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Abstract In this paper we continue with our work in Lederman and Wolanski (Ann Math
Pura Appl 187(2):197–220, 2008) where we developed a local monotonicity formula for solu-
tions to an inhomogeneous singular perturbation problem of interest in combustion theory.
There we proved local monotonicity formulae for solutions uε to the singular perturbation
problem and for u = lim uε, assuming that both uε and u were defined in an arbitrary domain
D in R

N+1. In the present work we obtain global monotonicity formulae for limit functions
u that are globally defined, while uε are not. We derive such global formulae from a local
one that we prove here. In particular, we obtain a global monotonicity formula for blow up
limits u0 of limit functions u that are not globally defined. As a consequence of this formula,
we characterize blow up limits u0 in terms of the value of a density at the blow up point. We
also present applications of the results in this paper to the study of the regularity of ∂{u > 0}
(the flame front in combustion models). The fact that our results hold for the inhomogeneous
singular perturbation problem allows a very wide applicability, for instance to problems with
nonlocal diffusion and/or transport.
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26 C. Lederman, N. Wolanski

1 Introduction

In this paper we continue with our work in [7] where we developed a local monotonicity
formula for solutions to an inhomogeneous singular perturbation problem of interest in com-
bustion theory. That formula was inspired on a global monotonicity formula that G. S. Weiss
developed for solutions of the global homogeneous problem (see [10]). As in [7], the problem
under consideration here is the following: for ε > 0 we let uε be a solution to

�uε − uεt = βε(u
ε)+ fε in D, (Pε( fε))

where ε > 0, D is a domain in R
N+1, fε ∈ L∞(D), βε(s) = 1

ε
β( s

ε
) with β a Lipschitz con-

tinuous function, β(s) > 0 for 0 < s < 1 and β(s) = 0 otherwise. This type of reaction term
appears in the study of the propagation of deflagration flames. In that context ε represents
the inverse of the activation energy (see, for instance, [1,2,9] and the references therein).

We are looking at the inhomogeneous equation—this is, we allow fε �≡ 0—which makes
the applicability of our results much wider. In particular, our results apply to more general
equations that include nonlocal diffusion and/or transport (see [6–8] for a discussion and
applications).

In [10], Weiss obtained a global monotonicity formula for solutions uε of the global
homogeneous version of problem Pε( fε) (i.e., with uε defined in R

N × (0, T ) and fε ≡ 0),
as well as an analogous formula for u = lim uε(ε → 0).

In [7], we proved local monotonicity formulae for solutions uε to the inhomogeneous
problem and for u = lim uε, assuming that both uε and u were defined in an arbitrary
domain D in R

N+1.
In the present work we deal with the inhomogeneous problem and we obtain global mono-

tonicity formulae for limit functions u that are globally defined (i.e., defined in the whole
region R

N × (0, T )) while uε are not. Such formulae cannot be derived from the ones in the
previous papers [7,10] that were described above.

In fact, we obtain the first of our global monotonicity formulae in Theorem 2.2. We derive
such global formula from a local one that we prove in Theorem 2.1.

We also obtain a global monotonicity formula for blow up limits u0 of limit functions u that
are not globally defined (here u0 = limλn→0

1
λn

u(x0+λn x, t0+λ2
nt)with (x0, t0) ∈ ∂{u > 0}

and u = lim uε) (see Corollary 2.1).
As a consequence of this last formula, we are able to characterize blow up limits u0 in

terms of the value of a density at the blow up point (x0, t0). Namely, in terms of

δ(x0, t0) = lim
r→0

1

r2

t0−r2∫

t0−4r2

∫

RN

(
|∇(uψ)|2 + 2ψ2χ + 1

2

(uψ)2

t − t0

)
G(x − x0, t0 − t)dxdt,

(1.1)

where G(x, t) = 1
(4π t)N/2 exp (−|x |2

4t ), χ = lim Bε(uε) and ψ = ψ(x) ∈ C∞
0 , 0 ≤ ψ ≤ 1,

ψ ≡ 1 in a neighborhood of x0 (this limit exists and it is finite and independent of the cut off
function ψ , by the local monotonicity formula we proved in [7]).

More precisely, in the stationary case, we prove that if δ(x0, t0) = 3M and u0 is a blow
up limit at (x0, t0), then u0 = αx+

1 − γ x−
1 for some α > 0 and γ ≥ 0, in some coordinate

system (Theorem 3.2). In addition, we show that if δ(x0, t0) = 6M , then u0 = α|x1| for
some α ≥ 0 (Theorem 3.1). Here M = ∫ 1

0 β(s)ds. See also Remark 3.2.
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A local monotonicity formula. Part II 27

Furthermore, we prove that 3M ≤ δ(x0, t0) ≤ 6M and that δ(x0, t0) is 3M or 6M almost
everywhere on the free boundary. Moreover, in dimension 2, δ(x0, t0) is 3M or 6M every-
where on the free boundary (Propositions 3.1–3.3).

In Sect. 4 we present applications of Theorems 3.1 and 3.2 to the study of the regularity of
the boundary of {u > 0} for u = lim uε (the flame front in combustion models). We proved
these regularity results in [8].

Let us remark that our global monotonicity formula proven in Theorem 2.2 allows us to
show, in the particular case that ‖ fε‖L∞ → 0, that limit functions u that are globally defined
satisfy inequality (2.12), which is the same one proven in [10] for limit functions of the global
homogeneous problem—even though in our case uε are not globally defined and fε �≡ 0.

In particular, we obtain this same inequality for blow up limits u0 of limit functions u that
are not globally defined (see inequality (2.14) in Corollary 2.1).

On the other hand, let us mention that the results on characterization of blow up limits
described above are similar to the ones obtained in [10] for the global homogeneous problem
but for a different density. The density in [10]—unlike the one given by (1.1)—is defined
only for global functions.

We also remark that the applications given in [10] to these results (namely, classification
of points in ∂{u > 0} and rectifiability of the singular set) are different from the applications
we are presenting in Sect. 4.

We finally want to point out that all the results in this paper are new when fε �≡ 0, even
in the case that uε are globally defined. Moreover, our results are also new when fε ≡ 0, in
case uε are not globally defined.

An outline of the paper is as follows. In Sect. 2 we prove the monotonicity formulae. In
Sect. 3 we use these results to characterize blow up limits in terms of the density at the blow
up point and Sect. 4 contains applications to regularity results of ∂{u > 0} for u = lim uε.

Notation

Given a point (x̄, t̄) ∈ R
N+1 and R, R0 > 0, we will denote

Q R,R0(x̄, t̄) := BR(x̄)× (t̄ − 4R2
0, t̄].

We will be considering rescalings of functions in a neighborhood of (x̄, t̄) and we will denote

vr (x, t) = 1

r
v(x̄ + r x, t̄ + r2t) and vr (x, t) = v(x̄ + r x, t̄ + r2t).

We will say that a function v is in the class Lip (1, 1/2) in a domain D ⊂ R
N+1, if v is

bounded and there exists a constant L = L(D) such that

|v(x, t)− v(y, τ )| ≤ L(|x − y| + |t − τ | 1
2 )

for every (x, t), (y, τ ) in D. The norm in Lip (1, 1/2) in D is

‖v‖Lip (1,1/2) = ‖v‖L∞(D) + sup
(x,t),(y,τ )∈D

|v(x, t)− v(y, τ )|
|x − y| + |t − τ |1/2 .

We will denote by

|v|Lip (1,1/2) = sup
(x,t),(y,τ )∈D

|v(x, t)− v(y, τ )|
|x − y| + |t − τ |1/2

the Lip (1, 1/2) seminorm in D.
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28 C. Lederman, N. Wolanski

Finally, we will denote

Bε(r) =
r∫

0

βε(s)ds, M =
1∫

0

β(s)ds

and G(x, t) = 1
(4π t)N/2 exp(−|x |2

4t ).

2 Monotonicity formulae

In this section we prove monotonicity formulae for solutions uε of problem Pε( fε) and for
u = lim uε (ε → 0).

In fact, in Theorem 2.1 we prove a local monotonicity formula for solutions uε to problem
Pε( fε) that are defined in bounded domains of R

N+1. This formula is an improvement of the
one we obtained in Theorem 2.1 in [7].

