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A FRACTAL PLANCHEREL THEOREM

Abstract

A measure µ on Rn is called locally and uniformly h-dimensional if
µ(Br(x)) ≤ h(r) for all x ∈ Rn and for all 0 < r < 1, where h is a real
valued function. If f ∈ L2(µ) and Fµf denotes its Fourier transform
with respect to µ, it is not true (in general) that Fµf ∈ L2 (e.g. [10]).
However in this paper we prove that, under certain hypothesis on h,
for any f ∈ L2(µ) the L2-norm of its Fourier transform restricted to a
ball of radius r has the same order of growth as rnh(r−1) when r →∞.
Moreover we prove that the ratio between these quantities is bounded by
the L2(µ)-norm of f (Theorem 3.2). By imposing certain restrictions on
the measure µ, we can also obtain a lower bound for this ratio (Theorem
4.3). These results generalize the ones obtained by Strichartz in [10]
where he considered the particular case in which h(x) = xα.

1 Introduction.

We will say that a measure µ is locally and uniformly h-dimensional (or shortly
µ is an h-dimensional measure) if and only if

µ(Br(x)) ≤ h(r) ∀ x ∈ Rn,∀ 0 < r < 1, (1.1)

where Br(x) is, as usual, the ball of radius r centered at x. We consider
functions h : [0,+∞]→ R that are non-decreasing, continuous, and such that
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h(0) = 0. We further require h to be doubling, i. e. there exists a constant
c > 0 such that h(2x) < ch(x). Such a function h will be called dimension
function. A particular example is h(x) = xα, which was analyzed by Strichartz
in [10]. In that case we will say indistinctly that µ is h-dimensional or that
µ is α-dimensional. Allowing h to be more general has already proven to be
useful (see for example [9],[8], [3]) and it enables us to obtain a lower bound
on measures which were not included in previous results (see Section 5).

If µ is locally and uniformly 0-dimensional, meaning that the measure of
any ball of radius one is bounded, then each f ∈ L2(µ) defines a tempered dis-
tribution, mapping each test function ϕ in the Schwartz space S into

∫
fϕdµ.

Therefore its Fourier transform is also a tempered distribution defined by
ϕ 7→

∫
ϕ̂fdµ for ϕ ∈ S , where ϕ̂ is the usual Lebesgue Fourier transform. We

will denote by Fµf this ‘distributional’ Fourier transform of an f ∈ L2(µ). If
f ∈ L1(µ) ∩ L2(µ) then it is easy to see that Fµf(ξ) =

∫
f(x)eiξxdµ(x). See

for example [2].
Strichartz proved in [10] that if f ∈ L2(µ) and µ is zero dimensional then

Fµf belongs to L2(e−t|ξ|
2
) for any t > 0 and therefore to L2

loc(Rd). Note
that if h is one of our dimension functions, we have immediately that µ is
0-dimensional.

In this paper, our goal is to prove an analogue to Plancherel’s Theorem
(in L2(Rn) with the Lebesgue measure) for any h-dimensional measure µ. In
fact we are going to show the existence of upper and lower bounds for the
ratio between rnh(r−1) and the norm of the Fourier transform of a function
f in L2(µ) restricted to the ball of radius r. The hypotheses under which we
obtain the existence of the upper bound are more general than the ones we
need for the existence of the lower bound.

The h-dimensional Hausdorff measure is defined as (see for example [9])

Hh(E) = lim
δ→0

(
inf
{ ∞∑
i=1

h(|Ui|) : E ⊂
⋃
i≥1

Ui and |Ui| ≤ δ
})
.

HhxE will denote its restriction to a set E.
The h-lower density of a set E in x is (see for example [4])

D(HhxE , x) = lim inf
r→0

Hh(E ∩Br(x))
h(2r)

. (1.2)

The upper density is defined by taking lim sup in the above equation. We will
introduce one additional definition.

Definition 1.1. A set E will be said to be an h-regular set if both upper and
lower densities are equal to one in Hh-almost every point of E. In symbols
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D(HhxE , x) = D(HhxE , x) = 1 for Hh-almost every point of E. If the lower
density is greater than a positive constant for Hh-almost every point of E we
will say that E is an h-quasi regular set.

It is evident that the requirement for a set to be regular is more restrictive
than the one to be quasi regular. Actually it has already been proven (see [8])
that there only exist regular sets for functions of the form xk with k integer.
On the other hand, there are h-regular sets for any dimensional function h.

