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a b s t r a c t

In this study, we propose a multiperiod mixed-integer linear programming model, which in-

tegrates several decisions related to multistage multiproduct batch plants. In general, plant

designs are solved without considering operation decisions, whereas the proposed approach

considers production planning as well as scheduling decisions. The time horizon comprises

several periods where deterministic variations in prices, product demand limits, costs, and

the availability raw materials are considered. The plant operates using different production

campaigns throughout each time period. The proposed model allows the optimal plant struc-

ture (unit sizes and its duplication in parallel at each stage) to be obtained, as well as the de-

tailed production plan for every time period. Thus, the proposed method allows assessments

of the trade-offs between the different decision levels involved by considering fluctuations

throughout the time horizon.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Due to the high flexibility of batch plants in processing facilities, they are the preferred production mode for a large number of

chemicals. This production flexibility facilitates faster responses to satisfy market requirements, which are subject to fluctuations

over time. However, most previous studies of the optimal design of multiproduct batch plants have utilized models with a single

long time horizon and constant conditions, but without considering variations due to market or seasonal fluctuations. These

formulations are unsuitable for use in a highly dynamic environment where the problem data vary among periods, so some

multiperiod formulations have also been developed.

In addition, most previous studies have focused on a specific decision level. In particular, batch plant design has been solved

by considering several assumptions related to planning and scheduling. In general, these assumptions are made to simplify the

model formulation and resolution, as well as for use in more typical or normal scenarios. Thus, previous investigations of batch

plant design have employed this approach, but a more appropriate problem representation can be developed if the trade-offs

among different decision levels can be incorporated, as proposed by Lee et al. [1] for the simultaneous lot-sizing and supplier

selection problems, and by Ramezanian and Saidi-Mehrabad [2] for the integrated lot-sizing and scheduling approach.
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Nomenclature

Indices

r raw materials

i products

j stages

k units

l slots

m discrete options for the number of repetition of the campaign

n number of batches of a product

p discrete sizes for the units

t, τ time periods

Parameters

coit operating cost coefficient of product i in time period t.

cpit cost coefficient for late delivery of product i in time period t.

DEL
it

minimum demand of product i at time period t.

DEU
it

maximum demand of product i at time period t.

Frit conversion of raw material r to produce i at time period t.

H global time horizon.

Ht net available production time for all products at time period t.

IMr0 initial inventory of raw material r.

IPi0 initial inventory of product i.

Kj maximum number of available identical parallel units at batch stage j.

Lkjt number of slots postulated for unit k of stage j during period t.

Mb big-M constants for b = 1, 2, 3.

npit price of product i at period t.

Nt number of discrete values proposed by the number of repetitions of the campaign in period t.

NBCU
it

maximum number of batches of product i in the campaign of period t.

NNL
t minimum number of times that the campaign of period t can be repeated.

NNU
t maximum number of times that the campaign of period t can be repeated.

Pj number of discrete sizes available for batch stage j.

qL
it

lower bound on production level of product i in period t.

qU
it

upper bound on production level of product i in period t.

SFijt size factor of product i in stage j for each time period t.

ptijt processing time of product i in batch stage j in time period t.

Tmt discrete value m for the number of repetitions of the campaign of period t.

VFjp standard volume of size p for batch unit at stage j.

wpit waste disposal cost coefficient per product i.

wrrt waste disposal cost coefficient per raw material r.

αj cost coefficient for a batch unit in stage j.

β j cost exponent for a batch unit at stage j.

εrt inventory cost coefficient for raw material r in time period t.

κ rt price for the raw material r in time period t.

σ it inventory cost coefficient for product i in time period t.

ζ r time periods during which raw materials have to be used.

χ i time periods during which products have to be used.

Binary Variables

dmt specifies if the campaign is repeated Tmt times over time period t.

Xjklt indicates if slot l of unit k at stage j is employed in time period t.

ujk indicates if unit k of stage j is used.

vjp specifies if the units at stage j have size p.

xint denotes if n batches of product i are processed in the campaign of time period t.

Zilt indicates if product i is assigned to slot l in time period t.

Continuous Variables

Bit batch size of product i in time period t.

Crt amount of raw material r purchased in time period t.
Please cite this article as: Y. Fumero et al., Multiproduct batch plant design model incorporating produc-

tion planning and scheduling decisions under a multiperiod scenario, Applied Mathematical Modelling (2015),

http://dx.doi.org/10.1016/j.apm.2015.09.046

http://dx.doi.org/10.1016/j.apm.2015.09.046


Y. Fumero et al. / Applied Mathematical Modelling 000 (2015) 1–18 3

ARTICLE IN PRESS
JID: APM [m3Gsc;November 24, 2015;8:37]
CEjk investment cost of batch unit k of stage j.

CTCt campaign cycle time in time period t.

ejkp product of the binary variables ujk vjp.

IMrt inventory of raw material r at the end of time period t.

IPit inventory of final product i at the end of time period t.

NBit total number of batches of product i processed in time period t.

NBCit number of batches of product i included in the campaign of time period t.

NNt number of times a campaign is cyclically repeated over time period t.

PWit product i wasted at time period t due to the limited product lifetime.

qit amount of product i to be produced in time period t.

QSit amount of product i sold at the end of time period t.

RMrt raw material r used for production in time period t.

RWrt raw material r wasted at time period t due to the limited product lifetime.

TFjklt final processing time of slot l in unit k of stage j in time period t.

TIjklt initial processing time of slot l in unit k of stage j in time period t.

Vj size of a batch unit at stage j.

wijpnt variable that represents the product of variables qit vjp xint.

wwmt variable that represents the product of variables CTCt dmt.

Yijklt continuous variable on interval [0, 1] that indicates if product i is assigned to slot l of unit k at stage j in time

period t.

ϑit amount of late delivery for product i in time period t.

The decisions adopted during the design phase have a significant influence on the operation of the plant. In particular, pur-

chasing, inventory, transport, and distribution are affected severely depending on the production flow determined from the plant

design. These decisions are more critical when several products are produced by sharing resources. Therefore, it is crucial to know

in advance whether the plant behavior is subject to different conditions.

From a scheduling perspective, most previous design approaches have assumed that plants use single product campaigns

(SPCs) for production. In this policy, all of the batches of a product are produced without overlapping with other products during

each period. This assumption simplifies the problem and its solution by reducing the formulation size. Multiperiod approaches

allow more flexible production programs to be obtained, but SPCs are not suitable because they can overestimate the time

requirements, thereby leading to buildups of materials in the inventory, which may be impractical when perishable products are

considered. In addition, from an operational perspective, the production flow is not estimated and thus the purchasing, inventory,

and distribution cannot be assessed.

Mixed product campaigns (MPCs) can be employed to overcome these drawbacks and to improve productivity in multiprod-

uct batch facilities. The production campaign is repeated in a cyclical manner during the production horizon. A more steady

supply of raw materials and products can be achieved given that production campaign comprises a set of batches of the different

involved products. Thus, more efficient capacity requirement planning can be assured. However, despite these advantages, the

incorporation of constraints for MPCs requires a more complex formulation [3].

Therefore, the approach proposed in the present study considers two elements simultaneously. First, a multiperiod perspec-

tive is considered where seasonal fluctuations are incorporated in an appropriate manner. Second, integration among decision

levels is considered by a formulation that embodies several planning and scheduling features. In particular, MPCs are introduced

in order to evaluate the operation flow. Thus, the plant behavior can be assessed and related decisions (inventory, distribution,

purchasing, etc.) can be suitably weighted. It should be mentioned that scheduling is not applied from a short-term perspective

but instead it is employed in order to estimate production flows.

