy converge.

4. Case Study: Fed-Batch Fermentation of Penicillin G

Penicillin production is an established benchmark in fermen-
tation processes for testing new approaches in modeling,
optimization, and control of novel bioprocesses.>*-*® Penicillin
and biomass are obtained at the expense of substrates (S) such
as glucose and organic nitrogen compounds. Since the concen-
trations of viable (v) and death (d) biomass (X), penicillin (P),
and glucose are routinely measured, they are chosen as the
descriptive state variables along with broth volume (V), which
varies with time ¢ in this fed-batch bioprocess. The policy
optimization problem is defined in terms of the final amount of
penicillin obtained. Model equations for a unstructured tendency
model of a fed-batch bioreactor are given below, whereas
uncertainty intervals of model parameters are given in Table
1.%® The column labeled “in silico” bioreactor corresponds to
the (assumed unknown) parameters for the simulation model
which were used to generate the incoming data provided by
designed dynamic experiments.

v _ .
dt Fin Fevap
d)(v = uX KX Fin - FevapX _ lumaxS
ar 40T Rt v v AT kX +s
F
d _ _ _ in evap
F - KdXv klyst V(f) d
ds Fin B Fevap
2 = X, + 3, F,0- ——%g:
dt v |‘_Sm n V(t) ’
S
— _‘lL + l + — émax
=y ty TS Tk s
dpP _ Fin B Fevap . _ nmaxS
T X, ) P—-—KP, = K +5 (15)

P

The fed-batch bioreactor needs some discharges of culture
medium in order to maintain both viability and axenity of the
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Table 1. Model Parameters with Their Initial Uncertainty Ranges>®
. . “in silico”
parameter symbol units initial range bioreactor
maximum specific biomass growth rate Umax h! 0.12—0.17 0.13
growth saturation constant K g of substrate/g of DW 0.006—0.4 0.131
cellular death rate Ky h™! 0.005—0.01 0.006
cellular lysis constant kiys h™! 0.00001—0.008 0.0008
substrate to biomass yield Yys g of DW/g of substrate 0.40—0.58 0.52
substrate to penicillin yield Yis g of penicillin/g of substrate 0.4-1 0.97
maximum specific penicillin production rate Tl max h™! 0.003—0.015 0.011
saturation constant for penicillin production K, gL™! 0.00001—0.0002 0.0001
maximum specific substrate consumption rate max h™! 0.014—0.029 0.02
for maintenance

saturation constant for maintenance K, g L! 0.00001—0.0002 0.0001
penicillin hydrolysis rate constant K, - 0.002—0.01 0.002

penicillin producing fungi strain since those drain-offs avoid any
possibility of mutations and productivity reduction. Such discharges
must be made at some specific moments along the production run
and with certain frequency all along the run duration. Moreover,
the model takes into account a culture medium evaporation rate
Feyap Which is set as constant in the present study.

At any time ¢, the input policy “Aw,r) is defined by a vector
w of parameters corresponding to two different degrees of
freedom for process optimization. A subset of the entries of
the vector w corresponds to inputs that can be modified from
run to run but are time-invariant in a given run such as the
substrate feeding concentration, the discharge frequency, the
discharge volume, and the time corresponding to the first
discharge. The remaining entries are parameters which are used
here for describing the profile of time-varying control variables
such as the feeding rate. In the latter case, a key issue is the
mathematical description to be used to provide ample room for
different variability patterns within economic and safety con-
straints with a minimum number of independent parameters. In
the past there have been various approaches to implement
bioreactor feeding policies which can be defined as constant,
piecewise constant,?® piecewise continuous,*® or totally continu-
ous functions of time.?” In this work, the feeding rate profile is
described using inverse polynomials of low order with respect
to time. Inverse polynomials resort to a small number of
parameters to define time trajectories which are quite flexible
for modeling a rich variety of continuous feeding patterns for
bioreactor optimization. It is worth noting that the methodology
proposed in section 3 is by no means limited by the family of
mathematical functions used to describe time-varying control-
lable input controls. However, bioreactor dynamics slowly
unfolds cell responses to environmental changes which require
using smooth profiles for time-varying control inputs.

