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Abstract

We consider a boundary value problem for a nonlinear differential equation which arises in an
option pricing model with transaction costs. We apply the method of upper and lower solutions in
order to obtain solutions for the stationary problem. Moreover, we give conditions for the existence
of solutions of the general evolution equation.

0 2004 Elsevier Inc. All rights reserved.

1. Introduction

Black—Scholes models including transaction costs have been studied by many authors
[2,5,6]. In this work we assume that the costs behave as a nonincreasing linear function
h(x) =a — bx (a, b > 0), depending on the trading stocks needed to hedge the replicating
portfolio. Following the idea of Leland [6], if the value of the option is denoted’ly, 1),
wheres is the value of the underlying asset, fair=V — AS we have

dIT =dV — AdS —[(a — blv]) S]],
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wherev is the number of shares of the asset which are traded in order to maintain the
equilibrium of the portfolio. By Ito’'s lemma, we conclude that

92V 32v
~ 2 (S.0)dS~ oS dt
V=520 552°5%

with ¢ ~ N'(0, 1). Then, the expected value of the transaction costs is given by
[2 92V \?

oS% /= Vdta—bS*| — | o?dt.
T 952

2 9?v? 1%
oS —+ = bS302+r<ﬁS—V)=O.

3%V
E((a —b|v|)S|v|) =352

Hence we obtain the equation

92v
al L
952

v 1 92V
+ Zo252—

o 1270 Bs2 xdi " 9S

(1.1)
Assuming that: is small enough we have that
2
52=02<1— 4 —) >0
oV mdt

If ‘?)ZT‘Q > 0, the stationary problem for (1.1) reads as

1., ,02V ,3(02V\%  [oV

=6°S°— +bo“S°| — —S—-V|=0 1.2

27> 55z TP\ gs2) T\ Ts (1.2

In the next section we study Eq. (1.2) under Dirichlet boundary conditions, namely
V)=V, Vid)=Vy (1.3)

for some fixedd > ¢ > 0.

In the third section we show that a solution of (1.2) may be obtained as the limit of a
nonincreasing (respectively nondecreasing) sequence of upper (lower) solutions.

In the last section we study the existence of solutions of the evolution equation (1.1).

2. Thestationary problem

In this section we consider the problem (1.2) under the Dirichlet boundary conditions
(1.3). Our main result is the following

Theorem 2.1. (1.2)—(1.3)admits a convex solutiofwhich is uniqugif and only if
Vo Ve
d c

Proof. Let us introduce the change of variables given by

x=logs, u(x) =V(S).
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Then, if y(x) = g—ﬁ — u, we have thay’(x) = S2V”(S) and soV is convex if and only if
y'(x) > 0. Moreover, (1.3) can be written as

1

E(")’,Zy/ + bo_2e—x(y/)2 + ry — 0

or equivalently

Y (x) = —&2/2+/

where¢ =logc, d =logd. As y’ > 0 we deduce that < y(d).

For fixedK < 0 letyk be the unique solution of Eq. (2.1) wiitx (d) = K . By standard
results, it follows thatyx is defined on¢, d], and the mappink — yx is continuous
for the norm ofC([¢, d]). On the other hand, iy —ugx = yx, assuming the condition
ug (d) = V4 we obtain

d
ug(x) = (e_‘zvd —/yK(t)e_’ dt)ex.

As yx < K onle,d],

G4/4 — Arybo2e—*

T , ¢<x<d, (2.2)

ug(c) = eE_‘in —K(1- eE_J) — 400 askK — —oo.

Moreover, a simple computation shows tlﬁt(u k (¢)) < 0, proving thatug (c) is strictly
nonincreasing with respect .
Hence we have

(i) if up(c) < Vg, then there exists a unigué < 0 such thatV’ (S) = ug (x) is a solution
of (1.2)-(1.3);
(i) if uo(c) > V¢, then (1.2)—(1.3) is not solvable.

As yo =0, thenugp(x) = e V,; and the result follows. O

3. Upper and lower solutions

In this section we apply the method of upper and lower solutions to (1.2)—(1.3). We
follow the idea of [1]. In order to find convex solutions, it suffices to find a solution of the
problem

V'+HS,V,V)=0, V)=V, V)=V, (3.1

where

5282/2 — (/545444 4bS32r|V'S — V)

2ba2S83
such thatV’(d) < V;/d. Indeed, in this case we have thi&'S — V)’ = V”S > 0, proving
thatV'S — V < V'(d)d — V; <0 andV is a solution of the original problem.