As a consequence we obtain, in Theorem 2.2, a global monotonicity formula for limit func-
tions u that are globally defined (i.e., defined in the whole region R

N ×(0, T )) while uε are not.
In particular, in Corollary 2.1 we obtain a global monotonicity formula for blow up limits

u0 of limit functions u that are not globally defined (here u0 = limλn→0
1
λn

u(x0 + λn x, t0 +
λ2

nt) with (x0, t0) ∈ ∂{u > 0} and u = lim uε).
We first prove

Theorem 2.1 (ε-Local monotonicity formula) Let uε be a solution to Pε( fε) in Q R,R0(x̄, t̄)
where R0 ≤ R and R > 1. Let ψ = ψ(x) ∈ C∞

0 (BR(x̄)), 0 ≤ ψ ≤ 1 and ψ ≡ 1 in
BR/2(x̄). Assume that fε ∈ L∞(Q R,R0(x̄, t̄)) and

|uε(x, t)| ≤ A1
(
1 + |x − x̄ | + |t − t̄ |1/2) in Q R,R0(x̄, t̄), |uε|Lip(1,1/2)(Q R,R0 (x̄,t̄))

≤ A2

||∇ψ ||L∞(BR(x̄)) ≤ A4

R
, ||D2ψ ||L∞(BR(x̄)) ≤ A4. (2.1)

For 0 < r ≤ R0, let

Wε
(x̄,t̄)(r) = Wε

(x̄,t̄)(r, uε, ψ)

= 1

r2

t̄−r2∫

t̄−4r2

∫

RN

(
|∇(uεψ)|2 + 2ψ2 Bε(u

ε)+ 1

2

(uεψ)2

t − t̄

)
G(x − x̄, t̄ − t)dxdt.

(2.2)

Then,

∂Wε
(x̄,t̄)

∂r
(r) ≥

−1∫

−4

∫

RN

(
∂rw

ε
r

)2 rG(x,−t)

−t
dxdt

− C || fε||L∞(Q R,R0 (x̄,t̄))

(
1 + r‖ fε‖L∞(Q R,R0 (x̄,t̄))

)

− C || fε||L∞(Q R,R0 (x̄,t̄))
|uε(x̄, t̄)|

r
−C

(
1 + || fε||L∞(Q R,R0 (x̄,t̄))

)
R2e−C ′ R2

r2 .

(2.3)

Here wε(x, t) = ψ(x)uε(x, t) and wεr (x, t) = 1
rw

ε(x̄ + r x, t̄ + r2t).
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A local monotonicity formula. Part II 29

The constant C in (2.3) depends only on Ai , the dimension N, M1 = max0≤s≤1 sβ(s) and
M = ∫ 1

0 β(s)ds. The constant C ′ is universal.

Proof By rescaling we get, for 0 < r ≤ R0,

Wε
(x̄,t̄)(r) =

−1∫

−4

∫

RN

(
|∇wεr |2 + 2(ψr )2 Bε(ruεr )+ 1

2

(wεr )
2

t

)
G(x,−t)dxdt. (2.4)

Proceeding as in Theorem 2.1 in [7], we get

∂Wε
(x̄,t̄)

∂r
(r) ≥

−1∫

−4

∫

RN

(∂rw
ε
r )

2 rG(x,−t)

−t
dxdt

+
−1∫

−4

∫

RN

(∂rw
ε
r )(−2ψr r fε

r )G(x,−t)dxdt

+
−1∫

−4

∫

RN

(∂rw
ε
r )(−2uεr�ψ

r − 4∇ψr∇uεr )G(x,−t)dxdt

+
−1∫

−4

∫

RN

(−2ψrβε(ruεr ) ruεr ∂rψ
r + 4ψr ∂rψ

r Bε(ruεr )
)

G(x,−t)dxdt

=
−1∫

−4

∫

RN

(∂rw
ε
r )

2 rG(x,−t)

−t
dxdt + I + I I + I I I. (2.5)

Now,

∂rw
ε
r (x, t)= − wε(x̄ + r x, t̄ + r2t)

r2 + ∇wε(x̄ + r x, t̄ + r2t)

r
· x+2twεt (x̄ + r x, t̄ + r2t).

There holds,

|wε(x̄ + r x, t̄ + r2t)| ≤ |wε(x̄, t̄)| + (A1 A4 + A2) (|x | + |t |1/2) r,

and ∣∣∣∣
(

−w
ε(x̄ + r x, t̄ + r2t)

r2 + ∇wε(x̄ + r x, t̄ + r2t)

r
· x

) (−2ψr r fε
r ) G(x,−t)

∣∣∣∣
≤

(
2
|uε(x̄, t̄)|

r
+ 2(5A1 A4 + 2A2) (|x | + |t |1/2)

)
‖ fε‖L∞ G(x,−t).

So that,

−1∫

−4

∫

RN

(
−w

ε(x̄ + r x, t̄ + r2t)

r2 + ∇wε(x̄ + r x, t̄ + r2t)

r
· x)(−2ψr r fε

r )

)
G(x,−t)dxdt

≥ −C2‖ fε‖L∞(Q R,R0 (x̄,t̄))
|uε(x̄, t̄)|

r
− C̄1‖ fε‖L∞(Q R,R0 (x̄,t̄))

.
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30 C. Lederman, N. Wolanski

Now, as in [7],
∣∣∣∣∣∣∣

−1∫

−4

∫

RN

(
2twεt (x̄ + r x, t̄ + r2t)(−2ψr r fε

r )
)

G(x,−t)dxdt

∣∣∣∣∣∣∣

≤ 32‖ fε‖L∞(Q R,R0 (x̄,t̄))

⎛
⎜⎝

−1∫

−4

∫

RN

|∂t (u
ε
r )|2(ψr )2G(x,−t)dxdt

⎞
⎟⎠

1/2

.

Let v = uεr . Then v is a solution to �v − vt = βε/r (v)+ r fεr . Thus,

−1∫

−4

∫

RN

v2
t (ψ

r )2G(x,−t)dxdt =
−1∫

−4

∫

RN

vt�v(ψ
r )2G(x,−t)dxdt

−
−1∫

−4

∫

RN

βε/r (v) vt (ψ
r )2G(x,−t)dxdt

−
−1∫

−4

∫

RN

r fε
rvt (ψ

r )2G(x,−t)dxdt

= (i)+ (ii)+ (iii).

There holds,

(i) = −
−1∫

−4

∫

RN

∇vt∇v (ψr )2G(x,−t)dxdt − 2

−1∫

−4

∫

RN

vt∇v ψr∇ψr G(x,−t)dxdt

−
−1∫

−4

∫

RN

vt∇v (ψr )2∇Gdxdt.

Arguing as in [7], but using that in the present case r ≤ R0 ≤ R and |∇ψ | ≤ A4
R , we get, for

0 < η < 1,

(i) ≤ η

−1∫

−4

∫

RN

v2
t (ψ

r )2G(x,−t)dxdt + Cη(A2, A4).

Proceeding in a similar way,

(iii) ≤ η

−1∫

−4

∫

RN

v2
t (ψ

r )2G(x,−t)dxdt + Cηr
2‖ fε‖2

L∞(Q R,R0 (x̄,t̄))
.

Using that βε/r (v) vt = ∂t Bε/r (v) and 0 ≤ Bε/r (s) ≤ M we get for (ii)

(ii) ≤ C(M).
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A local monotonicity formula. Part II 31

Thus, ∣∣∣∣∣∣∣

−1∫

−4

∫

RN

(∂t u
ε
r )

2(ψr )2G(x,−t)dxdt

∣∣∣∣∣∣∣
≤ C

(
1 + r2‖ fε‖2

L∞(Q R,R0 (x̄,t̄))

)
. (2.6)

Summing up,

I ≥ −C‖ fε‖L∞(Q R,R0 (x̄,t̄))
|uε(x̄, t̄)|

r
− C || fε||L∞(Q R,R0 (x̄,t̄))

(
1 + r‖ fε‖L∞(Q R,R0 (x̄,t̄))

)
.