Planning and scheduling integration have been addressed in many studies using different modeling approaches and solution

strategies, although only from short- or medium-term perspectives. For example, Petkov and Maranas [4] solved these problems

by allowing for uncertain product demand. Józefowska and Zimniak [5] implemented a decision support system using a multi-

criteria genetic algorithm. Verderame and Floudas [6] analyzed planning and scheduling as inter-related activities that involve

the allocation of plant resources. Li and Ierapetritou [7] used Lagrangian relaxation because of the intractable model size. Susarla

and Karimi [8] considered planning and scheduling decisions simultaneously, where they presented a mixed-integer linear pro-

gramming (MILP) formulation in order to integrate resource allocation and production planning in multiproduct batch plants.

This model facilitates decision support related to batch scheduling, sequence-dependent changeovers, key resource allocations,

maintenance, inventory profiles with safety stock limitations, and new product introductions.

Design and planning decisions have been simultaneously considered in several previous studies. In addition, by considering

the problem size, several studies have resorted to resolution strategies using decomposition-based methods. For example, van

den Heever and Grossmann [9] proposed a general disjunctive multiperiod nonlinear optimization model, which incorporates

design as well as operation and expansion planning, and it considers the corresponding costs incurred during each time period for

the multiproduct batch plant design problem. Two algorithms for the resolution of these problems were proposed: a logic-basic

outer approximation algorithm and a bilevel decomposition algorithm. Moreover, Moreno et al. [10] presented a multiperiod
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scenario with different structural options for plant design, but without applying decomposition techniques. Later, Moreno and

Montagna [11] developed a more flexible formulation where the plant configuration can be different during every time period,

as well as introducing a new structural option using duplication in series for each operation [12].

Scheduling decisions were also incorporated in the design model. One of the first studies to address MPCs was reported by

Birewar and Grossmann [13], who included scheduling restrictions for the case of multiproduct batch plants. However, they sim-

plified their approach by assuming only one unit in each stage. The cycle time of the campaign was minimized and two different

operation policies were considered: zero wait and unlimited intermediate storage. Later, Dietz et al. [14] proposed a multicriteria

design method for multiproduct batch plants, where the design variables comprised the size of the equipment items as well as

the operating conditions. This formulation considered the composition of the production campaigns. Given the important com-

binatorial characteristic of the problem, the proposed approach involved coupling a stochastic algorithm, specifically a genetic

algorithm, with a discrete-event simulator. Working with similar plants, Corsano et al. [15] developed a multiperiod formula-

tion in order to optimize design and production planning simultaneously, where they employed MPCs to solve the production

scheduling. Using a mixed-integer non linear programming (MINLP) formulation, a set of possible production campaigns were

employed, which were handled by predetermined scheduling constraints, where this approach was applied to a fermentation

network. Fumero et al. [16] proposed a novel MILP formulation for multiproduct batch plant design based on MPCs, which al-

lowed the plant configuration and the production flow to be determined. Furthermore, scheduling and design decisions were

integrated in the context of the supply chain [17].

The MILP model proposed in the present study integrates several decisions such as design and production planning with MPCs

for multistage multiproduct batch plants. A multiperiod context is assumed in order to consider market or seasonal variations.

Thus, deterministic fluctuations in several problem parameters, such as costs, product demands, prices, and the availability of raw

materials, are specifically considered in this approach. In order to assess the optimal performance of the model, the net present

value is maximized by considering incomes (product sales) and expenses (investment, resources, operation, waste disposal,

inventories, and penalty costs due to late delivery). Production planning is addressed using MPCs; thus, for each time period, the

optimal solution determines the campaign composition, the assignment of batches to units, and the batches sequencing in each

unit. Therefore, the design and planning problems are simultaneously integrated in the overall multiperiod model, where the

different tradeoffs among the involved variables can be assessed. Production flows are evaluated given that MPCs are included

in the model, so relevant information about the operation behavior can be obtained.

The remainder of this study is organized as follows. First, the integrated design, production planning, and scheduling problem

is described in Section 2. The mathematical formulation is developed in Section 3. In Section 4, we solve numerical examples

using the proposed model. Finally, we give some concluding remarks in Section 5.

2. Problem description

The problem of simultaneous design, planning, and scheduling optimization for a multiproduct batch plant within a multi-

period environment is described as follows. A batch processing plant producing I products with similar recipes is considered,

each of which is elaborated following the same arrangement of J batch stages and using R raw materials. Parallel duplication of

units working out-of-phase is allowed at batch stage j. Thus, stage j may comprise Kj units of identical size.

Given that the problem addressed involves plant design, the sizes of the batch units at stage j, Vj, must be determined. Ac-

cording to the habitual commercial procurement of units, equipment sizes are considered to be available from a set SVj = {VFj1,

VFj2, … , VFjPj} of discrete sizes, where the parameter Pj corresponds to the number of sizes offered at stage j.

No intermediate storage tanks allocation are allowed. Furthermore, each batch processed at any unit in stage j is transferred

without delay to a unit in stage j + 1. Thus, a zero wait transfer policy is adopted.

As mentioned earlier, the plant operates in a multiperiod context where the total planning horizon H is split into T time

periods, which may or may not have the same length Ht. The processing time ptijt and the size factor SFijt for each product i at

stage j in every period t are plant data. In addition, the upper and lower bounds are known for the demands of each product i

in every period t, DEL
it

andDEU
it

. The amounts of raw materials consumed are determined by the mass balances, where a given

parameter Frit represents the conversion of the raw material r into product i during period t in the batch process. The costs of raw

materials and their availability differ for each period and they are model parameters. Moreover, the prices of the final products

in each time period and their maximum storage capacities are problem data.

During each time period t, the plant operates through MPCs with cyclic execution, i.e., the production campaign comprising

a number of batches of different products manufactured in the period is repeated in a cyclic manner over Ht. It should be men-

tioned that for each period, the number of batches of each product i is a decision variable in the model, and thus the campaign

composition and its cycle time are not known a priori. Only upper limits are imposed on the number of batches of each product

i in the campaign of time period t, NBCU
it

. In order to allocate batches to units, an asynchronous slot-based continuous-time for-

mulation is employed. This asynchronous representation allows us to set an appropriate number of time intervals (slots) with

unknown durations for each processing unit of a stage, which provides more flexibility in terms of timing decisions.

The number of times that the campaign in period t is repeated cyclically throughout the available time interval, which is

denoted by NNt, is a discrete variable of the model. In order to obtain a linear model and avoid significant and unnecessary com-

putational efforts, we propose an appropriate discretization of this variable on the interval [NNL
t , NNU

t ]. The interval endpoints

represent the minimum and maximum values that the variable NNt can take and they are adequately suggested.
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The initial amounts of both the product and raw material inventories, IPi0 and IMr0, at the beginning of the global horizon H,

are assumed to be given.

In every time period t, the decisions involved in production planning consist in determining for each product i, the quantity

to be produced qit, the number of batches, and their sizes at the optimal campaign, i.e., NBCit and Bit, respectively, and the total

sales QSit. The amounts of raw material purchased, Crt, and used in the process, RMrt, during each time period are also obtained.

Furthermore, the inventory levels of every final product IPit and raw material IMrt are determined at the end of each period

considered. If equal length periods are employed, waste management is also added to the formulation by considering waste due

to the product that has passed its shelf life PWit and due to the limited raw material lifetime RWrt. Finally, late deliveries ϑit that

occur in all periods are estimated.