The lower bound that we obtain (see Theorem 4.2) will be stated for the
measure Hh restricted to an h-dimensional and quasi regular set. In section
5 we will show an example of a set E and a function h such that HhxE is
h-dimensional and E is quasi regular. Additionally we will prove that there
does not exist any α such that HαxE is xα-dimensional and E is quasi regular
simultaneously. This example satisfies the hypothesis of our Theorem 4.1 but
does not satisfy the hypothesis of the analogous Theorem 5.5 in [10].

2 Some Technical Results.

Any h-dimensional measure µ is locally finite, which means that for µ-almost
every x there exists an r > 0 such that 0 < µ(Br(x)) < ∞. Therefore, as
Strichartz proved in [10], the strong (p, p) estimate (for p > 1) and the weak
(1, 1) estimate hold for the maximal operator, defined for each f ∈ L1

loc(µ) as

Mµf(x) = sup
r>0

1
µ(Br(x))

∫
Br(x)

|f | dµ. (2.1)

More precisely, we have the following theorem.

Theorem 2.1. Let µ be a locally finite measure on Rn. For each locally
integrable function f we have:

1. µ({x : Mµf(x) > s}) ≤ cn

s ‖f‖1 ∀f ∈ L1(µ).
2. For 1 < p ≤ ∞, ‖Mµf‖p ≤ cp ‖f‖p ∀f ∈ Lp(µ).

This theorem has many consequences which will be useful for our work. In
particular, we have the following two corollaries.

Corollary 2.2. Let f ∈ L1(µ). For µ-almost every x, lim
r→0

1
µ(Br(x))

∫
Br(x)

fdµ

= f(x).

Corollary 2.3. Let E be a h-regular set and let f ∈ L1(µ). For Hh-almost
every y ∈ E and for all ε > 0 there exists δ > 0 such that∣∣∣ ∫

Br(y)

fdµ− h(r)f(y)
∣∣∣ ≤ εh(r) ∀r ≤ δ.



4 U. Molter and L. Zuberman

The proofs of the theorem and these corollaries are straightforward appli-
cations of Besicovitch’s Covering Theorem and can be found in [10].

We also need the following quite technical Lemma, which will allow us to
bound the ratio between h and its dilation by r (h(rt)/h(t)) by a function in
the weighted space L1(e−cr

2
).

Lemma 2.4. Let h : [0,∞) → R be a continuous, non-decreasing, and dou-
bling function (h(2x) ≤ cdh(x)). Then there exists a constant κ > 0 such that
h(rt) ≤ cdh(t) max{1, rκ} ∀r, t > 0.

Proof. First note that cd ≥ 1, since in fact the doubling condition can be
restated as cd ≥ h(2x)/h(x) and this quantity is not smaller than 1 because h
is a non decreasing function.

If r < 1, since h is non-increasing, we have h(rt) ≤ h(t). If r ≥ 1 we
choose the only non-negative integer k such that 2k−1 < r ≤ 2k. So h(rt) ≤
h(2kt) ≤ ckdh(t). Observe that k was chosen such that k ≤ log r

log 2 + 1 and
therefore it then follows that ckd ≤ cd.r

log cd/ log 2. The proof is complete by
taking κ = log cd/ log 2.

Recall that we are dealing with h-dimensional measures, which means that
the measure of the balls of radius r < 1 is bounded. The next lemma provides
a control of the measure of the “large” balls, i.e. those balls of radius greater
than one for which the estimate (1.1) does not hold.

Lemma 2.5. Let µ be a locally h-dimensional measure on Rn. If r > 1, then
µ(Br(x)) ≤ Crn for some C independent of x.

Proof. Denote by Q the minimal cube centered at x that contains the ball
Br(x), i.e. Q = Q(x, r) = {y ∈ Rn : ‖x− y‖∞ < r} ⊃ Br(x). Let k be
the (unique) integer such that k − 1 < r

√
n ≤ k. Q can be divided into kn

smaller cubes of half-side r
k . Each of these cubes is contained in a ball of

radius r0 =
√
n rk ≤ 1. So we obtain µ(Br(x)) ≤ µ(Q) ≤ knµ(Br0(x′)) ≤

kn h(
√
nr
k ). Since

√
n rk ≤ 1, it follows that h(

√
n rk ) ≤ h(1). On the other

hand, by the choice of k, kn < (r
√
n + 1)n ≤ rn(

√
n + 1)n and we obtain

µ(Br(x)) ≤ (
√
n+ 1)nh(1)rn.