H(S,V,V)=
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In order to prove the main result of this section we recall thag) is an ordered couple
of a lower and an upper solution for (3.1)if< 8 and

Ol//+ H(~,ot,o/) > 02 ﬂ// + H(, 187 :B/)
with
a(c) < Ve < B(o), a(d) < Va < B(d).

Remark 3.1. A simple computation shows that satisfies the Lipschitz conditions
|H(S,U,X)—H(S,V,X)|<K|U-V]|,
|H(S,U,X)—H(S,U, V)| <K'|X -Y]|,
T

whereK = 25, K’ = 2. We shall assume that’ < 7, or equivalently,

—c!

c5%n

r<2(d_c).

(3.2)

We shall need the following auxiliary lemmas.

Lemma 3.1. Assume tha3.2) holds and let, > 0 be large enough. Then for any6 €
C([c, d]) the equation
"+ H(S,z,u') — 2u=06(S)

is uniquely solvable under Dirichlet conditions. Furthermore, the applicatiol ([c, d])?
— C([c, d]) given byK(z,0) = u is compact.

Proof. Forz € [0, 1] consider the semilinear operator given®&y =u" +tH(S, z,u’) —
Au. Then, ifu —v e Hc}(c, d) a simple computation shows that

/

TK 1 72 2
- )uu — V112, 4 Alu — w2,

ISu — Sv|l2llu —vl|l2 > (1—

Hence, if we define the compact operaforH(c,d) — H(c,d) given by T (i) = u,
whereu is the unique solution of the linear problem
wW —xu=60—-H(S,z,u), ul)=V., uld) =V,
existence follows from Leray—Schauder theorem.
Moreover, ifu = K(z, ) andug = K(zo, 60), then
(u—uo)” + ¥ —ug) —A(u —ug) = H(S,z0,ug) — H(S, z, up) + 6 — 6o,
where
H(S’ 2, u/) - H(Sa <, M/)
¥ (S) = : 2

u' — ug

ELOO(Cvd)9 ||1//||OO<K/’
and the compactness &f follows easily using the standard a priori bound
lwll g < yiw” + 4w’ —wl 2,

where the constant depends only oK’. O
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Lemma 3.2. Assume there exists an ordered coules) of alower and an upper solution.
Then(3.1) admits at least one solutiovi witho < V < 8.
Proof. Fora > K andV e C([c, d]) defineT V = V as the unique solution of the problem
V'+H(S, V,V)=AV==AV, V)=V, V) =V,
Compactness df follows easily from Lemma 3.1. Moreover, ¥ < 8 then
V'+HGS,V,VY+ KV —-AV=(K—-MNV>=(K-1S
> (K =nB+p"+H(S, BB
Hence, setting

H(S,V,V)—H(S,V,B)

¥(S) = T

we deduce that

V=B"4+¢V -8 =MV —-p)
>[H(S.B.B)+KB]—[H(S.V.B)+KV]>0.

As V(c) < B(c) andV (d) < B(d), it follows from the maximum principle that < 8. In
the same way, iV > « we obtain thatV > « and the proof follows from Schauder fixed
point theorem. O

Theorem 3.3. Assume there exists an ordered coulef) of a lower and an upper solu-
tion. Set > K and define the sequencgs,,} and{V,} given by

Vo=a, ‘70 =8
and V41, V .1 the(uniqug respective solutions of the problems

_r:/+l + H(S, ‘_/n, ‘7,:+1) - )LVyH_]_ = _A.‘_/n,

VA S,V Vi) =AY 1 =—AV

n’ n

satisfying the Dirichlet boundary conditions. Then, V,,) is an ordered couple of a lower
and an upper solution. Furthermorg¢V,} (respectively{V ,}) is nonincreasingnonde-
creasing and converges to a solution ¢8.1).

Proof. From the previous lemma, we know thak Vi < 8. Moreover,
V' + H(S, V1, V)
=\ —K)(V1—B)+ [H(S, V1, V) + KV1]-[H(S. B, V]) + KB] <O.

Hence, V1 is an upper solution of the problem. Inductively it follows thatis an upper
solution for everyr, with ¢ < V,, 41 < V,,. Hence,V,, converges pointwise to a functidn.
By definition of V,,,

VI +HS Vy,Vi,)—>0
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pointwise. Moreover, from Lemma 3.1 we conclude thet} is bounded inH1(c, d);
hence inH2(c, d), and it follows that

V'+H(S,V,V)=0.