By focusing on the scheduling decisions, for every time period t, this formulation allows us to determine the campaign com-

position, the assignment of batches to equipment items in each stage and its sequencing, the initial and final times of the batches

processed in each unit, the campaign cycle time, CTCt, and the number of campaign repetitions over the time period Ht.

The objective function considered is the maximization of the net present value of the profit over the time horizon, which is

given by the incomes (product sales) minus the costs (investment, raw materials, storage, penalties for late deliveries, and waste

disposal).

3. Model formulation

3.1. Plant design constraints

The batch size Bit and the number of batches NBit of product i in time period t allow us to determine the amount of product i

produced during that period, qit, as follows:

qit = Bit NBit ∀i, t. (1)

For a multiperiod approach, the constraint that calculates the unit size at each stage j is:

Vj ≥ SFi jt Bit ∀i, j, t, (2)

where the parameter SFijt, which is also known as the size factor at stage j for product i, may differ in each period t because of

seasonal variations. It specifies the size needed for stage j to process one unit mass of product i at the end of the production

process.

Let NBCit be the number of batches of product i processed in the production campaign of period t and NNt is the number of

times that the MPC is repeated cyclically throughout that period. Then, the total number of batches of product i processed in

time interval t is defined by Eq. (3),

NBit = NBCit NNt ∀i, t. (3)

By combining Eqs. (1) and (3), Eq. (2) takes the following form:

Vj ≥ SFi jt qit

NBCit NNt
∀ i, j, t. (4)

As mentioned earlier, the sizes of batch equipment Vj are available in discrete sizes VFjp. Thus, the values of the variable Vj

belong to the set SVj = {VFj1, VFj2, … , VFjPj}. To handle this restriction, a binary variable vjp is employed, the value of which is

equal to one if the units at batch stage j have size p; otherwise, it is equal to zero. Then, this variable can be expressed by Eq. (5)

as the summation of the Pj possible values that Vj can take multiplied by the binary variable vjp. Eq. (6) ensures that only one

binary variable can be nonzero, which guarantees that only one value of set SVj is given to variable Vj,

Vj =
Pj∑

p=1

v jpV Fjp ∀ j, (5)

Pj∑
p=1

v jp = 1 ∀ j. (6)

In addition, the binary variable xint is used to determine the number of batches of product i that comprised each campaign

during the time period t, NBCit. The variable xint is 1 only when n batches of product i are processed in the campaign during time

period t. Constraint (7) ensures the selection of only one option,

NBCU
it∑

n=0

xint = 1 ∀ i, t. (7)

Therefore,

NBCit =
NBCU

it∑
n=0

nxint ∀ i, t. (8)
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Note that the subscript n represents an integer number from the interval [0, NBCU
it

]. In particular, when variable xi0t is equal

to 1, then no batches of product i are produced in time period t, and thus its production is zero. Then, assuming that qL
it

and qU
it

are the known lower and upper bounds on the production level of product i in time period t, the inequalities in (9) ensure the

previous assumption and they are redundant when at least one batch of product i belongs to the campaign in that period,

(1 − xi0t )qL
it ≤ qit ≤ (1 − xi0t )qU

it ∀i, t. (9)

By introducing Eqs. (5) and (8) into Eq. (4) the following equation is obtained, which is valid if the integer subscript n is

nonzero (1 ≤ n ≤ NBCU
it

),

NNt ≥
Pj∑

p=1

NBCU
it∑

n=1

SFi jt qit

V Fj n
v jpxint ∀ i, j, t. (10)

The product of the continuous and binary variables introduces nonlinearity in Eq. (10). To reformulate constraint (10) as a

linear constraint, a new continuous variable wijpnt allows us to remove the product qit vjp xint. The variable wijpnt is equal to qit if

variables vjp and xint are simultaneously 1; otherwise, wijpnt is equal to zero. For this new variable, the following constraints are

incorporated,

Pj∑
p=1

wi jpnt ≤ qU
it xint ∀ i, j, n, t, (11)

NBCU
it∑

n=0

wi jpnt ≤ qU
it v jp ∀ i, j, p, t, (12)

NBCU
it∑

n=0

Pj∑
p=1

wi jpnt = qit ∀ i, j, t. (13)

Therefore, Eq. (10) can now be expressed as follows:

NNt ≥
Pj∑

p=1

NBCU
it∑

n=1

SFi jt

V Fjp n
wi jpnt ∀ i, j, t. (14)

Furthermore, as mentioned earlier, unit duplication is allowed for every stage j. Therefore, a binary variable ujk is used to

determine whether unit k at stage j is utilized to process some batch (ujk = 1).

To avoid alternative optimal solutions, the units are included sequentially,

ujk ≥ ujk+1 ∀ j, 1 ≤ k < Kj. (15)

3.2. Production planning constraints

The proposed model assumes that the production of each final product i requires r = 1, 2, …, R ingredients. Thus, Eq. (16)

describes the raw material inventory for ingredient r at the end of a time interval t, IMrt, which is equal to the stock in the

previous period, IMrt−1, plus the amount acquired during period t, Crt, minus the quantity consumed in the process, RMrt, and

minus the wastes due to the limited product lifetime, RWrt. In a similar manner, Eq. (17) sets the level of the final product i stored

at the end of period t, IPit, which is equal to the amount in storage at the end of the previous period, IPit−1, plus the production

during this period, qit, minus the amount sold QSit and minus the waste due to the expired product shelf life, PWit, where the

sold amount is bounded by the maximum demand DEU
it

,

IMrt = IMrt−1 + Crt − RMrt − RWrt ∀r, t, (16)

IPit = IPit−1 + qit − QSit − PWit ∀i, t. (17)

When the lengths of time periods are equal, Eq. (18) ensures that the amounts of raw materials stored in a given period are

not to be used after the next ζ r time periods. Similarly, Eq. (19) checks this condition for stored products after the next χ i time

periods,

IPit ≤
t+χi∑

τ=t+1

QSiτ ∀i, t, (18)

IMrt ≤
t+ζr∑

τ=t+1

RMrτ ∀r, t. (19)
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Furthermore, constraints (20) and ( 21 ) ensure that the stocks of product i and raw material r stored during period t do not

exceed their respective maximum available capacities, IPU
it

and IMU
rt ,

0 ≤ IPit ≤ IPU
it ∀i, t, (20)

0 ≤ IMrt ≤ IMU
rt ∀r, t. (21)

This problem assumes that the initial amounts of both the raw materials and products in stock, IMr0 and IPi0, are known at

the beginning of the time horizon. The mass balance (22) determines the amount consumed of raw material r to make product i

during period t, RMrit, where parameter Frit denotes the conversion of raw material r into product i in the process during period

t,

RMrit = Frit qit ∀r, i, t. (22)

Constraint (23) specifies the total raw material consumption for production in period t,

RMrt =
∑

i

RMrit ∀r, t. (23)

Late deliveries of products are penalized. Eq. (24) determines the late delivery ϑit that occurs when the sale of product i does

not meet the agreed minimum product demand DEL
it

on time in every time period t [18]. A penalty cost term is included in the

objective function to consider the expenses incurred if this failure occurs,

ϑit ≥ ϑit−1 + DEL
it − QSit ∀i, t. (24)

3.3. Production scheduling constraints

The scheduling model embedded in the integrated problem corresponds to a continuous time, slot-based formulation for a

multistage multiproduct batch plant. The production scheduling constraints at each time period are largely based on Fumero et

al. [3]. A detailed description of the assumptions regarding the units and slots utilization at each plant stage, which allow the

search space to be reduced as well as eliminating alternative solutions, can be found in the previous study. However, in order to

facilitate the readability of the model, the assignment and timing main constraints are described in the present study.