3 Upper Bounds.

Our first result is an upper estimate for the L2-norm of the Fourier transform
of a function f ∈ L2(µ).
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Theorem 3.1. Let µ be a locally and uniform h-dimensional measure, where
h is a dimension function. Suppose that h defines a dimension not greater
than n in the sense that limt→0 t

n/h(t) = 0. Then

sup
0≤t≤1

√
tn

h(
√
t)

∫
e−t|ξ|

2
|Fµf(ξ)|2 dξ ≤ c ‖f‖22 := c

∫
|f |2 dµ ∀f ∈ L2(µ).

Proof. First Step. We will prove that

√
tn
∫
|Fµf(ξ)|2 e−t|ξ|

2
dξ = πn/2

∫∫
e−|x−y|

2/4tf(x)f(y)dµ(x)dµ(y). (3.1)

Recall the inverse Fourier transform for the gaussian function
∫
e−t|ξ|

2
eixξdξ =√

t−nπn/2e−|x|
2/4t. If f is integrable then equation (3.1) follows from Fubini’s

theorem since

√
tn
∫
|Fµf(ξ)|2 e−t|ξ|

2
dξ =

√
tn
∫∫∫

f(x)f(y)ei(x−y)·ξe−t|ξ|
2
dµ(x)dµ(y)dξ

= πn/2
∫∫

e−|x−y|
2/4tf(x)f(y)dµ(x)dµ(y). (3.2)

Now consider any f ∈ L2(µ) (not necessarily integrable). Let us define
fk(x) = f(x)χ{|x|≤k}(x)χ{|f(x)|≤k}(x). This sequence converges to f in L2(µ).
Also since each fk is in L1(µ), it satisfies (3.2). Using Beppo Levi’s Theorem,
we get∫∫

e−|x−y|
2/4tfk(x)fk(y)dµ(x)dµ(y)→

∫∫
e−|x−y|

2/4tf(x)f(y)dµ(x)dµ(y).

Since f ∈ L2(µ), it follows that Fµf ∈ L2(e−t|ξ|
2
dξ). Hence we can apply

the dominated convergence theorem to obtain
√
tn
∫
|Fµfk(ξ)|2 e−t|ξ|2dξ →√

tn
∫
|Fµf(ξ)|2 e−t|ξ|2dξ, which yields 3.1.

Second Step. We will prove that for any y ∈ Rn and f ∈ L2(µ),

1
h(
√
t)

∫
e−|x−y|

2/4tf(x)dµ(x) ≤ CMµf(y).

Using Fubini on the left hand side of the inequality, we obtain∫
e−|x−y|

2/4tf(x)dµ(x) =
∫ ∞

0

r

2t
e−r

2/4t

∫
Br(y)

f(x)dµ(x).
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Since
∫
Br(y)

f(x)dµ(x) ≤ µ(Br(y))Mµf(y), it follows that∫
e−|x−y|

2/4tf(x)dµ(x) ≤Mµf(y)
∫ ∞

0

e−r
2/4t r

2t
µ(Br(y))dr. (3.3)

We need to prove that the last integral is finite. To establish that, we split the
integral into two parts, the first for r < 1 (where (1.1) is valid) and the second
for r ≥ 1 (where lemma 2.5 can be applied). For r < 1 we use the hypothesis
to obtain∫ 1

0

e−r
2/4t r

2t
µ(Br(y))dr ≤

∫ 1

0

e−r
2/4t r

2t
h(r)dr =

1
2

∫ 1/
√
t

0

e−r
2/4rh(r

√
t)dr

or equivalently

1
h(
√
t)

∫ 1

0

e−r
2/4t r

2t
µ(Br(y)dr ≤ 1

2

∫ 1/
√
t

0

e−r
2/4r

h(r
√
t)

h(
√
t)
dr.

This integral is finite by Lemma 2.4.
For r ≥ 1,∫ ∞

1

e−r
2/4t r

2t
µ(Br(y)dr ≤

∫ ∞
1

e−r
2/4t r

2t
rndr =

1
2

√
tn
∫ ∞

1/
√
t

e−r
2/4 rn+1dr.