On the other hand, since

∂rw
ε
r (x, t) = −ψ(x̄ + r x)uε(x̄ + r x, t̄ + r2t)

r2 + ψ(x̄ + r x)∇uε(x̄ + r x, t̄ + r2t)

r
· x

+ uε(x̄ + r x, t̄ + r2t)∇ψ(x̄ + r x)

r
· x+2tψ(x̄+r x)∂t u

ε(x̄ + r x, t̄ + r2t),

(2.7)

then, for x in the support of ψr and −4 ≤ t ≤ −1, there holds

|∂rw
ε
r | ≤ 4A1 R

r2 + A2

r

R

r
+ +4A1 R

r

A4

R

R

r
+ 8

r
|ψr∂t u

ε
r | = C

R

r2 + C

r
|ψr∂t u

ε
r |

and

| − 2uεr�ψ
r − 4∇ψr∇uεr | ≤ 8A1 R

r
r2 A4 + 4r

A4

R
A2 ≤ C R2

(we have used that r ≤ R0 ≤ R and R > 1). Since ψ ≡ 1 in BR/2(x̄), it follows that

|I I | ≤ C R3

r2

−1∫

−4

∫

R
2r ≤|x |≤ R

r

G(x,−t)dxdt

+C R2

r

⎛
⎜⎝

−1∫

−4

∫

RN

(∂t u
ε
r )

2(ψr )2G(x,−t)dxdt

⎞
⎟⎠

1/2
⎛
⎜⎜⎝

−1∫

−4

∫

R
2r ≤|x |≤ R

r

G(x,−t)dxdt

⎞
⎟⎟⎠

1/2

.

Now, observing that

−1∫

−4

∫

R
2r ≤|x |≤ R

r

G(x,−t)dxdt ≤ Ce−C ′ R2

r2 (2.8)

and recalling (2.6), we obtain

I I ≥ −C
(

1 + || fε||L∞(Q R,R0 (x̄,t̄))

)
R2e−C ′′ R2

r2 .

Since 0 ≤ s βε(s) ≤ M1 and 0 ≤ Bε(s) ≤ M , we have

| − 2ψrβε(ruεr ) ruεr ∂rψ
r + 4ψr ∂rψ

r Bε(ruεr )| ≤ 2M1
A4

R
|x | + 4

A4

R
|x |M ≤ C R

r
,
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32 C. Lederman, N. Wolanski

for x in the support of ψr and −4 ≤ t ≤ −1. Then, using again (2.8) we conclude that

I I + I I I ≥ −C̄
(

1 + || fε||L∞(Q R,R0 (x̄,t̄))

)
R2e−C ′′′ R2

r2 .

The theorem is proved. �


As a consequence of Theorem 2.1, we obtain

Theorem 2.2 (Global monotonicity formula) Let uε j be a family of solutions to Pε j ( fε j ) in
Q R j ,R0(x̄, t̄) with R j → ∞. Let ψ j = ψ j (x) ∈ C∞

0 (BR j (x̄)), 0 ≤ ψ j ≤ 1, ψ j ≡ 1 in
BR j /2(x̄). Assume that

|uε j (x, t)|≤ A1
(
1 + |x − x̄ | + |t − t̄ |1/2) in Q R j ,R0(x̄, t̄), |uε j |Lip(1,1/2)(Q R j ,R0 (x̄,t̄))

≤ A2

||∇ψ j ||L∞(BR j (x̄))
≤ A4

R j
, ||D2ψ j ||L∞(BR j (x̄))

≤ A4. (2.9)

Let u = lim uε j uniformly on compact sets of R
N × (t̄ − 4R2

0, t̄], χ = lim Bε j (u
ε j )∗-

weakly in L∞
loc(R

N × (t̄ − 4R2
0, t̄]), A ≥ ‖ fε j ‖L∞(Q R j ,R0 (x̄,t̄))

and ε j → 0.

For 0 < r < R0, let

W(x̄,t̄)(r) = W(x̄,t̄)(r, u, χ)

= 1

r2

t̄−r2∫

t̄−4r2

∫

RN

(
|∇u|2 + 2χ + 1

2

u2

t − t̄

)
G(x − x̄, t̄ − t)dxdt. (2.10)

Then, for R0 > ρ1 > ρ2 > 0,

W(x̄,t̄)(ρ1)− W(x̄,t̄)(ρ2) ≥
ρ1∫

ρ2

−1∫

−4

∫

RN

(∂r ur )
2 rG(x,−t)

−t
dxdtdr

− C A (ρ1 − ρ2) (1 + (ρ1 + ρ2)A)− C A |u(x̄, t̄)| log

(
ρ1

ρ2

)

(2.11)

where C is as in Theorem 2.1 and ur (x, t) = 1
r u(x̄ + r x, t̄ + r2t).

In addition, if ‖ fε j ‖L∞(Q R j ,R0 (x̄,t̄))
→ 0 as j → ∞ there holds that, for R0 >ρ1>ρ2 > 0,

W(x̄,t̄)(ρ1)− W(x̄,t̄)(ρ2) ≥
ρ1∫

ρ2

−1∫

−4

∫

RN

(∂r ur )
2 rG(x,−t)

−t
dxdtdr. (2.12)

Proof First of all, it is clear that the second assertion follows immediately from the first one
since, when ‖ fε j ‖L∞(Q R j ,R0 (x̄,t̄))

→ 0 as j → ∞, we may take as A an arbitrarily small
constant.

In order to obtain (2.11), we will apply Theorem 2.1 to our family and pass to the limit.
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A local monotonicity formula. Part II 33

In fact, integrating Eq. (2.3) for j fixed and bounding || fε j ||L∞(Q R j ,R0 (x̄,t̄))
by A, we get

Wε j

(x̄,t̄)(ρ1)− Wε j

(x̄,t̄)(ρ2) ≥
ρ1∫

ρ2

−1∫

−4

∫

RN

(
∂rw

ε j
r

)2 rG(x,−t)

−t
dxdtdr − C A

ρ1∫

ρ2

(1 + r A) dr

−C A|uε j (x̄, t̄)| log

(
ρ1

ρ2

)
− C (1 + A) R2

j

ρ1∫

ρ2

e−C ′ R2
j

r2 dr = I − I I − I I I − I V . (2.13)

It is easy to see that, as j → ∞,

I I = C A(ρ1 − ρ2)

(
1 + A

ρ1 + ρ2

2

)
,

I I I → C A |u(x̄, t̄)| log

(
ρ1

ρ2

)
,

and

0 ≤ I V ≤ C (1 + A) R2
j e

−C ′ R2
j

ρ2
1 (ρ1 − ρ2) → 0.

On the other hand, we recall that, by (2.7), ∂rw
ε j
r (x, t) is the sum of four terms,

∂rw
ε j
r (x, t) = (i)+ (ii)+ (iii)+ (iv).

Now, observe that ψ j → 1 and ∇ψ j → 0 uniformly on compact sets of R
N . Moreover,

we know that ∇uε j → ∇u strongly in L2
loc (this convergence was proved in [6] for nonnega-

tive functions, but the same proof holds in the present case). Thus, by taking a subsequence,
we obtain in R

N × (−4,−1),

(i) → −u(x̄ + r x, t̄ + r2t)

r2 a.e. and

|(i)| ≤ A1
(
1 + r(|x | + |t |1/2))

r2 ,

(ii) → ∇u(x̄ + r x, t̄ + r2t)

r
· x a.e. and

|(ii)| ≤ A2|x |
r

,

(iii) → 0 a.e. and

|(iii)| ≤ 2A1 A4|x |
r

.