3.3.1. Allocation constraints

The assignment variables given by Fumero et al. [3] are extended to all time periods. At every time period, the binary variable

Yijklt defines whether the batch of product i is allocated to a slot l of unit k at stage j. This variable is sufficient for slot-based

formulations, but the binary variables Xjklt and Zilt are introduced in order to improve the model’s computational performance.

The variable Xjklt is only equal to 1 if slot l of equipment k at stage j is used during period t, while Zilt takes a value of 1 if some

batch of product i is processed in slot l during period t. The following relations among the binary variables are stated:

Yi jklt ≤ Zilt ∀ i, j, k, 1 ≤ l ≤ Lk jt , t, (25)

Yi jklt ≤ Xjklt ∀i, j, k, 1 ≤ l ≤ Lk jt , t, (26)

Yi jklt ≥ Xjklt + Zilt − 1 ∀ i, j, k, 1 ≤ l ≤ Lk jt , t, (27)

∑
k

1≤k≤Kj

k/l≤Lk jt

Yi jklt = Zilt , ∀i, j, 1 ≤ l ≤ L jkt , t, (28)

∑
i

Yi jklt = Xjklt , ∀ j, 1 ≤ k ≤ Kj, 1 ≤ l ≤ Lk jt , t, (29)

where Lkjt represents the number of postulated slots for unit k of stage j in time period t.

Eqs. (25) and (26) are active when variable Yijklt is equal to 1, or when the variables Xjklt or Zilt are zero. Eq. (27) ensures that

the variable Yijklt is equal to 1 when both variables Xjklt and Zilt take a value of 1. Therefore, the variable Yijklt can be defined as

continuous on the interval [0, 1], thereby reducing the number of binary variables.

In addition, the following constraints are imposed for these variables. If unit k is not allocated at stage j, i.e., ujk = 0, then none

of their slots are utilized to process products (Eqs. (30) and (31)). Otherwise, at least one batch of product is processed in some

slot of that unit according to Eq. (32),

Yi jklt ≤ ujk, ∀i, j, 1 ≤ k ≤ Kj, 1 ≤ l ≤ Lk jt , t, (30)

Xjklt ≤ ujk, ∀ j, 1 ≤ k ≤ Kj, 1 ≤ l ≤ Lk jt , t, (31)
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∑
i

∑
l

1≤l≤Lk jt

Yi jklt ≥ ujk, ∀ j, 1 ≤ k ≤ Kj, t. (32)

In this study, we make several assumptions regarding the use of slots and units to reduce the search space. Without loss of

generality, constraints (33)–(37) are imposed,∑
i

Zilt ≥
∑

i

Zil+1t , ∀1 ≤ l ≤ Lk jt − 1, t, (33)

Yi′ jk′ lt ≤ 1 − Yi jklt , ∀i, i′, j, 1 ≤ l ≤ Lk jt , 1 ≤ l ≤ Lk′ jt ,

1 ≤ k ≤ Kj, 1 ≤ k′ ≤ Kj, (k �= k′), t,
(34)

Xjk′lt ≤ 1 − Xjklt , ∀ j, 1 ≤ l ≤ Lk jt , 1 ≤ l ≤ Lk′ jt ,

1 ≤ k ≤ Kj, 1 ≤ k′ ≤ Kj, (k �= k′), t
, (35)

∑
i

∑
k

1≤k≤Kj

k/l≤Lk jt

Yi jklt ≤ 1,∀ j, 1 ≤ l ≤ Lk jt , t, (36)

∑
i

Zilt ≤ 1,∀1 ≤ l ≤ Lk jt − 1, t. (37)

Constraint (33) ensures that the slots are used sequentially in each stage, i.e., a slot is occupied only if the previous slot has

been used for processing a batch on some unit in this stage. Constraints (34) and (35) guarantee that if one batch is processed in

slot l of unit k in stage j, then this slot is no longer available for other units in this stage. Moreover, Eqs. (36) and (37) ensure that

slot l can be only allocated for processing at most one product in each stage at the plant.

In order to avoid alternative solutions, we impose a decreasing succession formed by the weighted sum of the slots occupied

in each unit of a stage during every period,∑
l

1≤l≤Lk jt

2lXjklt ≥
∑

l
1≤l≤Lk+1 jt

2lXjk+1lt ,∀ j, 1 ≤ k < Kj − 1, t. (38)

As shown previously [3], the resolution process can be expedited by imposing a pre-ordering constraint during scheduling.

The proposed pre-ordering ensures that in each time period, a given batch of product i is processed in the same slot in all stages,

∑
i

∑
k

1≤k≤Kj

k/l≤Lk jt

iYi jklt =
∑

i

∑
k

1≤k≤Kj′
k/l≤Lk j′t

iYi j′klt∀ j, j′, ( j < j′), 1 ≤ l ≤ Lk jt , t. (39)

The computational burden is reduced by including constraint (39), although suboptimal solutions may be obtained. This

assumption provides a good solution that coincides with the global optimum of the exact scheduling model in most of the cases

solved [16].

As an alternative to Eq. (8), variable Zilt allows us to express the number of batches of product i included in the campaign

during period t, NBCit, as follows:∑
l

Zilt = NBCit , ∀i, t. (40)

Finally, for each time period t when no batch of product i is processed, the variable Zilt is zero for all slots. Although the

following constraint is redundant, the computational performance can be improved:

Zilt ≤ 1 − xi0t , ∀i, l, t. (41)

3.3.2. Timing constraints

The timing decisions are modeled by the following constraints:

TFjklt = TIjklt +
∑

i

pti jt Yi jklt ∀ j, 1 ≤ k ≤ Kj,1 ≤ l ≤ Lk jt , t, (42)

TFjklt ≤ TIjkl+1t ∀ j, 1 ≤ k ≤ Kj, 1 ≤ l < Lk jt , t, (43)

TFjklt − TIjkl+1t ≥ −M1 Xjkl+1t ∀ j, 1 ≤ k ≤ Kj, 1 ≤ l < Lk jt , t, (44)
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TFjklt − TIj+1k′lt ≥ M2(Xjklt + Xj+1k′lt − 2)

∀ j, 1 ≤ k ≤ Kj, 1 ≤ k′ ≤ Kj+1, 1 ≤ l ≤ min
{

Lk jt , Lk′ j+1t

}
, t,

(45)

−TFjklt + TIj+1k′lt ≥ M2(Xjklt + Xj+1,k′ lt − 2)

∀ j, 1 ≤ k ≤ Kj, 1 ≤ k′ ≤ Kj+1, 1 ≤ l ≤ min
{

Lk jt , Lk′ j+1t

}
, t.

(46)

For every time period, Eq. (42) derives the final processing time TFjklt of each proposed slot at unit k in stage j from its initial

time TIjklt and the processing time of the assigned product in that slot. If no product is processed in slot l, the initial and final

times are the same. In order to avoid slots overlapping on each unit of a stage, the processing of slot l must be finished before the

initial time of slot l + 1, which is expressed by Eq. (43). When no batch is allocated to slot l + 1, the Big-M constraint (44) becomes

active and by considering Eq. (43), the final and initial times of slots l and l + 1, respectively, are forced to be the same. M1 is a

sufficiently large parameter to make the constraint redundant when one product is assigned to slot l + 1.