Since limt→0 t
n/h(t) = 0, we deduce that

√
tn/h(

√
t) ≤ C and therefore

1
h(
√
t)

∫∞
1
e−r

2/4t r
2tµ(Br(y)dr ≤ C, with C independent of t. This completes

the second step of our proof.
Third (and Final) Step. We will now prove the thesis. Using the first and

second steps we obtain
√
tn

h(
√
t)

∫
|Fµf(ξ)|2 e−t|ξ|

2
dξ = πn/2

∫ (∫
e−|x−y|

2/4tf(x)dµ(x)
)
f(y)dµ(y)

≤ C
∫
Mµf(y) |f(y)| dµ(y). (3.4)

The last term is the inner product in the Hilbert space L2(µ). Thus we can
bound it using Cauchy-Schwartz. The L2(µ) norm of Mµf can be bounded by
using the (2, 2) estimate in (2.1). Then

∫
Mµf(y) |f(y)| dµ(y) ≤ C ‖f‖22 and

this, together with (3.4), gives the desired result.

Theorem 3.2. Under the hypothesis of Theorem 3.1, for each f ∈ L2(µ) we
have

sup
x∈Rn

sup
r≥1

1
rnh(r−1)

∫
Br(x)

|Fµf(ξ)|2 dξ ≤ C ‖f‖22 .
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Proof. We need to show that for each x ∈ Rn,

sup
r≥1

1
rnh(r−1)

∫
Br(x)

|Fµf(ξ)|2 dξ ≤ C ‖f‖22 . (3.5)

Making the substitution t = r−2 in Theorem 3.1, we obtain exactly (3.5) for
Br(0). Furthermore

∫
Br(x)

|Fµf(ξ)|2 dξ =
∫
Br(0)

∣∣Fµ(eixξf)
∣∣2 dξ ≤ C ∥∥eixξf∥∥2

2

= C ‖f‖22, which yields the theorem.

This theorem provides an upper bound but does not tell us whether the
limit for r → ∞ exists or not. With our definition, if a measure is h-
dimensional it is also g-dimensional for any h ≤ g. For example, if h(x) ≥ xn,
then the measure µ = HhxE+L is an h-dimensional measure. Here L is the n-
dimensional Lebesgue measure and E is a set of Hh finite measure. However in
this case it is clear that µ has two distinct parts. One ‘truly’ is h-dimensional
(HhxE), but the other (L), while by the previous remark can be considered as
h-dimensional, is in fact n-dimensional.

The next theorem will allow us to split up our measure in order to separate
the part of the measure that is ‘exactly’ h-dimensional from the one that can
also be seen as having bigger dimension.

Definition 3.3. We say that a measure ν is null with respect to (another
measure) µ if and only if µ(E) < ∞ ⇒ ν(E) = 0. We will denote this by
ν ≪ µ.

Now we will prove a theorem that is analogous to the Radon-Nikodym
Theorem.

Theorem 3.4. Let µ a measure on Rn without infinitely many atoms and let
ν be a σ-finite measure on Rn absolutely continuous (null) with respect to µ.
There exists a unique decomposition of ν: ν = ν1 + ν2, where ν1(E) =

∫
E
fdµ

for some measurable and nonnegative function f , with ν2 ≪ µ.

Proof. Uniqueness. Let us suppose we have a decomposition ν = ν1+ν2 with
ν1(E) =

∫
E
fdµ and ν2 ≪ µ. Consider E ⊂ Rn. Let us analyze separately

both cases, i.e. when E is σ-finite for µ and when it is not.
If E is σ-finite for µ then E = ∪j≥1Ej with µ(Ej) <∞. Since ν2 ≪ µ we

have ν2(Ej) = 0 for all j ≥ and therefore ν2(E) = 0, which gives ν1(E) = ν(E).
If we have any other decomposition ν = ν′1 + ν′2, then ν′2(E) = 0 = ν2(E) and
ν′1(E) = ν(E) = ν1(E).

If E is not σ-finite for µ, then ν2 may be positive. However by hypothesis ν
is still σ-finite and then E = ∪j≥1Ẽj with ν(Ẽj) <∞, where Ẽj may be chosen
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disjoint if necessary. Suppose we have another decomposition ν = ν′1 +ν′2 with
ν′1(E) =

∫
E
g dµ and ν′2 ≪ µ. In particular, ν1 − ν′1 = ν′2 − ν2. We have that

(ν1 − ν′1)({x ∈ Ẽj : f(x) > g(x)}) < ∞, which by the definition of ν1 and
ν1′ implies that µ({x ∈ Ẽj : f(x) > g(x)}) < ∞. Since ν2 and ν′2 are both
null with respect to µ we have ν2({x ∈ Ẽj : f(x) > g(x)}) = ν′2({x ∈ Ẽj :
f(x) > g(x)}) = 0. We can do the same calculation for the complementary
set for which f(x) < g(x) and conclude that ν2(Ẽ′j) := ν2({x ∈ Ẽj : f(x) 6=
g(x)}) = ν′2(Ẽ′j) = 0 and therefore ν1(Ẽ′j) = ν(Ẽ′j) = ν′1(Ẽ′j). In Ẽj \ Ẽ′j , f
and g coincide and so ν1(Ẽj \ Ẽ′j) = ν1(Ẽj \ Ẽ′j). Since Ẽj = Ẽ′j ∪ (Ẽj \ Ẽ′j), it
follows that ν1 and ν′1 coincide on each Ẽj and therefore on E if the Ẽj were
chosen disjoint. Now it follows that ν2 = ν′2.