So that,

ρ1∫

ρ2

−1∫

−4

∫

RN

(
−ψ j (x̄ + r x)uε j (x̄ + r x, t̄ + r2t)

r2 + ψ j (x̄ + r x)∇uε j (x̄ + r x, t̄ + r2t)

r
· x

+ uε j (x̄ + r x, t̄ + r2t)∇ψ j (x̄ + r x)

r
· x

)2
rG(x,−t)

−t
dxdtdr

→
ρ1∫

ρ2

−1∫

−4

∫

RN

(
−u(x̄ + r x, t̄ + r2t)

r2 + ∇u(x̄ + r x, t̄ + r2t)

r
· x

)2
rG(x,−t)

−t
dxdtdr.
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Next, we use the convergence of uε j , estimate (2.6) and the fact that ψ j u
ε j
t = ∂t (ψ j uε j )

to deduce that

ψ j (x̄ + r x)∂t u
ε j (x̄ + r x, t̄ + r2t) ⇀ ut (x̄ + r x, t̄ + r2t)

weakly in L2
(
R

N × (−4,−1), (−t)G(x,−t)dxdt
)
. Then,

lim inf
j→∞

ρ1∫

ρ2

−1∫

−4

∫

RN

(
2tψ j (x̄ + r x)∂t u

ε j (x̄ + r x, t̄ + r2t)
)2 rG(x,−t)

−t
dxdtdr

≥
ρ1∫

ρ2

−1∫

−4

∫

RN

(
2tut (x̄ + r x, t̄ + r2t)

)2 rG(x,−t)

−t
dxdtdr

and
ρ1∫

ρ2

−1∫

−4

∫

RN

(
2tψ j (x̄ + r x)∂t u

ε j (x̄ + r x, t̄ + r2t)
)

×
(

−ψ j (x̄ + r x)uε j (x̄ + r x, t̄ + r2t)

r2 + ψ j (x̄ + r x)∇uε j (x̄ + r x, t̄ + r2t)

r
· x

+ uε j (x̄ + r x, t̄ + r2t)∇ψ j (x̄ + r x)

r
· x

)
rG(x,−t)

−t
dxdtdr

→
ρ1∫

ρ2

−1∫

−4

∫

RN

(
2tut (x̄ + r x, t̄ + r2t)

)

×
(

−u(x̄ + r x, t̄ + r2t)

r2 + ∇u(x̄ + r x, t̄ + r2t)

r
· x

)
rG(x,−t)

−t
dxdtdr.

Returning to (2.13) we conclude that

lim inf
j→∞ I ≥

ρ1∫

ρ2

−1∫

−4

∫

RN

(∂r ur )
2 rG(x,−t)

−t
dxdtdr.

Similarly, we can prove that

1

r2

t̄−r2∫

t̄−4r2

∫

RN

(∣∣∇(ψ j u
ε j )

∣∣2 + 1

2

(ψ j uε j )2

t − t̄

)
G(x − x̄, t̄ − t)dxdt

→ 1

r2

t̄−r2∫

t̄−4r2

∫

RN

(
|∇u|2 + 1

2

u2

t − t̄

)
G(x − x̄, t̄ − t)dxdt.

Finally, given σ > 0, let R > 0 be such that

2M

t̄−r2∫

t̄−4r2

∫

|x−x̄ |>R

G(x − x̄, t̄ − t)dxdt <
σ

2
.
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Then, for j large,
∣∣∣∣∣∣∣

t̄−r2∫

t̄−4r2

∫

RN

{
ψ2

j Bε j (u
ε j )− χ

}
G(x − x̄, t̄ − t)dxdt

∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣

t̄−r2∫

t̄−4r2

∫

|x−x̄ |<R

{
Bε j (u

ε j )− χ
}

G(x − x̄, t̄ − t)dxdt

∣∣∣∣∣∣∣

+ 2M

∣∣∣∣∣∣∣

t̄−r2∫

t̄−4r2

∫

|x−x̄ |>R

G(x − x̄, t̄ − t)dxdt

∣∣∣∣∣∣∣

<

∣∣∣∣∣∣∣

t̄−r2∫

t̄−4r2

∫

|x−x̄ |<R

{
Bε j (u

ε j )− χ
}

G(x − x̄, t̄ − t)dxdt

∣∣∣∣∣∣∣
+ σ

2

< σ if j ≥ j0(R).

Therefore, Wε j

(x̄,t̄)(r) → W(x̄,t̄)(r) as j → ∞ and the result follows. �

We apply Theorem 2.2 to derive

Corollary 2.1 (Global monotonicity formula for blow up limits) Let uε j be a family of solu-
tions to Pε j ( fε j ) in a domain D ⊂ R

N+1, uniformly bounded in Lip (1, 1/2) norm with
fε j uniformly bounded in L∞ norm in D. Assume uε j → u uniformly on compact subsets
of D and Bε j (u

ε j ) → χ ∗-weakly in L∞(D) with ε j → 0. Let (x0, t0) ∈ D ∩ ∂{u > 0},
uλn (x, t) = 1

λn
u(x0 + λn x, t0 + λ2

nt), χλn (x, t) = χ(x0 + λn x, t0 + λ2
nt) and λn → 0.

Assume uλn → u0 uniformly on compact sets of R
N+1, χλn → χ0 ∗-weakly in L∞

loc(R
N+1).

Let (x̄, t̄) ∈ R
N+1. Then, for W(x̄,t̄)(r) = W(x̄,t̄)(r, u0, χ0) and ρ1 > ρ2 > 0 there holds

that

W(x̄,t̄)(ρ1)− W(x̄,t̄)(ρ2) ≥
ρ1∫

ρ2

−1∫

−4

∫

RN

(∂r (u0)r )
2 rG(x,−t)

−t
dxdtdr, (2.14)

where (u0)r (x, t) = 1
r u0(x̄ + r x, t̄ + r2t).

Proof We will apply Theorem 2.2 to the functions uδn (x, t) := 1
λn

uε jn (x0 + λn x, t0 + λ2
nt)

where jn is chosen such that (see for instance [7], proof of Theorem 3.1),

• δn := ε jn
λn

→ 0.

• uδn → u0 uniformly on compact sets of R
N+1.

• Bδn (u
δn ) → χ0 ∗-weakly in L∞

loc(R
N+1).

• | u(x0,t0)−uε jn (x0,t0)
λn

| ≤ 1.

Now, let σ > 0 such that B2σ (x0) × [t0 − 4σ 2, t0 + 4σ 2] ⊂ D. Let Rn = σ/λn and let
R0 > 0 be fixed. Then, for (x, t) ∈ Q Rn ,R0(x̄, t̄) we have that |λn x | ≤ λn |x̄ | + λn |x − x̄ | ≤
λn |x̄ | + σ < 2σ and −4σ 2 ≤ λ2

n(t̄ − 4R2
0) < λ2

nt < λ2
n t̄ ≤ 4σ 2 if n is large enough. Thus,

uδn is defined in Q Rn ,R0(x̄, t̄) for n large.

123



36 C. Lederman, N. Wolanski

Let ψ ∈ C∞
0 (Bσ (0)), 0 ≤ ψ ≤ 1, ψ ≡ 1 in Bσ/2(0), and ψn(x) = ψ(λn(x − x̄)). Then,

|∇ψn | ≤ A4
λn
σ

, |D2ψn | ≤ A4 in BRn (x̄) for a certain constant A4, ψn ∈ C∞
0

(
BRn (x̄)

)
,

ψn ≡ 1 in BRn/2(x̄).
Observe that uδn are solutions to Pδn ( fδn ) with fδn (x, t) = λn fε jn

(x0 + λn x, t0 + λ2
nt).

Moreover, ‖ fδn ‖L∞(Q Rn ,R0 (x̄,t̄))
→ 0 as n → ∞.

In order to apply Theorem 2.2, let ρ1 > ρ2 > 0 arbitrary and then, take R0 > ρ1. We
only need to show that the hypotheses (2.9) are satisfied. In fact, the bounds of ψn and its
derivatives follow immediately by construction as observed above. On the other hand, taking
L > 0 such that |uε jn |Lip(1,1/2)(D) ≤ L we get, for (x, t) ∈ Q Rn ,R0(x̄, t̄),

|uδn (x, t)| = 1

λn
|uε jn (x0 + λn x, t0 + λ2

nt)| ≤
∣∣∣∣uε jn (x0, t0)

λn

∣∣∣∣ + L(|x | + |t |1/2)

≤
∣∣∣∣u(x0, t0)− uε jn (x0, t0)

λn

∣∣∣∣ + L(|x̄ | + |t̄ |1/2)+ L(|x − x̄ | + |t − t̄ |1/2)
≤ A1(1 + |x − x̄ | + |t − t̄ |1/2)

for a certain constant A1 depending on x̄ and t̄ but independent of n. Moreover,

|uδn |Lip(1,1/2)(Q Rn ,R0 (x̄,t̄))
≤ L .