The batch transfer policy employed in this method is zero wait, which assumes that a batch must be transferred to the next

stage as soon as its processing has finished in the current stage. The Big-M constraints (45) and (46) allow us to express this

transfer policy. Parameter M2 is sufficiently large to relax these constraints when the product processed in slot l does not employ

equipment k in stage j or k’ in stage j + 1.

In order to calculate the cycle time of the campaign during period t, CTCt, the last slot of each unit k in stage j, Lkjt, and the first

slot effectively assigned to unit k in stage j during period t, l̃ jkt (l̃ jkt = min {1 ≤ l ≤ Lk jt/Xjklt = 1}), are considered as follows:

CTCt = max
j

{
max

1≤k≤Kj

{
TFjkLk jt t − TI

jkl̃ jkt t

}}
. (47)

Using Big-M constraints, the above expression can be represented as:

CTCt − TFjkLk jt t + TIjklt ≥ M3

⎛
⎜⎝(Xjklt − 1) −

∑
l′

1≤l′<l

Xjkl ´t

⎞
⎟⎠ , ∀ j, 1 ≤ k ≤ Kj, 1 ≤ l ≤ Lk jt , t, (48)

where M3 is a large parameter that makes Eq. (48) redundant for all the preceding and succeeding slots, if any, until the first

non-empty slot in equipment k for stage j during period t.

Significant reductions in the resolution time are achieved by establishing the following lower limit on the campaign cycle

time. Assuming that the idle time in each unit during the processing of the campaign at period t is zero, then:

CTCt ≥
∑

i

Lk jt∑
l=1

pti jtYi jklt ∀ j, 1 ≤ k ≤ Kj, t. (49)

The total time required to produce all batches corresponding to time interval t cannot exceed its length Ht. In order to satisfy

this requirement, the product between the campaign cycle time and the number of campaign repetitions in every period must

be less than or equal to Ht,

CTCt NNt ≤ Ht ∀ t. (50)

Constraint (50) is nonlinear because of the product CTCt NNt. However, in contrast to the problem addressed by Fumero et

al. [16], the production requirements during each time period are optimization variables. Therefore, the reformulation used by

Fumero et al. [16] does not avoid the nonlinearity of this expression.

In the present study, to reformulate Eq. (50) as a linear equation, the original variable NNt is assumed to be restricted to

taking values from a set RNt ={T1t , T2t , . . . , TNt t }, where Tmt represent the discrete value m in time period t and Nt is the number

of discrete values proposed by the designer.

The binary variable dmt is defined to select the number of production campaign repetitions in period t. If the campaign is

repeated Tmt times in period t, then this variable dmt is equal to 1; otherwise, the value is zero.

If some product is elaborated at period t, then constraints (51) and (52) ensure the selection of exactly one option,

Nt∑
m=1

dmt ≤ 1 ∀ t, (51)

Nt∑
m=1

dmt ≥ 1 − xi0t ∀ i, t. (52)

However, if no product is produced at period t, i.e., xi0t = 1 for all i, then the binary variable dmt takes a value of zero for all m,

dmt ≤ I −
I∑

i=1

xi0t ∀ m, t. (53)
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Thus, the number of times that the campaign is repeated in a cyclical manner throughout the time period t can be calculated

as follows:

NNt =
Nt∑

m=1

Tmt dmt ∀ t. (54)

By introducing the above expression into Eq. (50), a nonlinear constraint is obtained,

CTCt

Nt∑
m=1

Tmt dmt ≤ Ht ∀ t. (55)

CTCt does not depend on the subscript m, so Eq. (55) can be rewritten as follows:

Nt∑
m=1

Tmt CTCt dmt ≤ Ht ∀ t. (56)

To eliminate the bilinear product CTCt dmt, a nonnegative variable wwmt is introduced. Then, the following linear expressions

are used to represent Eq. (56):

Nt∑
m=1

Tmt wwmt ≤ Ht ∀ t, (57)

Nt∑
m=1

wwmt = CTCt ∀ t, (58)

wwmt ≤ CTCU
t dmt ∀ m, t, (59)

where CTCU
t is an upper bound for the campaign cycle time of period t.

3.4. Objective function

The objective function of the model given by Eq. (60) aims to maximize the net present value (NPV) of the profit throughout

the entire time horizon,

NPV =
∑

t

∑
i

npit QSit −
∑

t

∑
r

κrtCrt −
∑

j

∑
k

CEjk −
∑

t

[∑
r

εrt

(
IMrt−1 + IMrt

2

)
Ht +

∑
i

σit

(
IPit−1 + IPit

2

)
Ht

]

−
∑

t

∑
i

(coit qit + cpitϑit + wpit PWit) −
∑

t

∑
r

wrrt RWrt . (60)

This economic criterion is calculated based on the difference between the revenue due to product sales and the overall costs,

which include the purchases of raw materials, investments, inventories, operation, late delivery penalties, and waste disposal

costs. To determine the revenues, the product price, npit, is multiplied by the product amount sold in each time period. Parameter

κ rt denotes the price of the raw material r used to manufacture the products in time period t, while εrt and σ it are the inventory

costs per unit of raw material and final product, respectively. Furthermore, wpit and wrrt are the unit costs due to expired products

and raw materials, respectively. Parameter coit denotes the operating cost coefficient and cpit represents the late delivery cost

coefficient. All of the cost coefficients described above consider the time value of money, i.e., they are discounted prices for each

time period with a specified interest rate.

The third term in Eq. (60) corresponds to the investment cost of each batch unit k in every stage j, CEjk, which is calculated

in Eq. (61) by a power law expression of its size Vj, according to the expression proposed by Voudouris and Grossmann [19]. The

parameters αj and β j denote specific cost coefficients, which depend on the type of equipment at stage j, and the binary variable

ujk expresses whether unit k is used at stage j,

CEjk = ujk α jV
β j

j
∀ j, 1 ≤ k ≤ Kj. (61)

Note that constraint (61) contains a nonlinear product, which can be eliminated by substituting the sizes of batch equipment

at stage j, Vj, for the appropriate discrete sizes in Eq. (5), thereby yielding the following constraint:

CEjk =
∑

p

u jk α jV F
β j

jp
v jp ∀ j, 1 ≤ k ≤ Kj. (62)

However, the expression given above still exhibits nonlinearities due to the cross-product ujkvjp. Therefore, the nonlinear

terms in this constraint can be replaced by linear terms after defining a new continuous variable ejkp through the following

constraint:

e jkp ≥ ujk + v jp − 1 ∀ j, 1 ≤ k ≤ Kj, 1 ≤ p ≤ Pj. (63)
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It should be emphasized that only when the binary variables ujk and vjp are simultaneously equal to one, variable ejkp is equal

to one; otherwise, it takes a value that is equal to zero. In order to force the variable ejkp to lie within 0 and 1, the following

bounds are added:

0 ≤ e jkp ≤ 1 ∀ j, k, p. (64)

In this manner, the investment cost in Eq. (62) can be expressed as a linear constraint,

CEjk =
∑

p

α jV F
β j

jp
e jkp ∀ j, k. (65)

3.5. Formulation summary

In summary, the proposed mathematical formulation for the integrated design, planning, and scheduling of multistage batch

plants involves maximizing the objective function represented by Eq. (60) using Eq. (65) as the term of investment cost, subject

to constraints (5)–(9), (11)–(46), (48) and (49), (51)–(54), (57)–(59), and (63) and (64).

4. Application of the proposed approach

In this section, we present two examples to illustrate the applicability of the proposed MILP model. Each example was solved

with a 0% optimality gap in GAMS [20] using the CPLEX 12.5 solver on an Intel Core i7 CPU at 3.4 GHz, with 8GB of RAM.