Thus, V is a solution of the problem. The proof fét, is analogous. Furthermore, if we
assume as inductive hypothesis thaf < V, it follows as in the previous lemma that
Zn_l,_l < Vn+l- O

Remark 3.2. In particular, we may take as upper solution any consgastich thats >
V., V4. On the other hand, if the lower solutionsatisfies

Va

d b

then any solutiorV > « of (3.1) verifies thaV’(d) < «’(d). HenceV is a solution of (1.2).
In particular, under appropriate conditions it is possible to find a lower solat{sh =
mS2 4 nS + p for some positiven, p.

a(d) = Va, o' (@) <

4. Solutionsto the evolution problem

In this section we consider the nonstationary problem (1.1) under initial-Dirichlet con-
ditions, namely

0=V, +bo2s3V2 + 36252V, +r(sVy — V),
V(T,S)Zf(s), N E (Cad)v (4'1)
Vit,e)=f(o), V(t.d)=f(d),
for somef € C([c, d)).
If we introduce the change of variables givenWy(z, x) = V(T — ¢, ¢*) in the domain
2=0,T) x (c,d).
Then we have the following problem:
O0=—-W,+ AW, — W) +_r(Wx - W),
W(@O,x)=f(e"), xe(a),

W, = f(e), (4.2)
W(t,d) = f(e),
where
1
A= 562 +bole ™ (Wyy — Wy).
Setting
Z(t,x)=Wye(t,x) — Wy(t,x), P=2Z,,
we obtain the equation
O0=—-Z,+a(x,2)Zyx +d(x,Z, P) (4.3)

under the conditions
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Z(0,x) = Zo(x), xe€[c,d], (4.4)
Z(t,¢) = Zo(), Z(t,d) = Zo(d), (4.5)
where

1
a(x,Z)= 562 +2bo2e 7,
1
d(x,Z, P) = —6bo2e ™ ZP + 2bo%e * P? + <r — 562) P — Z(r — 2bc?e™ Z)

andZo(x) = f”(e*)e?. Let us define
a(x,z)y=a(x,[Z14)

and

~ 1

d(x,Z,P)=—6bo%e*ZP +bo’e > P>+ <r — E52)1:' — ZIr — 2bc?e ™ 7],
and consider the problem

0=—Z+a(x, Z)Zex +d(x, Z, Zy) (4.6)
under the conditions (4.4)—(4.5).

Proposition 4.1. GivenZg € C[¢, d] there exists a solutiof € C21(§2) N C(£2) to (4.6)—
(4.4)-(4.5)

Proof. We have thati(x, Z) > 52/2, and~it is clear that for everi > 0, o is a Lipschitz
function on[c, d] x [—R, R]. Moreover,d(x, Z, Z,) is a Lipschitz function oric, d] x
[—R, R] x [—R, R] and satisfies

Zd(x,Z,0) <O0.
Moreover, for any fixedZ we have that

da
1Pl

da ~
L D+ | x, 2)| + |d(x, Z,0)| < C|P2
Z 0x

when|P| — +o0. By Theorem 12.16 in [4], the proof follows.O

Theorem 4.2. For Zo(x) = f”(e*)e?, let Z be the solution given by the previous propo-
sition, and assume that

,
0< f'(y)  ——— for ,d].
7 ) Zho?y y€le.d]

ThenZ is a solution to(4.3)—(4.5)

Proof. From the hypothesis, it is immediate thHag(x) < 2’;02 Thus, by the maximum
principle Z satisfies

X

0< Z(1,x) < =%
S X)X =55
2b

—5 (L)) €l0.T]x [¢,d].
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Then
a(x,2)=a(x,2), d(x,Z,Zy)=d(x,Z,Zy)

and the result follows. O

Remark 4.1. If Z is a solution of (4.3)—(4.5), it is easy to obtain a solution of (4.2) from
the equalityW,, — W, = Z and the boundary conditions.

Remark 4.2. It is clear that the coefficients(x, Z), d(x, Z, P) and their derivatives with
respect tdZ and P are bounded on any compact subsefcofl] x R2. Then, problem (4.6)
has no more than one solutiond@?1(£2) N C(2) (see [3]).
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