Thus, (2.14) follows and the corollary is proved. �


3 Characterization of blow up limits in terms of the density at the blow up point

In this section we apply the results of Sect. 2 to characterize blow up limits u0 in terms of
the value of a density at the blow up point, in the stationary case.

In fact, we consider a family uε j of stationary solutions to Pε j ( fε j ) in a domain � ⊂ R
N

with ‖ fε j ‖L∞(�) ≤ C , ‖uε j ‖L∞(�) ≤ C ′ and ε j → 0. By the results in [8], it follows that
uε j are locally uniformly bounded in Lip norm in �, so that the results of Sect. 2 apply to
this family.

Let u = lim uε j uniformly on compact subsets of � and χ = lim Bε j (u
ε j ) ∗-weakly in

L∞(�). For x0 ∈ � ∩ ∂{u > 0}, we consider

δ(x0) := δ(x0, 0) = lim
r→0

1

r2

−r2∫

−4r2

∫

RN

(
|∇(ψu)|2 + 2ψ2χ + (ψu)2

2t

)
G(x − x0,−t)dxdt,

(3.1)

whereψ ∈ C∞
0 (Bσ (x0)), 0 ≤ ψ ≤ 1,ψ ≡ 1 in Bσ/2(x0) and Bσ (x0) ⊂⊂ � (this limit exists

and it is finite and independent of the cut off function ψ , by Theorem 2.2 and Corollary 2.1
in [7]).

First, we prove Theorems 3.1 and 3.2, where we characterize blow up limits u0 at free
boundary points x0 when δ(x0) ∈ {3M, 6M} (here u0 = limλn→0

1
λn

u(x0 + λn x), with

x0 ∈ �∩ ∂{u > 0} and M = ∫ 1
0 β(s)ds). See Remark 3.2 for the reciprocal of these results.

Then, we show that δ(x0) ∈ [3M, 6M]. Moreover, δ(x0) ∈ {3M, 6M} for HN−1-almost
every x0 ∈ �∩ ∂{u > 0} and also for every x0 ∈ �∩ ∂{u > 0}, if N = 2 (Propositions 3.1–
3.3).
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We start with

Theorem 3.1 Let uε j be stationary solutions to Pε j ( fε j ) in a domain � ⊂ R
N with

‖ fε j ‖L∞(�) ≤ C, ‖uε j ‖L∞(�) ≤ C ′ and ε j → 0. Let u = lim uε j uniformly on com-
pact subsets of � and χ = lim Bε j (u

ε j ) ∗-weakly in L∞(�). Let x0 ∈ � ∩ ∂{u > 0} and
δ(x0) as in (3.1).

Assume δ(x0) = 6M. Let λn → 0 be such that there exists u0(x) = limn→∞ 1
λn

u(x0 +
λn x) uniformly on compact sets of R

N . Then, there exists α ≥ 0 such that, in a certain
coordinate system,

u0(x) = α|x1|.

Proof By taking a subsequence, we may assume that χλn (x) = χ(x0 + λn x) → χ0(x)
∗-weakly in L∞

loc(R
N ). By the results of [7] (Corollaries 2.1 and 2.2) we know that, for

r > 0,

δ(x0)= 1

r2

−r2∫

−4r2

∫

RN

(
|∇u0|2 + 2χ0 + u2

0

2t

)
G(x,−t)dxdt =

−1∫

−4

∫

RN

2χ0(x)G(x,−t)dxdt.

(3.2)

Since 0 ≤ χ0 ≤ M there holds that 0 ≤ δ(x0) ≤ 6M . Thus,

δ(x0) = 6M ⇒ χ0 ≡ M a.e. in R
N .

On the other hand, we know that u0 is homogeneous (see Corollary 2.1 in [7]). This is,

u0(r x) = ru0(x) for every r > 0, x ∈ R
N .

Since u0 = lim uδn and χ0 = lim Bδn (u
δn ) with δn and uδn as in Corollary 2.1, we can

apply the results in Lemma 3.1 in [8] to deduce that χ0(x) ∈ {0,M} for almost every x ∈ R
N ,

χ0 = 0 in {u0 < 0}, χ0 = M in {u0 > 0} and χ0 is constant on every connected component
of {u0 ≤ 0}◦. In particular, since χ0 ≡ M , we have that u0 ≥ 0.

If u0 ≡ 0 in R
N , then u0(x) = α|x1| with α = 0 and the theorem is proved in this case.

Thus, we may assume that u0 > 0 somewhere.
Now, let us show that the theorem holds when u0 depends only on 1 variable. In fact, if

u0 = u0(x1) depends on 1 variable, the only possible components of {u0 > 0} are {x1 > 0}
and {x1 < 0}.

If u0 > 0 in {x1 > 0} there holds that u0(x1) = αx1 in {x1 > 0} with α > 0 since it is
harmonic in this set and u0(0) = 0.

Assume u0 = 0 in {x1 < 0}. Using that u0 = lim uδn , χ0 = lim Bδn (u
δn ) and that uδn are

solutions to Pδn ( fδn ) with fδn → 0 uniformly on compact subsets of R
N , we proceed as in

Proposition 3.2 in [8] (see also Proposition 5.1 in [6] and Proposition 5.2 in [4]) and deduce
that

α2

2
= M − M = 0,

which is a contradiction.
By similar arguments, if u0 > 0 in {x1 < 0} there exists γ > 0 such that u0(x1) = −γ x1

in {x1 < 0}.
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This time we proceed as in Proposition 3.3 in [8] (see also Proposition 5.3 in [4]), and
deduce that

α2

2
− γ 2

2
= M − M = 0.

So that, γ = α > 0 and u0(x1) = α|x1|.
Therefore, the theorem is proved when u0 depends on 1 variable.
We will devote the rest of the proof to showing that this is necessarily the case. The proof

will follow from a dimension reduction argument.
Let us first observe that if u0 depends on k variables, then χ0 depends on the same k

variables. In fact, assume that u0 does not depend on a direction ν̄. We will show that χ0

does not depend on ν̄. For simplicity, we assume that ν̄ = e1.
Multiplying equation Pδn ( fδn ) by uδn

x1 ϕ, where ϕ ∈ C∞
0 (R

N ), and integrating by parts,
we get

−1

2

∫
|∇uδn |2 ϕx1 +

∫
∇uδn ∇ϕ uδn

x1
=

∫
Bδn (u

δn )ϕx1 −
∫

fδn uδn
x1
ϕ.

Passing to the limit, we obtain

− 1

2

∫
|∇u0|2 ϕx1 =

∫
χ0ϕx1 . (3.3)

We observe the left-hand side of (3.3) vanishes because u0 does not depend on x1 and
thus, this equality implies that χ0 does not depend on x1, as we claimed.

Next, in order to develop the dimension reduction argument, let us assume that u0 depends
on k variables. Thus, we will assume that u0 = u0(x1, . . . , xk) and correspondingly, χ0 =
χ0(x1, . . . , xk).

Since the rest of the proof relies on the definition of the functional W(x̄,0)(r) = W(x̄,0)
(r, u0, χ0) (more precisely, on (2.14) and (3.2)), we see that we can assume that we are
working in R

k instead of R
N .

We will show that there is a direction ν in R
k such that u0 does not depend on this direction.

This is, we will show that ∇u0 ·ν = 0 in R
k , thus deducing that u0 actually depends on k −1

variables. Iterating this argument we finally get that u0 only depends on 1 variable.
Let us assume that k ≥ 2.
In order to find ν we first observe that there exists x̃ ∈ R

k\{0} such that u0(x̃) = 0. In
fact, if this is not the case we have{

�u0 = 0 in R
k\{0}

|u0(x)− u0(y)| ≤ L|x − y|
for some L > 0, and we deduce that �u0 = 0 in R

k , u0 ≥ 0, u0(0) = 0 which is a
contradiction.