4.1. Example 1

The first example involves a multiproduct batch plant producing three products from two different raw materials. Each prod-

uct recipe requires four batch stages in the facility. In order to reduce idle times, parallel equipment can be considered in each

stage, and thus stages 1, 2, and 3 can include up to three, two, and two identical units operating out-of-phase, respectively. A

global horizon time of 1 year (6000 h) is assumed, which is divided into four planning periods Ht, each of which is equal to

1500 h.

The processing times, size, and conversion factors were assumed to be equal for all time periods and their values are shown in

Table 1. For each period, the prices of raw materials and the final products, as well as the maximum demand values for all of the

products are given in Table 2. A minimum product demand of 50% must be satisfied in each period. For each stage, five discrete

sizes were available to select the dimensions of the process units. Table 3 shows these sizes and the associated cost coefficients.

The lifetime of the raw materials was equal to two periods whereas that for the products was equal to three periods. The

inventory cost coefficients for both the final products and raw materials were 0.1 $/(ton h) and 0.05 $/(ton h), respectively. These

values were assumed to be the same for all time periods. The unit costs for late delivery were assumed to be 50% of the product

sales price. We considered an annual discount rate of 10% in this study.

As mentioned earlier, in every time period, the number of batches of each product in the production campaign is a decision

variable, and thus an upper bound for this value must be proposed. In this example, a maximum of three batches in the campaign

composition was assumed for each product i in all time periods, i.e., NBCU
it

= 3.

The lower and upper bounds for the variable NNt, which represents the number of repetitions of the campaign over Ht, are

proposed by the designer based on a consideration of the two extreme types of campaigns that can arise in each time period, i.e.,
Table 1

Example 1 – model parameters.

Processing time, ptijt (h) Size factors, SFijt (L/kg) Conversion factors, Frit

Products J1 J2 J3 J4 J1 J2 J3 J4 R1 R2

I1 9.3 5.4 4.2 2.0 5.0 2.6 1.6 3.6 0.5 1.5

I2 8.5 5.8 4.1 2.5 4.7 2.3 1.6 2.7 1.0 1.2

I3 9.7 5.5 4.3 2.1 4.2 3.6 2.4 4.5 0.7 1.0

Table 2

Example 1 – economic data and demands.

Raw material Products prices, Maximum demands,

costs, κ rt ($/kg) npit ($/kg) DEU
it

(×103 kg)

t R1 R2 I1 I2 I3 I1 I2 I3

1 1.0 0.5 2.05 2.60 2.00 48.0 41.8 38.2

2 1.5 0.8 2.25 2.60 2.20 53.1 47.8 44.1

3 1.5 0.5 2.25 2.40 2.20 64.0 59.3 50.0

4 1.0 0.8 2.05 2.40 2.00 76.7 63.5 60.0
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Table 3

Example 1 – available standard sizes and unit cost data.

Discrete units sizes, VFjp (L) Cost coefficients

Stages P1 P2 P3 P4 P5 αj β j

J1 2000 2500 3000 4000 5000 135 0.6

J2 1500 2000 2500 3000 3500 148 0.6

J3 1000 1500 2000 2500 3000 140 0.6

J4 500 1000 2000 3000 4000 150 0.6

4000 L 2500 L 1500 L 3000 L

Stage 1 Stage 2 Stage 3 Stage 4

Fig. 1. Example 1 – optimal plant configuration.
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Fig. 2. Example 1 – profile for raw materials.
that with the minimum cycle time and that with the maximum cycle time, and the length of that period. For this example, NNt,

was uniformly discretized by considering 18 discrete points over the interval [NNL
t ,NNU

t ] = [12, 182]. Thus, for each period, the

step size was equal to 10 and the recurrence relation Tmt = Tm−1t + 10 for m = 2, …, 18 with T1t = 12, which allowed us to define

the value for the variable NNt.

Under these assumptions, the model comprised 14,371 linear constraints, 3427 continuous variables, and 580 binary variables.

The optimal solution had a value of $321,947.48 and it was obtained in 582.23 CPU seconds.

The optimal plant configuration for Example 1 is depicted in Fig. 1. All of the stages were designed with one unit except in

stage 1, where two identical parallel units were installed. The unit sizes selected for each stage were 4000 L, 2500 L, 1500 L, and

3000 L, respectively.

Figs. 2–5 show the optimal production planning variables for products and raw materials. Fig. 2 comprises two diagrams,

which correspond to raw materials R1 and R2, respectively. Raw material R1 was purchased in periods 1 and 4 whereas R2 was

bought in periods 1 and 3. Table 2 shows that both raw materials were acquired when their costs reached the lowest value. For

raw material R1, the extra material purchased in period 1 was kept as inventory to meet the production needs in the next two

periods when its price was high. Analogously, for raw material R2, the extra material purchased in periods 1 and 3 was kept as

inventory for production in subsequent periods.
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Fig. 3. Example 1 – profile for product I1.
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Fig. 4. Example 1 – profile for product I2.
As shown in Figs. 3 and 5, there was no inventory for the final products I1 and I3 because they were produced in all time

periods and the amounts produced in each period met the maximum demand. The results for product I2 are shown in Fig. 4,

which indicate that an extra amount was produced in time periods 1 and 3, and this was kept as inventory to satisfy the maximum

demand in the subsequent periods, but it was not produced in period 2 and its production was lower than the maximum demand

in period 4.

The products satisfied the minimum product demands in all time periods, so late deliveries did not occur in any of them. It

should be noted that there was no wastage of products or raw materials.

For each period, Table 4 shows the composition of the optimal production campaign, its cycle time, and the number of cam-

paign repetitions throughout the planning horizon. Fig. 6 illustrates the production sequence in the different stages for all time

periods.

Product I2 was not produced in period 2, so the campaign for this period only comprised one batch of each of the other

products, which was sufficient to meet the production plan. However, in period 4, due to an increase in the production levels of

I1 and I3 compared with the previous period, the campaign in period 3 could not be applied successfully. Using the total time

horizon, that campaign could not fulfill the production requirements for products I1 and I3. If the batch sizes of products I1 and

I3 are increased using the maximum available unit capacities, and the campaign is repeated 42 times over the time horizon,

the production levels achieved are lower than the required demand. Thus, the number of batches of products I1 and I3 in the

campaign during period 4 is increased by one unit compared with the previous period in order to meet the production levels.

Finally, the economic results are summarized in Table 5.
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Fig. 5. Example 1 – profile for product I3.
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Fig. 6. Gantt chart of the optimal MPC for periods: (a) 1, (b) 2, (c) 3, and (d) 4.

Table 4

Example 1 – optimal production campaign for

each time period.

NBCit CTCt

(h)

NNt

t I1 I2 I3

1 1 2 1 22.5 62

2 1 0 1 10.9 72

3 2 2 2 33.4 42

4 3 2 3 44.3 32
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Table 5

Example 1 – economic evaluation results ($).

Description Optimal value

Sales income 1361277.54

Raw material cost 832573.52

Investment cost 84882.53

Raw material inventory cost 49058.79

Product inventory cost 8165.23

Operating costs 64650.00

Waste disposal cost 0.00

Late delivery penalty 0.00

Total 321947.48

Table 6

Example 2 – model parameters.

Processing time, ptijt (h) Size factors, SFijt (L/kg) Conversion factors, Frit

Products J1 J2 J3 J4 J1 J2 J3 J4 R1 R2

I1 14 25 7 6 0.7 0.6 0.5 0.5 0.5 1.5

I2 16 18 5 5 0.6 0.7 0.45 0.7 2.0 0.0

I3 10 29 8 4 0.7 0.65 0.5 0.6 0.5 1.5

Table 7

Example 2 – economic data and bounds on demands.