Existence. Let us consider first the case when ν is finite. We define the
set A = {A ⊂ Rn : A is measurable, ν(A) > 0, µxA is σ-finite.}. If A = ∅,
then the theorem follows taking ν2 = ν and ν1 = 0. If A 6= ∅, define a :=
supA∈A ν(A). We have that a is finite, since ν is finite. Consider the set
sequence (Aj)j∈N ⊂ A such that ν(Aj) → a. Let B :=

⋃∞
j=1Aj . We are

going to see that we can take ν1 = νxB and ν2 = νxBc . In fact, since µxB is
σ-finite, we have f , the Radon-Nykodim derivative of ν with respect to µxB .
Now we take a set E such that µ(E) < ∞. If ν2(E) > 0, then ν(E ∪ B) > a
which is a contradiction. Therefore ν2(E) = 0 and so ν2 ≪ µ.

Let us analyze now the case when ν is not finite (but still σ-finite). Let
(Ej) be a collection of measurable sets with ν(Ej) < ∞ such that ∪Ej = E.
Without loss of generality, we can assume that Ej are pairwise disjoint. We
define νj = νxEj and µj = νxEj . Then νj is finite and regarding the previous
case, we can decompose νj = νj1 +νj2 . Now ν1 =

∑
j ν

j
1 and ν2 =

∑
j ν

j
2 satisfy

the desired property.

Corollary 3.5. If µ is an h-dimensional measure, then there exists ϕ ≥ 0
and ν ≪ Hh such that µ = ϕdHh + ν.

Proof. In view of the previous theorem, we only need to prove that µ is
absolutely continuous respect to Hh. Let us take a set E with Hh(E) = 0.
Then for any ε > 0, there is a covering (Ui)i≥1 of E with

∑∞
i=1 h(|Ui|) < ε,

where |Ui| is the diameter of Ui. Then

µ(E) ≤
∞∑
i=1

µ(Ui) ≤
∞∑
i=1

µ(B|Ui|(xi)),

picking any xi ∈ Ui. Using that µ is h-dimensional and the previous estimate,
we have µ(E) ≤

∑∞
i=1 h(|Ui|) < ε. Since ε is arbitrary, µ(E) = 0 and the

proof is complete.
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The next technical lemma will be necessary for our construction.

Lemma 3.6. If ν is a locally finite measure on Rn and ν ≪ Hh, then
Dh(ν, x) := lim supr→0

ν(Br(x))
h(2r) = 0 for Hh- almost every x.

Proof. For each k ∈ N we define the sets Ek =
{
x ∈ Rn : ∀ε > 0, ∃ r ≤ ε

with ν(Br(x))
h(2r) ≥ 1

k

}
. Since {x ∈ Rn : Dh(ν, x) > 0} =

⋃
k≥1Ek, it is enough

to prove that Hh(Ek) = 0 for all k.
We can suppose that ν(Ek) is finite since Ek =

⋃
l≥1

(
Ek ∩Bl(0)

)
.

Let k be fixed and let ε > 0. For each x ∈ Ek, we can pick an r(x) ≤ ε
such that h(2r(x)) ≤ kν(Br(x)(x)). {Br(x)(x)}x∈Ek

is a family of balls with
uniformly bounded radii. Therefore by Besicovitch’s Covering Theorem ([8])
we can take a countable subcover {Brj

(xj)}j≥1 of Ek such that at most c(n)
of the balls intersect at once (i.e.

∑
χBrj

≤ c(n)).
Since rj ≤ ε, it follows that Brj

⊂ Ek,ε := {x ∈ Rn : dist(x,Ek) ≤ ε}.
So we have

∑∞
j=1 h(2rj) ≤ k

∑∞
j=1 ν(Brj

(xj)) ≤ kc(n)ν(Ek,ε) and therefore
Hh(Ek) ≤ c(n)kν(Ek,ε).