Therefore, there exists x̃ �= 0 such that u0(x̃) = 0. Since u0 is homogeneous there holds
that u0(λx̃) = 0 for every λ > 0. By rotating this line we find in R

k a point 0 �= x̄∈∂{u0>0}.
If not, we would have u0 ≡ 0 and this is not the case.

Let us apply the monotonicity formula (2.14) at (x̄, t̄) with t̄ = 0. We have, for ρ1 >

ρ2 > 0,

0 ≤
ρ1∫

ρ2

−1∫

−4

∫

Rk

(∂r (u0)r )
2 rG(x,−t)

−t
dxdtdr ≤ W(x̄,0)(ρ1)− W(x̄,0)(ρ2),

where (u0)r (x) = 1
r u0(x̄ + r x) and W(x̄,0)(r) = W(x̄,0)(r, u0, χ0).

123



A local monotonicity formula. Part II 39

Now let R > 0 be fixed. Letting ρ1 → R− and ρ2 → 0+ (the limits exist by the
monotonicity of W(x̄,0)(r) shown in Corollary 2.1) we get

0 ≤
R∫

0

−1∫

−4

∫

Rk

(∂r (u0)r )
2 rG(x,−t)

−t
dxdtdr ≤ W(x̄,0)(R)− W(x̄,0)(0

+).

Now, it is easy to see from the rescaling invariance of W(x̄,0)(r), by arguments similar to
those used in Corollary 2.2 in [7], that

W(x̄,0)(0
+) =

−1∫

−4

∫

Rk

2χ00 G(x,−t)dxdt,

where χ00(x) = lim j→∞ χ0(x̄ + µ j x) for a certain sequence µ j → 0.
Since χ0 ≡ M , the same is true for χ00. Thus, W(x̄,0)(0+) = 6M .
On the other hand, we know that W(0,0)(r) is constant (recall (3.2)). Therefore,

W(x̄,0)(0
+) = 6M = δ(x0) = W(0,0)(R).

Thus,

0 ≤
R∫

0

−1∫

−4

∫

Rk

(∂r (u0)r )
2 rG(x,−t)

−t
dxdtdr ≤ W(x̄,0)(R)− W(0,0)(R). (3.4)

Let us see that the right-hand side converges to 0 as R → ∞. In fact, since u0 is homo-
geneous,

W(x̄,0)(R)− W(0,0)(R) = 1

R2

−R2∫

−4R2

∫

Rk

(
|∇u0|2 + 2χ0 + u2

0

2t

)

× (G(x − x̄,−t)− G(x,−t)) dxdt

= 1

R2

−R2∫

−4R2

∫

Rk

(∣∣∣∇u0

( x

R

)∣∣∣2 + 2χ0(x)+ u2
0

( x
R

)
2 t

R2

)
(G(x − x̄,−t)− G(x,−t)) dxdt

=
−1∫

−4

∫

Rk

(
|∇u0(y)|2 + 2χ0(Ry)+ u2

0(y)

2s

) (
G

(
y − x̄

R
,−s

)
− G(y,−s)

)
dyds

≤
−1∫

−4

∫

Rk

(
L2(1 + |y|2)+ 2M

)
∣∣∣∣e

|y− x̄
R |2

4s − e
|y|2
4s

∣∣∣∣
(−4π s)k/2

dyds

=
−1∫

−4

∫

Rk

FR(y, s)dyds,
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with FR(y, s) → 0 as R → ∞ and |FR(y, s)| ≤ C(1 + |y|2) e−C ′ |y|2 if R is large. Thus,

−1∫

−4

∫

Rk

FR(y, s)dyds → 0 as R → ∞

and, passing to the limit as R → ∞ in (3.4), we deduce that for a.e. r > 0

−1∫

−4

∫

Rk

(∂r (u0)r )
2 rG(x,−t)

−t
dxdt = 0.

Therefore, ∂r (u0)r = 0 so that, for a.e. x ,

0 = ∂r

(
u0(x̄ + r x)

r

)
= −u0(x̄ + r x)

r2 + x

r
· ∇u0(x̄ + r x)

or equivalently,

−u0(x)

r2 + x − x̄

r2 · ∇u0(x) ≡ 0.

But, since u0(r x) = ru0(x), there holds that

∇u0(x) · x − u0(x) ≡ 0.

Therefore,

∇u0(x) · x̄ ≡ 0.

Now, if ν = x̄
|x̄ | , there holds that u0 is independent of the direction ν and the theorem is

proved. �

We next obtain

Theorem 3.2 Let uε j be stationary solutions to Pε j ( fε j ) in a domain � ⊂ R
N with

‖ fε j ‖L∞(�) ≤ C, ‖uε j ‖L∞(�) ≤ C ′ and ε j → 0. Let u = lim uε j uniformly on com-
pact subsets of �, and χ = lim Bε j (u

ε j ) ∗-weakly in L∞(�). Let x0 ∈ � ∩ ∂{u > 0} and
δ(x0) as in (3.1).

Assume δ(x0) = 3M. Let λn → 0 be such that there exists u0(x) = limn→∞ 1
λn

u(x0 +
λn x) uniformly on compact sets of R

N . Then, there exist α > 0 and γ ≥ 0 such that, in a
certain coordinate system,

u0(x) = αx+
1 − γ x−

1 . (3.5)

Proof As in the proof of Theorem 3.1, we will first show that the theorem holds when u0

depends only on one variable, and then proceed by a dimension reduction argument.
In fact, we may assume that χλn (x) = χ(x0 + λn x) → χ0(x) ∗-weakly in L∞

loc(R
N ),

with χ0(x) ∈ {0,M} for almost every x ∈ R
N , χ0 ≡ M in {u0 > 0}, χ0 ≡ 0 in {u0 < 0}, χ0

constant (either 0 or M) on any connected component of {u0 ≤ 0}◦. In addition, the bounds
in the proof of Lemma 3.1 in [8] imply that χ0 ∈ BVloc(R

N ). In particular, χ0 = Mχ{χ0>0}
and thus, {χ0 > 0} is a set of locally finite perimeter (see, for instance, [5]).

So let us now show that, if u0 depends only on one variable (u0 = u0(x1) in a certain
coordinate system) then, the result follows. In fact, since u0 is homogeneous, we only have
one of the following:
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(1) u0 = 0 in R.
(2) u0 < 0 in {x1 > 0} and u0 < 0 in {x1 < 0}.
(3) u0 < 0 in {x1 > 0} and u0 = 0 in {x1 < 0}.
(4) u0 > 0 in {x1 > 0} and u0 > 0 in {x1 < 0}.
(5) u0 > 0 in {x1 > 0} and u0 < 0 in {x1 < 0}.
(6) u0 > 0 in {x1 > 0} and u0 = 0 in {x1 < 0}.

Actually, (1), (2), (3) and (4) are not possible. In fact, if (1), (2) or (3) hold, we have that
u0 ≤ 0 in R and then, χ0 is constant equal to 0 or M in R. If (4) holds, we have that χ0 = M
in R. Thus, in any of these cases we either have δ(x0) = 0 or δ(x0) = 6M , a contradiction.

Therefore, under the hypotheses of this theorem only (5) and (6) are possible.
There holds that u0 is harmonic where positive and where negative, u0 uniformly Lipschitz

in R and u0(0) = 0. Therefore, if we have (5) or (6), there exists α > 0 such that u0 = αx1

in {x1 > 0}. If we have (5), by the same argument there exists γ > 0 such that u0 = γ x1 in
{x1 < 0}. In any of the cases (5) or (6), there holds (3.5) with α > 0 and γ ≥ 0. Thus, the
theorem is true if u0 depends on 1 variable.