Raw material Products prices, Maximum demands,

costs, κ rt ($/kg) npit ($/kg) DEU
it

(×103 kg)

t R1 R2 I1 I2 I3 I1 I2 I3

1 1.0 0.8 2.25 2.60 2.25 55.0 72.0 20.0

2 1.5 0.5 2.00 2.40 2.00 125.0 144.0 20.0

3 1.7 0.5 2.25 2.40 2.25 85.0 168.0 60.0

4 1.1 0.8 2.00 2.60 2.00 160.0 96.0 20.0

Table 8

Example 2 – available standard sizes and unit cost data.

Discrete units sizes, VFjp (L) Cost coefficients

Stages P1 P2 P3 P4 P5 αj β j

J1 650 1300 2600 5200 7800 350 0.6

J2 700 1400 2800 5600 8400 350 0.6

J3 250 500 1000 2000 3000 550 0.7

J4 400 800 1600 2400 4800 550 0.7
4.2. Example 2

This example considers a batch facility with four stages, which could produce three products from two raw materials. We

assumed that the first and second stages could include up to three parallel units operating out of phase, whereas the last two

stages admitted up to two identical units. The process data for this example are presented in Table 6, which show that product I2

was manufactured only by using raw material R1. Some economic data and the maximum demand forecasts over each period are

provided in Table 7. Similar to Example 1, a minimum of 50% of the maximum product demand must be satisfied in each period.

Like Example 1, a global planning horizon of one year (6000 h working) was considered, which was divided into four equal

time periods, i.e., 1–4, which each corresponded to 3 months (1500 h). The sets of available discrete sizes for the units in each

stage and the unit cost coefficients are given in Table 8.

In this example, the maximum numbers of batches for all products in the campaign composition were different and they

were proposed by the designer according to their experience. In particular, for every time period, the maximum admissible value

was two for product I1, three for product I2, and two for product I3. Moreover, for each time period, the number of campaign

repetitions was uniformly discretized between NNL
t = 11 and NNU

t = 101, with a step size length of 10 units. The recurrence

relation Tmt = Tm − 1t + 10 for m = 2, …, 10, with initial condition T1t = 11, defines the elements in the discrete options set. All

other data necessary to solve this example were the same as those used in Example 1.

The optimal solution for this example was obtained in 710.75 CPU seconds. This solution had a net present value of $ 67,099.22.

The example comprised 474 discrete variables, 2349 continuous variables, and 13,307 constraints.
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1300 L 1400 L 1000 L 800 L
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Fig. 7. Example 2 – optimal plant structure.

Table 9

Example 2 – optimal production planning variables for each time period.

I1 (×103kg) I2 (× 103kg) I3 (×103kg) R1 (×103kg) R2 (×103kg)

t qit QSit IPit qit QSit IPit qit QSit IPit Crt IMrt Crt IMrt

1 55.0 55.0 0.0 93.7 72.0 21.7 42.0 20.0 22.0 678.9 443.0 145.5 0.0

2 128.4 125.0 3.4 93.7 89.7 25.7 0.0 20.0 2.0 0.0 191.4 192.6 0.0

3 81.6 85.0 0.0 58.3 84.0 0.0 68.0 60.0 10.0 0.0 0.0 464.4 240.0

4 160.0 160.0 0.0 58.3 58.3 0.0 0.0 10.0 0.0 196.6 0.0 0.0 0.0

Table 10

Example 2 – optimal production campaign

for each time period.

NBCit CTCt (h) NNt

t I1 I2 I3

1 1 2 1 36 41

2 2 2 0 36 41

3 1 1 1 29 51

4 2 1 0 28 51

Table 11

Example 2 – economic evaluation results ($).

Description Optimal value

Sales income 1767659.16

Raw material cost 1281172.80

Investment cost 261236.67

Raw material inventory cost 62145.47

Product inventory cost 12105.00

Operating costs 83900.00

Waste disposal cost 0.00

Late delivery penalty 0.00

Total 67099.22
The optimal plant configuration and unit sizes are illustrated in Fig. 7, which shows that two and three units are selected in

parallel for stages 1 and 2, respectively, whereas the other stages have a unique equipment item. The unit sizes selected for each

stage were 1300 L, 1400 L, 1000 L, and 800 L, respectively.

For each period, Table 9 summarizes the amounts of final products produced and sold, amounts of raw materials purchased

for producing all products, and the inventory levels of both the raw materials and products.

The following conclusions can be obtained from Tables 7 and 9. For raw materials, the purchases of raw material R1 were

made only in time periods 1 and 4, because the costs had the lowest value. The extra amount acquired in period 1 was held as

inventory for the production of final products in the following two periods. In addition, purchases of the raw material R2 were

performed in all periods except for the last one when its cost increased. The excess material purchased in period 3 was held as

raw material inventory, thereby allowing the production of the final products in the subsequent time period. All of the products

were produced in all time periods, except for product I3 in the second and fourth periods, where in period 2, the maximum

demand was satisfied by the amount stored from the previous period, and for period 4, the minimum demand was satisfied

using the product stored from period 3. Also, note that the production of product I2 in time periods 1 and 2 was higher than the

amount sold in the same interval. Thus, the extra amount was kept as inventory to satisfy requirements in the following intervals.

A similar behavior was observed for product I1 in time period 2.
Please cite this article as: Y. Fumero et al., Multiproduct batch plant design model incorporating produc-

tion planning and scheduling decisions under a multiperiod scenario, Applied Mathematical Modelling (2015),

http://dx.doi.org/10.1016/j.apm.2015.09.046

http://dx.doi.org/10.1016/j.apm.2015.09.046


Y
.Fu

m
ero

et
a

l./A
p

p
lied

M
a

th
em

a
tica

l
M

o
d

ellin
g

0
0

0
(2

0
15

)
1

–
18

17

A
R
T

IC
L
E

IN
P
R
E
S
S

JID
:
A

P
M

[m
3G

sc;N
ovem

ber
24,

2015;8:37]

(a) (c)

(b) (d)

Fig. 8. Gantt chart of the optimal MPC for periods: (a) 1, (b) 2, (c) 3, and (d) 4.

P
le

a
se

cite
th

is
a

rticle
a

s:
Y

.
Fu

m
e

ro
e

t
a

l.,
M

u
ltip

ro
d

u
ct

b
a

tch
p

la
n

t
d

e
sig

n
m

o
d

e
l

in
co

rp
o

ra
tin

g
p

ro
d

u
c-

tio
n

p
la

n
n

in
g

a
n

d
sch

e
d

u
lin

g
d

e
cisio

n
s

u
n

d
e

r
a

m
u

ltip
e

rio
d

sce
n

a
rio

,
A

p
p

lie
d

M
a

th
e

m
a

tica
l

M
o

d
e

llin
g

(2
0

1
5

),

h
ttp

://d
x

.d
o

i.o
rg

/1
0

.1
0

1
6

/j.a
p

m
.2

0
1

5
.0

9
.0

4
6

http://dx.doi.org/10.1016/j.apm.2015.09.046


18 Y. Fumero et al. / Applied Mathematical Modelling 000 (2015) 1–18

ARTICLE IN PRESS
JID: APM [m3Gsc;November 24, 2015;8:37]
For each time period, Table 10 shows the optimal campaign composition, the campaign cycle time, and the number of times

that this production sequence was repeated over the time interval. It may be noted that the campaign composition was different

in all of the time periods. Fig. 8 illustrates the production sequence in the different stages for all time periods.