However since Ek ⊂ ∩ε>0Ek,ε and ν(Ek) is finite, we have that Hh(Ek) ≤
c(n)kν(Ek). In particular, Hh(Ek) is finite, which implies ν(Ek) = 0 by the
hypothesis on ν.

Using again that Hh(Ek) ≤ c(n)kν(Ek), we obtain the desired result.

We are now able to establish a finer bound for certain h-dimensional mea-
sures (compare with Theorem 3.1 and Theorem 3.2).

Theorem 3.7. Let µ be any h-dimensional measure and let µ = ϕdHh + ν
(with ν ≪ Hh) be the decomposition of Theorem 3.4. If f ∈ L2(µ) then

lim sup
t→0

√
tn

h(
√
t)

∫
e−t|ξ|

2
|Fµf(ξ)|2dξ ≤ c

∫
|f(x)|2ϕ(x)dHh(x)

and
sup
y∈Rn

lim sup
r→∞

∫
Br(y)

|Fµf(ξ)|2dξ ≤ c
∫
|f(x)|2ϕ(x)dHh(x).

Proof. It suffices to prove that limt→0

√
tn

h(
√
t)

∫
e−t|ξ|

2 |Fνf(ξ)|2dξ = 0 and

limt→0

√
tn

h(
√
t)

∫
e−t|ξ|

2Fνf(ξ)FHhf(ξ)dξ = 0.
For this proof we will use the maximal operator Mµ as defined in (2.1).

Doing the same type of computations as the ones used to obtain (3.3), we have

1
h(
√
t)

∫
e−|x−y|

2/4tf(x)dν(x) ≤ Mνf(y)
h(
√
t)

∫ ∞
0

e−r
2/4t r

2t
ν(Br(y))dr. (3.6)
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On the other hand by Lemma 3.6, for Hh-almost every y

Dh(ν, y) = lim sup
ν(Br(y))
h(2r)

= 0

and therefore for all ε > 0 we can choose 0 < δ < 1 such that ν(Br(y)) ≤ εh(r).
We split the integral on the right of (3.6) into two parts,

∫ δ
0

+
∫∞
δ

. For the
first one, using that ν(Br(x)) ≤ µ(Br(x)) and therefore ν is h-dimensional,
we obtain

Mνf(y)
h(
√
t)

∫ δ

0

e−r
2/4t r

2t
ν(Br(x))dr ≤Mνf(y)ε

∫ δ/
√
t

0

e−r
2/4r

h(r
√
t)

h(
√
t)
dr

≤ cεMνf(y)

by hypothesis.
For the second one, we split again yielding

Mνf(y)
h(
√
t)

∫ ∞
δ

e−r
2/4t r

2t
ν(Br(y))dr

≤Mνf(y)c

(∫ 1/
√
t

δ/
√
t

e−r
2/4r

h(r
√
t)

h(
√
t)
dr +

∫ ∞
1/
√
t

e−r
2/4rn+1

√
tn

h(
√
t)
dr

)
−−−→
t→0

0.

So if we set

H(t, y) :=
1

h(
√
t)

∫
e−|x−y|

2/4tf(x)dν(x),

we showed that limt→0H(t, y) = 0. Using dominated convergence in the same
way than it was used in the first step of the proof of Theorem 3.1, we obtain

0 =
∫

lim
t→0

H(t, y)f(y)dν(y) = lim
t→0

1
h(
√
t)

∫
e−|x−y|

2/4tf(x)dν(x)f(y)dν(y)

= lim
t→0

√
tn

h(
√
t)

∫
e−t|ξ|

2
|Fνf(ξ)|2dξ.

In the same way, if we integrate with respect to µ, we obtain

lim
t→0

√
tn

h(
√
t)

∫
e−t|ξ|

2
Fνf(ξ)Fµf(ξ)dξ = 0.

Now the thesis is a consequence of Theorems 3.1 and 3.2.
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4 Lower Estimate.

In this section we estimate the lower bound for the µ-Fourier transform. We
start by the following theorem.

Theorem 4.1. Let µ = HhxE for an h-regular set E (see 1.2). Suppose that
the function h satisfies both h(t) ≤ tn for t ≥ 1 and limt→0

tn

h(t) = 0. Also

suppose that the limit limt→0
h(rt)
h(t) := p(r) exists. Then for f ∈ L2(µ),

lim
t→0

√
tn

h(
√
t)

∫
e−t|ξ|

2
|Fµf(ξ)|2 dξ = Cn,h

∫
|f |2 dµ, (4.1)

where Cn,h =
∫∞
0
e−r

2/2rp(r)dr.