The ranges of variation for each parameter in the inverse
polynomial describing the feeding profile have been defined
from an exploratory analysis of alternative parametrizations that
produce a time-varying in-flow rate which is constrained to the
interval [0,10] L h™! at any time in a batch run. It is noteworthy
that this family of functions has been chosen to eliminate
problems found in GSA implementations when there are
correlation and dependency in the set of parameters defining
the feeding profile. This input dependency is known as multi-
collinearity and introduces significant errors in sensitivity indices
when the effects of policy parameters in the objective function
(J) are computed. This is the very case when for example the
feeding profile is modeled as a piecewise constant or a
polynomial spline function. Before considering more elaborate
feeding profiles, it seems worth trying to get the most of a
constant feeding rate.

The upper and lower bounds for input policy parameters
assuming a constant feeding rate are given in Table 2 along
with optimum values for first and second iterations of the
proposed methodology. Also, the predicted values for policy
parametrizations are shown together with their standard devia-
tions [std(J)] based on the model updated with kinetic param-
eters’ intervals recomputed after each data gathering experiment
in the modeling for the optimization cycle of Figure 3. The
“true” optimal policy parametrization has been obtained using
the in silico model parametrization when solving eq 9 for the
chosen functional form of the operating policy.

As can be seen in Table 2, the estimation of penicillin
production using optimal policy parameters after the first
iteration is quite uncertain and is even greater than the estimation
for the second iteration. As new data are available to reestimate
some kinetic parameters, the confidence in policy values
increases even though policy parameters remain unchanged.
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initial lower upper optimum optimum “real”

parameter value bound bound (first iteration) (second iteration) optimum
feeding rate [L h™!] 4 0 10 5.73 5.73 5.73
to [h] 0 0 24 0 0.025 0.024
t; [h] 240 200 300 240 240 240
substrate feed concn [g L] 240 200 300 300 300 300
time first discharge [h] 24 24 48 24 24 24
discharge volume [L] 60 30 80 80 80 80
discharge frequency [h] 24 24 60 24 24 24
initial volume [L] 600 500 700 500 500 500
penicillin obtained, J (kg) 24.38 36.85 34.68 40.16
std(J) (kg) 8.89 3.89

Table 3. Sensitivity Indices for Model Kinetic Parameters Assuming
a Constant Feeding Profile

model Si" Si"
parameter (first iteration) (second iteration)

Tlmax 0.6110 0.2402
Ky 0.2456 0.0198
Yos 0.0509 0.1654
Cinax 0.0463 0.3501
Yis 0.0214 0.1234
kiys 0.0000 0.0008
Umax 0.0000 0.0008
K 0.0002 0.0008
Ky 0.0246 0.0978
K 0.0000 0.0010
K, 0.0000 0.0000

The optimal sampling times for data gathering in both
iterations have been computed by solving the optimization
problem defined by eq 4, and the results obtained are as follows:

first iteration:
YO (h):17,34, 141,157, 173, 189,205, 221, 233,239
det IMl =2.57 x 1078

second iteration:
1/)°p‘(h):21, 27,33,143,160, 176, 193, 210, 228, 240
det IM| = 3.40 x 10

Data gathered in each experiment done on the in silico
bioreactor are used to (re)estimate selectively model parameters
in accordance with their sensitivity indices Si" in Table 3.