Finally, an economic summary of this problem is provided in Table 11.

5. Conclusions

In this study, our proposed approach integrates design, production planning, and scheduling decisions in a multiperiod con-

text by addressing a detailed description of the problem. The obtained MILP formulation guarantees the global optimality in a

reasonable computational time and it allows us to assess the trade-offs among the different decision variables of the problem.

An operation mode that includes MPCs is assumed. This approach is usually more appropriate under stable contexts, but from

a strategic viewpoint, this operation mode provides a more realistic approximation of the problem than SPCs in any scenario.

Thus, considering the production flows obtained, new assessment criteria can then be incorporated. They are not included in the

proposed formulation, but other aspects of the business, such as logistics, purchasing decisions, and distribution policies, can

also be considered and evaluated.

For design decisions, a realistic case is considered, where discrete unit sizes are available for the potential equipment to be

installed. Due to seasonal or market fluctuations, variations in different elements of the problem during every time period are

considered based on deterministic values for planning decisions. Finally, scheduling decisions that allow the optimal production

campaign and its sequence to be obtained for each time period are modeled using a continuous-time, slot-based representation.

We presented two examples to illustrate the use and the capabilities of the proposed model. The results obtained demonstrate

that the problem variables evidently interact to generate different production policies and schedules in order to adapt them to the

context conditions. Thus, the proposed approach provides a valuable tool for guiding design, planning, and scheduling decisions

in batch plants.

Acknowledgments

The authors appreciate financial support from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (PIP 1817)

and Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) (PICT 2032) in Argentina.

References

[1] A.H.I. Lee, H.Y. Kang, C.M. Lai, W.Y. Hong, An integrated model for lot sizing with supplier selection and quantity discounts, Appl. Math. Model. 37 (2013)
4733–4746.

[2] R. Ramazanian, M. Saidi Mehrabad, Hybrid simulated annealing and MIP-based heuristic for stochastic lot-sizing and scheduling problem in capacitated
multi-stage production system, Appl. Math. Model. 37 (2013) 5134–5147.

[3] Y. Fumero, G. Corsano, J.M. Montagna, Scheduling of multistage multiproduct batch plants operating in a campaign-mode, Ind. Eng. Chem. Res. 51 (2012)
3988–4001.

[4] S.B. Petkov, C.D. Maranas, Multiperiod planning and scheduling of multiproduct batch plants under demand uncertainty, Ind. Eng. Chem. Res. 36 (1997)

4864–4881.
[5] J. Józefowska, A. Zimniak, Optimization tool for short-term production planning and scheduling, Int. J. Prod. Econ. 112 (2008) 109–120.

[6] P.M. Verderame, C.A. Floudas, Integrated operational planning and medium-term scheduling for large-scale industrial batch plants, Ind. Eng. Chem. Res. 47
(14) (2008) 4845–4860.

[7] Z. Li, M.G. Ierapetritou, Production planning and scheduling integration through augmented Lagrangian optimization, Comput. Chem. Eng. 34 (2010) 996–
1006.

[8] N. Susarla, I.A. Karimi, Integrated campaign planning and resource allocation in batch plants, Comput. Chem. Eng. 35 (2011) 2990–3001.

[9] S.A. van den Heever, I.E. Grossmann, Disjunctive multiperiod optimization methods for design and planning of chemical process systems, Comput. Chem.
Eng. 23 (8) (1999) 1075–1095.

[10] M.S. Moreno, J.M. Montagna, O.A. Iribarren, Multiperiod optimization for the design and planning of multiproduct batch plants, Comput. Chem. Eng. 31
(2007) 1159–1173.

[11] M.S. Moreno, J.M. Montagna, Optimal simultaneous design and operational planning of vegetable extraction processes, Trans IChemE, Part C, Food Bioprod.
Proc. 85 (2007) 360–371.

[12] M.S. Moreno, J.M. Montagna, New alternatives in the design and planning of multiproduct batch plants in a multiperiod scenario, Ind. Eng. Chem. Res. 46

(17) (2007) 5645–5658.
[13] D.B. Birewar, I.E. Grossmann, Incorporating scheduling in the optimal-design of multiproduct batch plants, Comput. Chem. Eng. 13 (1–2) (1989) 141–161.

[14] A. Dietz, C. Azzaro-Pantel, L. Pibouleau, S. Domenech, A framework for multiproduct batch plant design with environmental consideration: application to
protein production, Ind. Eng. Chem. Res. 44 (7) (2005) 2191–2206.

[15] G. Corsano, P. Aguirre, J.M. Montagna, Multiperiod design and planning of multiproduct batch plants with mixed-product campaigns, AIChE J. 55 (2009)
2356–2369.

[16] Y. Fumero, G. Corsano, J.M. Montagna, A Mixed Integer Linear Programming model for simultaneous design and scheduling of flowshop plants, Appl. Math.

Model. 37 (2013) 1652–1664.
[17] Y. Fumero, G. Corsano, J.M. Montagna, Integrated modeling framework for supply chain design considering multiproduct production facilities, Ind. Eng.

Chem. Res. 52 (2013) 16247–16266.
[18] K. Lakhdar, Y. Zhou, J. Savery, N.J. Titchener-Hooker, L.G. Papageorgiou, Medium term planning of biopharmaceutical manufacture using mathematical

programming, Biotechnol. Prog. 21 (2005) 1478–1489.
[19] V.T. Voudouris, I.E. Grossmann, Mixed-integer linear programming reformulations for batch process design with discrete equipment sizes, Ind. Eng. Chem.

Res. 31 (1992) 1315–1325.
[20] A. Brooke, D. Kendrick, A. Meeraus, R. Raman, GAMS, A User’s Guide, GAMS Development Corporation, Washington, DC, 2012.
Please cite this article as: Y. Fumero et al., Multiproduct batch plant design model incorporating produc-

tion planning and scheduling decisions under a multiperiod scenario, Applied Mathematical Modelling (2015),

http://dx.doi.org/10.1016/j.apm.2015.09.046

http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0001
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0001
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0001
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0001
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0001
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0002
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0002
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0002
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0003
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0003
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0003
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0003
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0004
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0004
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0004
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0005
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0005
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0005
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0006
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0006
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0006
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0007
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0007
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0007
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0008
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0008
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0008
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0009
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0009
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0009
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0010
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0010
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0010
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0010
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0011
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0011
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0011
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0012
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0012
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0012
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0013
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0013
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0013
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0014
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0014
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0014
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0014
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0014
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0015
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0015
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0015
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0015
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0016
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0016
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0016
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0016
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0017
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0017
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0017
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0017
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0018
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0018
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0018
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0018
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0018
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0018
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0019
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0019
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0019
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0020
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0020
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0020
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0020
http://refhub.elsevier.com/S0307-904X(15)00580-6/sbref0020
http://dx.doi.org/10.1016/j.apm.2015.09.046

	A multiproduct batch plant design model incorporating production planning and scheduling decisions under a multiperiod scenario
	1 Introduction
	2 Problem description
	3 Model formulation
	3.1 Plant design constraints
	3.2 Production planning constraints
	3.3 Production scheduling constraints
	3.3.1 Allocation constraints
	3.3.2 Timing constraints

	3.4 Objective function
	3.5 Formulation summary

	4 Application of the proposed approach
	4.1 Example 1
	4.2 Example 2

	5 Conclusions
	 Acknowledgments
	 References