Proof. In view of (3.1), we will estimate

√
tn

h(
√
t)

∫ ∞
0

e−r
2/4t r

2t

∫
Br(y)

f(x)dµ(x)dr.

We write the first integral as sum
∫ δ
0

+
∫∞
δ

. For any δ the second term tends
to zero, since

1
h(
√
t)

∫ ∞
δ

e−r
2/4t r

2t

∫
Br(y)

f(x)dµ(x)dr (4.2)

≤ 1
h(
√
t)

∫ ∞
δ

e−r
2/4t r

2t
µ(Br(y))Mµf(y)dr

≤ 1
h(
√
t)
Mµf(y)

(∫ 1

δ

e−r
2/4t r

2t
h(r)dr +

∫ ∞
1

e−r
2/4t r

2t
rndr

)
=
√
tn

h(
√
t)
Mµf(y)

(∫ 1/
√
t

δ/
√
t

rh(r)e−r
2/4dr +

∫ ∞
1/
√
t

rn+1e−r
2/4dr

)
−−−→
t→0

0,

using that limt→0
tn

h(t) = 0.
To analyze the other integral, note first that since E is regular by Corollary

2.3, we have that, for Hh-almost every y ∈ E (fixed) and for all ε > 0, there
exists δ > 0 such that∣∣∣∣∣

∫
Br(y)

fdµ− h(r)f(y)

∣∣∣∣∣ ≤ εh(r) ∀r ≤ δ. (4.3)
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On the other hand,∫ δ

0

1
h(
√
t)
e−r

2/4t r

2t
h(r)f(y)dr = f(y)

∫ 2δ/
√
t

0

e−r
2
r
h(r
√
t)

h(
√
t)
dr

and so, since e−r
2
r h(r

√
t)

h(
√
t)

is dominated by e−r
2
r1+κ (see Lemma 2.4), we have

∫ δ

0

1
h(
√
t)
e−r

2/4t r

2t
h(r)f(y)dr −−−→

t→0
f(y)

∫ ∞
0

e−r
2
rp(r)dr.

We conclude that∫ δ

0

1
h(
√
t)
e−r

2/4t r

2t

∫
Br(y)

f(x)dµ(x)dr −−−→
t→0

Cn,hf(y). (4.4)

Combining (4.2) and (4.4) we obtain that

H(t, y) :=
1

h(
√
t)

∫ ∞
0

e−r
2/4t r

2t

∫
Br(y)

fdµdr −−−→
t→0

Cn,hf(y).

Since H(t, y) is dominated by f(y)
∫∞
0
e−r

2
rp(r)dr and f ∈ L2(µ), it follows

that

lim
t→0

∫
H(t, y)f(y)dµ(y) =

∫
lim
t→0

H(t, y)f(y)dµ(y) = Cn,h

∫
E

|f |2 dµ.

Note that equation (4.3), which was very important in our proof, is a re-
formulation of Corollary 2.2 substituting µ(Br(y)) by h(r). We are allowed to
make this substitution only because E is a regular set. However this hypothesis
on E is too restrictive.

Actually it has already been proven (see [8]) that there only exist regular
sets for functions of the form xk with k integer. So in order for the last
theorem to be meaningful, it will be necessary to obtain a result with a weaker
hypothesis. We will therefore consider h-quasi regular sets, meaning that there
exists a constant θ > 0 such that for Hh-almost every x ∈ E,

lim inf
r→0

Hh(Br(x) ∩ E)
h(r)

≥ θ. (4.5)

For this case, instead of the equality in (4.1), we obtain a lower bound.
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Theorem 4.2. Let µ = HhE + ν. If ν ≪ Hh and E is h-quasi regular, then

lim inf
t→0

∫
e−t|ξ|

2
|Fµf(ξ)|2 dξ ≥ c

∫
E

|f |2 dHh. (4.6)

Proof. By the proof of Theorem 3.7, we can suppose µ = HhxE .
Since E is quasi regular, there exists δ1 > 0 such that if r < δ1 then

µ(Br(x)) ≥ ch(r). (4.7)

On the other hand, there exists δ2 > 0 such that if r < δ2 (and f(y) 6= 0),
then ∣∣∣∣∣ 1

µ(Br(y))

∫
Br(y)

f(x)dµ(x)− f(y)

∣∣∣∣∣ < ε |f(y)| . (4.8)

Taking δ = δy,ε (satisfying both estimates), we may write

1
h(
√
t)

∫∫
e−|x−y|

2/4tf(x)f(y)dµ(x)dµ(y) =
∫
|f(y)|2H(y, t, ε)dµ(y)+R(t, ε),

where H(y, t, ε) =
∫ δy,ε

0
1

h(
√
t)
e−r

2/4t r
2tµ(Br(y))dr and

R(t, ε) =
∫
f(y)

∫ δy,ε

0

e−r
2/4t

h(
√
t)

r

2t

(∫
Br(y)

f(x)dµ(x)− f(y)µ(Br(y))

)
drdµ(y)

+
∫
f(y)

∫ ∞
δε,y

1
h(
√
t)
e−r

2/4t r

2t

∫
Br(y)

f(x)dµ(x)drdµ(y).