In the first iteration the sensitivity indices reflect that most of
the initial uncertainty in policy value predictions is due to 7z,
and K, so they could be reestimated using data gathered in the
first experiment. In the second iteration sensitivity indices in Table
3 highlight that a further reduction in the uncertainty of policy value
predictions can be achieved by using data from the second
experiment to reestimate max, Yps, Cmaxs Yxs» and Kg. After two
experiments the initial model uncertainty has been reduced to

first iteration:
T = 0.0104 £ 0.0010
K, = 0.0022 £ 0.0003
second iteration:
7T = 0.0098 £ 0.0008

Y,, = 0.94 £ 0.17

Eoae = 0.0143 £ 0.0002
Y,, = 0.47 £ 0.04
K, = 0.0061 % 0.0012

In a first attempt to increase the amount of penicillin obtained
by using a constant feeding rate, let us try finding an optimal

feeding rate profile modeled using a linear inverse polynomial.
A linear inverse polynomial has the form

0, t<y
Fin = L > (16)
Ay 120

The upper and lower bounds for parameters A and B assuming
this pattern of variation for the feeding rate are given in Table 4
along with optimum policy parameters after the first and second
iterations of the proposed methodology. Also, predicted values for
J are shown along with their standard deviations [std(J/)] using the
model updated with intervals for kinetic parameters recomputed
after each iteration. In Figure 4 the resulting “optimum” feeding
profile obtained is compared with the feeding profile used by
Menezes et al.,*® who has reported a penicillin G production of 24
kg. For each iteration GSA has been used to identify which subset
of kinetic parameters should be reestimated based on normalized
first-order sensitivity indices (Si") (see Table 5 for details).

As can be seen in Table 4, the estimated amount of penicillin
produced after the first iteration was significantly increased with
regard to the initial policy, a continuous approximation to the
one used by Menezes et al.>> However, this potential improve-
ment is rather uncertain. In the second iteration this rise is more
evident since std(J) is reduced enough so as to provide a reliable
estimation for J. It is also worth noting that the second iteration
is mostly a confirmatory result of the first one since the policy’s
parameters have been slightly changed whereas the value of
the J is practically the same. It is noteworthy that the more
elaborate feeding policy does not provide a significant increase
in productivity as might be expected. Before attempting a
continuous feeding profile that better reflects the one proposed
in ref 35, some iteration results are discussed.

In accordance with the proposed algorithm in Figure 3, before
the current operating policy is actually implemented in the in
silico bioreactor, the optimization problem of eq 4 must be
solved to determine the optimal sampling times for the next
dynamic experiment. Sampling times and values for the objec-
tive M in the first two iterations are (see Figures 5, 6, and 7)

first iteration:
YP(h):5,14, 19, 36, 183, 187, 192, 198,202, 232
det IMl =3.83 x 107

second iteration:
w”p‘(h):ZO, 121,129, 146, 160, 178, 184, 205,213,221
det IMl = 3.31 x 10°°

In the first iteration the resulting optimal sampling times suggest
that initial uncertainty about the performance index is mainly due
to uncertainty in parameters 7,,,x and Kj which are reestimated
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Table 4. Results Obtained Using a Feeding Rate Profile Modeled as a Linear Inverse Polynomial

initial lower upper optimum optimum “real”
parameter value bound bound (first iteration) (second iteration) optimum

A[Lh™] 6 3 10 4.88 4.03 3.89
B [h] 20 0 200 13.88 1.71 0
to [h] 0 0 24 0 0 0
t; [h] 240 200 300 240 240 240
substrate feed concn [g L] 240 200 300 300 300 300
time first discharge [h] 24 24 48 25 48 48
discharge volume [L] 60 30 80 80 80 80
discharge frequency [h] 24 24 60 53.8 60 60
initial volume [L] 600 500 700 500 500 500
penicillin obtained, J, [kg] 27.76 34.00 34.31 34.93
std(J) (kg) 5.53 2.12

using data gathered in the first dynamic experiment and the
corresponding uncertainty is consequently reduced. In the second
iteration the optimal sampling strategy reveals that the remaining
uncertainty in the performance index prediction can significantly
be reduced if the resulting data are used to reestimate parameters
Ypso Cmax» Kp, and Ky. The selective reduction in parametric
uncertainty after only two iterations results in a remarkable
convergence to the actual values used for simulations in the in
silico bioreactor as follows.

first iteration:

T = 0.01105 £+ 0.00018

K, = 0.00200 £ 0.00014

second iteration:

Y, = 0.8 + 0.3
Cpae = 0.018 £ 0.005
K, = 0.00014 % 0.00008
K, = 0.0059 % 0.0007

In Figures 5—7 the model’s predictions and “‘experimental
data” (which have been obtained from the in silico bioreactor
experiments where a 10% variability has been added to simulate
noise at sampling times) are compared for state variables in the
first and second iterations when a feeding rate profile shaped
as a linear inverse polynomial is used.