Now, as in the proof of Theorem 3.1, we will show by a dimension reduction argument, that
u0 depends only on 1 variable. Following the arguments in that proof, assuming u0 depends
on k variables with k ≥ 2, we may suppose that we are in R

k and therefore, it is enough to
show that there exists in R

k a point 0 �= x̄ ∈ ∂{u0 > 0} such that W(x̄,0)(0+) = 3M .
More precisely, we will see that there exists a point 0 �= x̄ ∈ ∂red{χ0 > 0} ⊂ ∂{u0 > 0},

where ∂red denotes reduced boundary. Recall that

W(x̄,0)(0
+) =

−1∫

−4

∫

Rk

2χ00(x)G(x,−t)dxdt,

for χ00(x) = lim j→∞ χ0(x̄ + µ j x) with µ j → 0. If x̄ ∈ ∂red{χ0 > 0}, then χ00(x) =
Mχ{〈x,ν〉>0} for ν the unit interior normal to {χ0 > 0} at x̄ in the measure theoretic sense.
Therefore, W(x̄,0)(0+) = 3M and, from here the proof follows as that of Theorem 3.1.

So, let E = {χ0 > 0}. Then, |E | > 0 and |Ec| > 0. If not, either χ0 = 0 a.e. or
χ0 = M a.e., contradicting the fact that δ(x0) = 3M . Thus, there exists R0 > 0 such
that |E ∩ BR0 | > 0 and |Ec ∩ BR0 | > 0, where we denote BR0 = BR0(0). We claim that
0 < Per(∂E; BR0) < ∞. In fact, the perimeter is finite in BR0 since χ0 = MχE and
χ0 ∈ BV (BR0). Now, by the isoperimetric inequality,

Per(∂E; BR0) ≥ Ck min
{|E ∩ BR0 |, |Ec ∩ BR0 |

}(k−1)/k
> 0.

On the other hand,

Per(∂E; BR0) = Hk−1(BR0 ∩ ∂red E).

Therefore, there exists 0 �= x̄ ∈ ∂red{χ0 > 0} as claimed, and the theorem is proved. �

In the remainder of the section we will let uε j be stationary solutions to Pε j ( fε j ) in a

domain � ⊂ R
N with ‖ fε j ‖L∞(�) ≤ C , ‖uε j ‖L∞(�) ≤ C ′ and ε j → 0 and we will let

u = lim uε j uniformly on compact subsets of�, and χ = lim Bε j (u
ε j ) ∗-weakly in L∞(�).

For points x ∈ � ∩ ∂{u > 0} we will consider δ(x) as defined in (3.1).
We prove

Lemma 3.1 Let x0 ∈ � ∩ ∂{u > 0}. Then,

lim sup
x→x0

x∈�∩∂{u>0}
δ(x) ≤ δ(x0).
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Proof Let σ > 0 such that B2σ (x0) ⊂⊂ � and ϕ ∈ C∞
0 (Bσ (0)), with 0 ≤ ϕ ≤ 1 and ϕ ≡ 1

in Bσ/2(0). For x̄ ∈ Bσ (x0) ∩ ∂{u > 0} we denote ψ x̄ (x) = ϕ(x − x̄) and define

W(x̄,0)(r) = W(x̄,0)(r, u, ψ x̄ , χ)

= 1

r2

−r2∫

−4r2

∫

RN

(∣∣∣∇(ψ x̄ u)
∣∣∣2 + 2(ψ x̄ )2χ + (ψ x̄ u)2

2t

)
G(x − x̄,−t)dxdt.

Now fix η > 0. Then, by Theorem 2.2 in [7], there exists r0 = r0(η) such that

δ(x̄) = W(x̄,0)(0
+) ≤ W(x̄,0)(r)+ η

2
if r ≤ r0, (3.6)

where r0 can be taken independent of the point x̄ ∈ Bσ (x0) if the constants in [7] are suitably
chosen.

On the other hand, there exists θ = θ(r, η) ≤ σ such that

W(x̄,0)(r) ≤ W(x0,0)(r)+ η

2
if x̄ ∈ Bθ (x0). (3.7)

In fact, since in R
N × [−4r2,−r2],∣∣∣∣|∇(ψ x̄ u)|2 + 2(ψ x̄ )2χ + (ψ x̄ u)2

2t

∣∣∣∣ ≤ Cr ,

∣∣∣∣
(

|∇(ψ x̄ u)|2 + 2(ψ x̄ )2χ + (ψ x̄ u)2

2t

)
−

(
|∇(ψ x0 u)|2 + 2(ψ x0)2χ + (ψ x0 u)2

2t

)∣∣∣∣
≤ Cr |x̄ − x0|,

with Cr independent of x̄ , we get

|W(x̄,0)(r)− W(x0,0)(r)|

≤ 1

r2

−r2∫

−4r2

∫

RN

Cr |G(x − x̄,−t)− G(x − x0,−t)| dxdt

+ 1

r2

−r2∫

−4r2

∫

RN

Cr |x̄ − x0|G(x − x0,−t)dxdt

≤ C ′
r |x̄ − x0|,

which implies (3.7).
Finally, from (3.6) and (3.7) we get, for r ≤ r0(η),

lim sup
x → x0

x∈�∩∂{u>0}
δ(x) ≤ W(x0,0)(r)+ η,

and the result follows by letting r → 0 first, and then η → 0. �

Lemma 3.2 Let x0 ∈ �∩∂{u > 0} be such that x0 �∈ ∂∗{χ > 0}, where we denote ∂∗{χ > 0}
the set of points x ∈ R

N such that

lim sup
r→0

|Br (x) ∩ {χ > 0}|
|Br (x)| > 0, lim sup

r→0

|Br (x) ∩ {χ > 0}c|
|Br (x)| > 0.

Then, δ(x0) = 0 or δ(x0) = 6M.
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Proof Let λn → 0 be such that there exist u0 = limn→∞ uλn uniformly on compact sets
of R

N and χ0 = limn→∞ χλn ∗-weakly in L∞
loc(R

N ) (here uλn (x) = 1
λn

u(x0 + λn x) and

χλn (x) = χ(x0 + λn x)).
If

lim sup
r→0

|Br (x0) ∩ {χ > 0}|
|Br (x0)| = 0,

then for any R > 0,

lim
n→∞

|BR(0) ∩ {χλn > 0}|
|BR(0)| = 0

and therefore, χ0 ≡ 0. Recalling (3.2) we obtain that δ(x0) = 0.
Now, if

lim sup
r→0

|Br (x0) ∩ {χ > 0}c|
|Br (x0)| = 0,

we argue similarly and deduce that χ0 ≡ M , which implies that δ(x0) = 6M and proves the
lemma. �


As a consequence of the previous lemmas we get

Proposition 3.1 Let x0 ∈ � ∩ ∂{u > 0}. Then, δ(x0) ∈ [3M, 6M].
Proof We first recall that the arguments in the proof of Theorem 3.1 imply that δ(x0) ∈
[0, 6M].

Next let ρ > 0 such that Bρ(x0) ⊂⊂ �. Since x0 ∈ � ∩ ∂{u > 0}, there exists x̂ ∈
Bρ/2(x0) such that u(x̂) > 0. Let us take 0 < µ ≤ ρ/2 such that there exists x̄ ∈ ∂Bµ(x̂) ∩
∂{u > 0} with Bµ(x̂) ⊂ {u > 0}.

Since u > 0 in Bµ(x̂), there holds that χ ≡ M in Bµ(x̂).
Now let λn → 0 be such that there exist u0(x) = limn→∞ 1

λn
u(x̄ + λn x) uniformly on

compact sets of R
N and χ0(x) = limn→∞ χ(x̄ +λn x) ∗-weakly in L∞

loc(R
N ). Then χ0 ≡ M

in {〈x, ν〉 > 0} with ν = x̂−x̄
|x̂−x̄ | .

Recalling again (3.2) we obtain that δ(x̄) ≥ 3M . Since x̄ ∈ Bρ(x0) ∩ ∂{u > 0}, where
ρ > 0 can be chosen arbitrarily small, we deduce from Lemma 3.1 that δ(x0) ≥ 3M and this
completes the proof. �

Proposition 3.2 There holds that δ(x0) = 3M or δ(x0) = 6M for HN−1-almost every
x0 ∈ � ∩ ∂{u > 0}.
Proof We first observe that the bounds in the proof of Lemma 3.1 in [8] imply that χ ∈
BVloc(�). In particular, χ = Mχ{χ>0} and thus, {χ > 0} is a set of locally finite perimeter.