An intrinsic limitation of the linear inverse polynomial with
parameters constrained as shown in Table 4 is that the maximum
feeding rate is always located at the end of the run. To better

2nd iteration

Menezes' profile i

N

Initial profile

Feeding Policy (L/h)
N
()]

100 150 200
Time (h)

0 50

Figure 4. Feeding policies implemented by Menezes (*) and computed with
the proposed methodology in the initial condition, first iteration, and second
iteration using a linear inverse polynomial.

Table 5. Sensitivity Indices for Kinetic Model Parameters Assuming
a Linear Inverse Polynomial for Modeling the Feeding Rate Profile

model Sit Sit
parameter (first iteration) (second iteration)
Tlmax 0.7410 0.0294
Ky 0.1062 0.0009
Yps 0.0567 0.3916
max 0.0201 0.2104
Yis 0.0079 0.0175
kiys 0.0035 0.0013
Umax 0.0030 0.0042
K 0.0030 0.0000
Ky 0.0030 0.1225
K 0.0005 0.0805
K, 0.0000 0.1418

approximate the feeding rate profile used by Menezes et al.,*
the following quadratic inverse polynomial is proposed:

0, t<t,
Fin = —At t > t() (17)
1+ Bt + C#

In Table 6 upper and lower bounds and optimal values for
operating policy parameters are shown for the first and second
iterations along with predicted values for the objective function
(/) and its standard deviation [std(J)] computed using GSA. Also,
in Figure 8 the obtained optimal feeding profile is compared with
the one used by Menezes et al.*® Assuming a quadratic inverse
polynomial is used to describe the feeding rate profile, it is possible
to provide room for a decreasing feeding rate in the final stage of
a fermentation run (see Figure 8).

As can be seen from Table 6, when a feeding rate profile
having an intrarun maximum is used, the proposed input
policy improvement methodology is able to improve sub-
stantially the amount of penicillin obtained in a bioprocess
run. It can argued though that the variability in estimating
the value J of a policy parametrization is a bit greater than
when a linear inverse polynomial feeding profile is used, but
the increase in penicillin production is quite a remarkable
improvement. Moreover, it is worth noting that the algorithm
has found optimal values for all parameters in the operating
policy, except those of the feeding profile, just in the first
iteration. Once again, in the second iteration the improvement
in J is reflected not in its mean value but in the reduced
uncertainty with which the improvement is predicted.

The optimal sampling strategy for both iterations is given
below together with the corresponding M values:

first iteration:
1/)""‘(/1):15, 21,39, 55, 147, 164, 181, 198, 215, 233
det IMI = 8.06 x 10+
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Table 6. Results Obtained Using a Feeding Rate Profile Described as a Quadratic Inverse Polynomial

initial lower upper optimum optimum “real”
parameter value bound bound (first iteration) (second iteration) optimum

A[Lh7? 0.6882 0 4.13 2.0649 2 2.0287
B [h'] 0.1431 0.1 0.86 0.2061 0.2627 0.2000
C[h?] 0.0002 —0.0008 0.0012 0.0012 0.0006 0.0012
to [h] 0 0 24 0 0 0
t; [h] 240 200 300 240 240 240
substrate feed concn [g L] 240 200 300 300 300 300
time first discharge [h] 24 24 48 24 24 24
discharge volume [L] 60 30 80 80 80 80
discharge frequency [h] 24 24 60 24 24 24
initial volume [L] 600 500 700 500 500 500
penicillin obtained, J (kg) 28.04 41.84 40.05 41.27
std(J) [kg] 2.0649 2

second iteration:
YP(h):20, 121, 129, 146, 160, 178, 184, 205,213,221
det IM| = 3.31 x 107°°

In Table 7 normalized sensitivity indices Si" obtained using
GSA are summarized for kinetics parameters for the two

iterations. Once again the most relevant parameters in the
first iteration were 7, and Kj, which vividly show that
policy value sensitivity is invariant when uncertainty is
mainly due to a few kinetic parameters. It is worth noting
that 7.« and K, have been included again in the set of
parameters to be reestimated in the second iteration after the
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Figure 8. Feeding policies implemented by Menezes (*) and computed with
the proposed methodology in the initial condition, first iteration, and second
iteration assuming a quadratic inverse polynomial.

Table 7. Sensitivity Indices for Kinetic Model Parameters Assuming
a Quadratic Inverse Polynomial For Modeling the Feeding Rate
Profile

model Si" Sit

parameter (first iteration) (second iteration)
TCmax 0.7206 0.1331
Ky 0.1812 0.3114
Yy 0.0216 0.1749
Cimax 0.0325 0.1588
Yis 0.0167 0.1111
kiys 0.0000 0.0002
Umax 0.0000 0.0002
K, 0.0000 0.0002
Kq 0.0272 0.1099
K 0.0000 0.0000
K, 0.0001 0.0002

first iteration because their level of uncertainty is still high
enough to affect the variability of the performance index
prediction. Parameter values for both iterations are given by

first iteration:

T = 0.013 + 0.002
K, = 0.004 % 0.002

second iteration:

K, = 0.004 = 0.002
Y,, = 0.97 £ 0.10
Eoax = 0.014 £ 0.010
=0.013 + 0.002

Y, = 0.42 + 0.10
K, = 0.005 % 0.003

In Figures 9, 10, and 11 model predictions and “experimental
data” (which have been obtained from in silico experiences with
an added 10% variability) of state variables are compared for
both iterations when a quadratic inverse polynomial feeding rate
profile is used.

As the last attempt to find a continuous feeding profile that
can provide a further improvement in penicillin production, the
following cubic inverse polynomial was used.

Intervals of variation for the four parameters have been
determined to allow a maximum feeding rate in the initial stage of
arun and an intrarun minimum. In Table 8 upper and lower bounds
and optimal values for operating policy parameters for the first
and second iterations are shown along with values for the objective
function (J) predicted with the model and its standard deviation
[std(J)] computed using GSA. Furthermore, in Figure 12 optimal
trajectories computed as “optimal” feeding profiles are depicted
together with the initial profile used to carry the policy optimization.

Unfortunately, as shown in Table 8, no further gain in penicillin
production is obtained using this more complicated feeding profile.
It can be argued that constraints imposed on parameters A, B, C,
and D are too restrictive, but they have been used to assess a
qualitatively different pattern for the feeding rate from those
associated with quadratic inverse polynomials. It should be
acknowledged that Menezes et al.*® somehow discovered by trial
and error that their feeding profile (see Figure 4) had the right
pattern, but they did not attempt to optimize it. Accordingly, results
obtained (Table 8) reinforce the idea that feeding patterns like those
in Figure 12 are not able to generate an increase in penicillin
production compared to quadratic inverse polynomials.