Let x0 ∈ � ∩ ∂{u > 0}.
Assume x0 ∈ ∂red{χ > 0} ⊂ ∂∗{χ > 0}. Then, if λn → 0, we have χ0(x) =

limn→∞ χ(x0 + λn x) = Mχ{〈x,ν〉>0} for ν the unit interior normal to {χ > 0} at x0 in
the measure theoretic sense and therefore, δ(x0) = 3M .

Now assume x0 �∈ ∂∗{χ > 0}. Then, it follows from Proposition 3.1 and Lemma 3.2 that
δ(x0) = 6M .

Finally, we obtain the desired result observing that, by Lemma 1 in [5, Section 5.8], there
holds that HN−1(∂∗{χ > 0}\∂red{χ > 0}) = 0. �
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Proposition 3.3 Assume N = 2. Let x0 ∈ �∩∂{u > 0}. Then, δ(x0) = 3M or δ(x0) = 6M.

Proof Let λn → 0 be such that there exist u0(x) = limn→∞ 1
λn

u(x0 + λn x) uniformly on

compact sets of R
N and χ0(x) = limn→∞ χ(x0 + λn x) ∗-weakly in L∞

loc(R
N ).

If u0 ≤ 0, then χ0 ≡ 0 or χ0 ≡ M , and thus Proposition 3.1 implies that δ(x0) = 6M .
If u0 > 0 somewhere, we consider A a connected component of {u0 > 0}. Then, from

the homogeneity of u0 we get that, in some system of coordinates, either A ⊂ {x1 > 0} or
else {x1 > 0} ⊂ A. In the first case, Lemma A1 in [3] implies that u0(x) = αx+

1 + o(|x |) in
{x1 > 0}, with α ≥ 0 and then the homogeneity of u0 yields

u0(x) = αx+
1 in {x1 > 0} and α > 0.

Now, with a similar analysis in {x1 < 0} we conclude that

u0(x) = αx+
1 + ᾱx−

1 α > 0, ᾱ ∈ R. (3.8)

The case in which {x1 > 0} ⊂ A gives, with the same arguments, that again (3.8) holds and
therefore, δ(x0) = 3M or δ(x0) = 6M . �

Remark 3.1 In [8] we obtained results on the regularity of the boundary of {u > 0}, for
u = lim uε j , with uε j stationary solutions to Pε j ( fε j ). In particular we dealt with the cases
of energy minimizers (Theorem 10.2 in [8]) and traveling waves of a combustion model
(Theorem 10.1 in [8], see also Theorem 4.2 in Sect. 4).

The results in [8] imply, for the first of these applications, that δ(x0) = 3M for every
x0 ∈ � ∩ ∂{u > 0}, when N = 2 or N = 3, and similarly for the second one, when N = 2.
Moreover, in both cases, δ(x0) = 3M for HN−1-almost every x0 ∈ � ∩ ∂{u > 0}, in any
dimension.

Remark 3.2 The reciprocal results of Theorems 3.1 and 3.2 are also true.
In fact, assume that a blow up limit u0 at x0 ∈ � ∩ ∂{u > 0} has the form u0(x) = α|x1|

with α ≥ 0. Then χ0 ≡ 0 or χ0 ≡ M and therefore, δ(x0) = 0 or δ(x0) = 6M . Recalling
Proposition 3.1, we deduce that δ(x0) = 6M so the reciprocal of Theorem 3.1 holds.

Now assume that a blow up limit u0 at x0 ∈ � ∩ ∂{u > 0} has the form u0(x) = αx+
1 −

γ x−
1 with α > 0 and γ ≥ 0. Then χ0 = Mχ{x1>0} or χ0 ≡ M and therefore, δ(x0) = 3M or

δ(x0) = 6M . But δ(x0) = 6M would give, by Theorem 3.1, that u0(x) = α̃|〈x, ν〉| for some
direction ν and some α̃ ≥ 0, a contradiction. Therefore δ(x0) = 3M so that the reciprocal
of Theorem 3.2 also holds.

4 Application: regularity of the free boundary

In this section we present applications of the results in Sect. 3. They deal with the regularity
of the boundary of {u > 0} (u = lim uε j ) in the stationary case including, in particular,
regularity results for traveling waves of a combustion model.

First, we consider a family uε j of stationary solutions to Pε j ( fε j ) such that uε j and fε j

are uniformly bounded in L∞ norm. In [8] we proved that uε j are locally uniformly bounded
in Lip norm. So that, the results of the present paper apply to this family. Let u = lim uε j

uniformly on compact subsets as ε j → 0. In [8] we proved that u is a solution to

�u = f χ{u �≡0} in {u > 0} ∪ {u ≤ 0}◦,
where f = lim fε j ∗-weakly in L∞.
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Moreover, in [8] we proved that, under suitable assumptions, ∂{u > 0} is smooth and u
is a classical solution to the following free boundary problem

�u = f χ{u �≡0} in {u > 0} ∪ {u ≤ 0}◦,
(E( f ))|∇u+|2 − |∇u−|2 = 2M on ∂{u > 0}.

The purpose of this section is to state some theorems on the regularity of the free boundary
∂{u > 0} that are proved in [8] for which the results in this paper are an essential tool.

In fact, assume u is defined in Bσ (x0)with x0 ∈ ∂{u > 0}. Letχ = lim Bε j (u
ε j ) ∗-weakly

in L∞(Bσ (x0)) and consider δ(x0) as in (3.1).
In the next theorem, we assume that, in Bσ (x0), u+ is uniformly nondegenerate. This

property holds in many applications (see, for instance, Theorem 4.2 below). By uniform
nondegeneracy we mean that there exists c > 0 such that

u+(x) ≥ c dist (x, {u ≤ 0}).
As a first application, we have the following result,

Theorem 4.1 (Theorem 9.7 in [8]) There holds that δ(x0) = 3M if and only if the free
boundary is C1,α in a neighborhood of x0. This implies that u is a classical solution to the
free boundary problem E( f ) in a neighborhood of x0.

Theorem 3.2 is a key tool in the proof of Theorem 4.1.
We point out that there are examples in [6] that show that the free boundary condition in

E( f ) may not hold at any free boundary point. In fact, u+ may degenerate or the density
of {u ≤ 0} may be zero at a boundary point. Thus, some extra assumption is needed if one
wants to show that u is a solution to E( f ).

The results in the present paper are also used in [8] to obtain the following regularity result
for traveling waves of a combustion model. In fact, we have

Theorem 4.2 (Theorem 10.1 in [8]) Let x = (x1, y) ∈ � = R × �, with � ⊂ R
N−1 a

smooth bounded domain, let a be a continuous positive function on � and let 0 < σ̃ < 1 be
given.

Consider traveling wave solutions to the following combustion model

�vε − a(y)vεt = βε(v
ε),

where βε is as before with β ′(0) > 0. This is, vε(x, t) = uε(x1 + cεt, y), with uε solutions
to

�uε − cεa(y)uεx1
= βε(u

ε) in �,

uε(−∞, y) = (1 − σ̃ )−1, uε(+∞, y) = 0 in �,
∂uε

∂η
= 0 on R × ∂�,

for some suitable cε.
Let u = lim uε j (ε j → 0). Then, there is a subset R of the free boundary � ∩ ∂{u > 0}

which is locally a C1,α surface and u is a classical solution to the free boundary problem
E( f ) in a neighborhood of R ( f = ca(y)ux1 with c = lim cε j ). Moreover, R is open and
dense in � ∩ ∂{u > 0} and the remainder of the free boundary has (N − 1)–dimensional
Hausdorff measure zero. In dimension 2 we have R = � ∩ ∂{u > 0}.

In addition, in any dimension, if a ∈ Ck,α
loc (resp. analytic) then, R ∈ Ck+2,α

loc (resp. ana-
lytic).
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46 C. Lederman, N. Wolanski

We remark that this traveling wave problem was first studied in [1], where the authors obtained
existence of (uε, cε), strict monotonicity in the x1 direction, uniform Lipschitz estimates and
uniform nondegeneracy of the family uε, as well as uniform estimates of the velocities cε .

The proof of Theorem 4.2 relies on the fact that the density of the zero set is positive at
every free boundary point. We obtain this density property by a contradiction argument that
strongly uses Theorem 3.1.
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