To end this case study, some important remarks regarding the
implementation of the proposed model-based policy iteration
strategy need to be made. First, the proposed methodology is aimed
at using tendency models for the batch process to be optimized.
Typically, such models have a rather small number of parameters,
say between 5 and 12, which can be reliably estimated using a
rather small number of samples taken from each modeling run.
Also, the number of parameters used to describe the operating
policy is assumed small enough (e.g., no more than 20) that
computational costs of GSA can be maintained on the order of
some hours with standard desktop computational power (actually
approximately 16 h per iteration for the presented case study using
a PC equipped with an Intel Pentium 2 core duo processor with a
speed of 2 GHz). Complex operating policies with hundreds of
parameters can still be used, but computational costs of using GSA
will increase significantly. This is not a big problem in general
since the number of iterations is small, but computational costs
should be taken into account when analyzing the rationale behind
a given functional form used to define the operating policy. The
issue of a total lack of persistent excitation when time-varying
controls are not used deserves a word of caution. As shown in
Table 2 for the constant feed rate, using a policy without the
required persistent excitation may slow down or even prevent
convergence to the optimal policy.* Finally, there is the issue of
characterizing the initial parametric uncertainty. For the presented
case study there exists plenty of available literature*® which allows
defining an initial uncertainty on a rather sound basis. For
innovative batch processes and bioprocesses, such knowledge often
will not be available and the best practice for comprehensive policy
optimization is to choose rather ample intervals for each parameter
(say 50% around its nominal value). This will not present a problem
for model-based policy iteration, yet the number of iterations for
convergence may increase as required for such a level of parametric
uncertainty.

5. Conceptual Framework for Run-to-Run Convergence

Convergence analysis of iterative identification—optimization
schemes based on imperfect models is a very difficult problem to
solve as has been pointed out in some previous works.?”>%3
However, for a model-based policy iteration algorithm based on
increasingly reducing parametric uncertainty, it is feasible to
characterize conditions for convergence in simple, yet conclusive
terms as follows.
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0, t<t,
At

n = tO

1+ Bt +c?+Dbpf

(18)

Consider the problem of minimizing the performance
prediction error E: ® — &2 for a given model parametrization
and its corresponding optimal policy, where © is a bounded
Euclidean space over which any model parametrization is
confined to as parametric uncertainty is increasingly reduced
on a run-to-run basis. Let I' denote the HJB optimality
condition, and let £ C © denote the set of model param-
etrizations for which T is satisfied. Also, let £&: ® — %~ be
a non-positive-valued function such that £(6) = 0 if and only
if & € Z. Such a function is called an optimality function
associated with T (see ref 40, p 19, for details). This function
& must be defined to provide a quantitative measure of the
extent to which a model parametrization along with its related
optimal policy satisfies the condition I', namely the HIB

equation in (3). The natural choice when defining an
optimality function for convergence analysis of a policy
iteration algorithm is resorting to the modulus of the Bellman
residual defined in eq 5 for the special case where Ww = Ww*(6)
corresponds to the optimal policy parametrization based on
a model with parameter vector 6:
&) = —IBR(O,w*(0)); 6 0O (19)
Definition 5.1. Shrinking Set ©. As the number n of runs
(iterations) increases, the parameter space ® which characterizes
model uncertainty shrinks toward an accumulation point & such
that

limQ, =6

n—0

(20)

where the parameter space for any finite n always satisfies @"*!
c o



3464 Ind. Eng. Chem. Res., Vol. 48, No. 7, 2009

Table 8. Initial and Optimum Values for the Policy Value, J and std(J) Using a Cubic Inverse Polynomial Feeding Policy

initial lower upper optimum optimum “real”

parameter value bound bound (first iteration) (second iteration) optimum
A[Lh7? 0.2048 0.2151 0.3648 0.3648 0.3647 0.3648
B[h™'] —0.0451 —0.0682 —0.0373 —0.0458 —0.0458 —0.0458
C[h?] 1.378 x 1073 1.833 x 1073 2.666 x 1073 1.833 x 1073 1.833 x 1073 1.833 x 1073
D [h73] —4.444 x 107° —6.032 x 107 —1.565 x 107° —5.672 x 107° —5.649 x 107° —5.676 x 107°
to [h] 0 0 24 1.72 2.7 0.1464
te [h] 240 200 300 240 240 240
substrate feed concn [g L] 240 200 300 300 300 300
time first discharge [h] 24 24 48 24 24 24
discharge volume [L] 60 30 80 54.61 54 54.74
discharge frequency [h] 24 24 60 24 24 24
initial volume [L] 600 500 700 500 500 500
penicillin obtained, J [kg] 34.89 38.68 35.60 37.67
std(J) [kg] 5.13 1.72

Definition 5.2. Sufficient Descent. A model-based policy
iteration algorithm working over a shrinking parameter space
© has the property of sufficient descent with respect to the
chosen optimality function & if for every 0 > 0 there exists >
0 such that, for every n = 1, 2,..., and for every iteration point
(model parametrization) 6" computed by the algorithm, if &(6")
< —0, then

E@"") — E@0") < —n @
where 6! is the next iteration point.

Now, run-to-run convergence can be stated as follows (see
ref 41 for details).

Proposition 5.1. Suppose there exists a constant D € R
such that E(0) = D for every 0 € ©. If a model-based policy
iteration algorithm has the property of sufficient descent, then
for any infinite sequence {0")%,, it computes, lim, o &(6,)
= 0.

Proof. The proof is immediate from Definition 5.2.

O

Run-to-run convergence of a policy iteration algorithm to an
optimal policy which satisfies the HIB is thus guaranteed as
long as the model structure allows driving the performance
prediction mismatch to zero. Hence, convergence to the optimal
policy can only be ensured if the model has the correct structure
and parameter reestimation at each iteration is carried out by
global minimization of the prediction error surface. If there exist
modeling errors which prevent reducing to zero the performance
prediction mismatch E, algorithm convergence to a policy is
still guaranteed based on Definition 5.1.
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Figure 12. Feeding policies for the initial condition and first and second
iterations assuming the feeding rate profile is shaped as an inverse cubic
polynomial.

6. Concluding Remarks

This paper has presented a systematic procedure for designing
dynamic experiments in modeling for optimization aimed at
selectively reducing parametric uncertainty by iteratively im-
proving the input policy. To this end the traditional separation
between modeling and optimization has been changed to the
modeling for optimization cycle where model development is
tightly integrated with dynamic optimization. Global sensitivity
analysis has been used to formulate the optimal sampling in
each dynamic experiment as an optimization problem whose
solution provides the optimal sampling times at which the
performance objective is most sensitive to changes in the policy
parameters. Once new data are available, global sensitivity
analysis is used to determine the subset of model parameters
that should be reestimated. Following model update, the input
policy parametrization is recalculated by dynamic optimization
and a new iteration begins. A case study related to penicillin G
production has been used to illustrate the proposed approach,
and results obtained are very encouraging. Convergence analysis
of the proposed model-based policy iteration strategy has been
stated in a novel conceptual framework under the assumption
that modeling errors are the only consequence of parametric
uncertainty. The objective of future work is to account for
structural uncertainty in modeling for optimization, namely by
integrating model discrimination in the proposed methodology
for experimental design.
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Nomenclature

Symbols

A = feeding profile parameter [(L h™') if a linear or (L h™?) if a
quadratic inverse polynomial profile is assumed]

B = feeding profile parameter (h™')

C = feeding profile parameter (h™?)

D = feeding profile parameter (h™3)

DW = dry weight

f(+) = functional form of the model

Fi, = inlet flow rate (L h™")

Fevap = outlet flow rate due evaporation (L h™h

g(+) = reward function along the state trajectory

h(+) = specific reward for the final state of the batch run

J = performance index to be maximized

M = sensitivity indices with respect to operating policy parameters w

P = penicillin concentration (as potassium salt) (g of PenGK L")



9P(+) = input policy

S = substrate concentration (g L")

S; = first-order sensitivity index at the ith sampling time with
respect to jth parameter of the operating policy

Si} = normalized sensitivity index Si;

t = time (h)

tp = initial time to beginning feed (h)

t; = final time of a batch run (h)

V = culture broth volume (L)

w = m-dimensional vector of policy parameters

x(t) = ns-dimensional vector of process state variables

X = biomass concentration (g of DW L)

X, = death biomass concentration (g of DW L)

X, = viable biomass concentration (g of DW L")

Greek Symbols

u = specific biomass growth rate (h™")
6 € ©® = p-dimensional vector of model parameters
Yo € W = optimal sampling strategy
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