We are now going to bound |R(t, ε)|. Using (4.8) and the fact that there exist

a bound independent of t for
∫ δ
0
e−r2/4t

h(
√
t)

r
2tµ(Br(y))dr, we can bound the first

term by C1ε‖f‖2. The second term is bounded by∫
|f(y)|

∫ ∞
δε,y

1
h(
√
t)
e−r

2/4t r

2t
µ(Br(y))drMµf(y)dµ(y).

Recalling a previous calculation, the integral
∫∞
δ

e−r2/4t

h(
√
t)

r
2tµ(Br(y))dr can be

bounded by ε if we take t small enough. Therefore by Cauchy Schwartz and
the (2,2) strong estimate, the second term is bounded by C2‖f‖2. So both
estimates tell us that |R(t, ε)| ≤ C‖f‖2 for small enough t.

On the other hand, H(y, t, ε) is bounded bellow by
∫ δ
0
e−r2/4t

h(
√
t)

r
2th(r)dr,

using (4.7). Substituting and using that lim inft→0
h(r
√
t)

h(
√
t
< ∞, we conclude

that lim inft→0H(y, t, ε) ≥ C3.
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Therefore by Fatou’s Lemma

lim inf
t→0

1
h(
√
t)

∫∫
e−|x−y|

2/4tf(x)f(y)dµ(x)dµ(y) ≥ c
∫
|f |2 dµ.

Theorem 4.3. Let µ an h-dimensional measure such that µ = HhxE+ν with
ν ≪ Hh being E h-quasi regular. Then the following inequality holds:

lim inf
r→∞

1
rnh(r−1)

∫
Br(y)

|Fµf(ξ)|2 dξ ≥ c
∫
E

|f |2dHh,

where the constant c does not depend on y.

Proof. For any λ > 0 such that λ ≤ t|ξ|2, we have e−t|ξ|
2 ≤ e−λ/2e−(1/2)t|ξ|2 .

Then
√
t
n

h(
√
t)

∫
{ξ:t|ξ|2≥λ}

e−t|ξ|
2
|Fµf(ξ)|2dξ

≤ 2n/2
h((t/2)1/2)
h(
√
t)

(t/2)n/2

h((t/2)1/2)
e−λ/2

∫
e−(1/2)t|ξ|2 |Fµ(ξ)|2dξ

≤ c e−λ/2
∫
E

|f |2dHh

by Lemma 2.4 and Theorem 3.7. Using 4.6 and picking λ big enough, we
obtain

lim inf
t→0

√
tn

h(
√
t)

∫
{ξ:t|ξ|2≤λ}

e−t|ξ|
2
|Fµ(ξ)|2dξ ≥ c̃

∫
E

|f |2dµ,

picking the constant c smaller if needed. Now taking t = λ/r2, we obtain

h(λ1/2)
λn/2

√
tn

h(
√
t)

∫
{ξ:t|ξ|2≤λ}

e−t|ξ|
2
|Fµ(ξ)|2dξ ≤ cλ

1
rnh(r−1)

∫
Br(0)

|Fµ(ξ)|2dξ,

where cλ is such that h(r−1)/h(λ1/2r−1) ≤ cλ. This completes the proof.

5 An Example.

We conclude the paper by exhibiting an example of a function h and a set E
such that HhxE is h-dimensional and E is quasi regular. For this example The-
orem 4.3 holds. However, since E is α-dimensional but with zero Hα measure
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the results of Strichartz in [10] do not apply. This shows that by considering
more general dimension functions we obtained a useful generalization.

Let h : [0,∞)→ R be a dimension function such that h(2x) < 2h(x). Let
sk be such that h(sk) = 2−k. We will construct a set of Cantor type. Consider
the two (closed) subintervals of [0, 1], I1,1 and I1,2, of length s1 obtained
by suppressing the central open interval of length 1 − 2s1. In each of these
intervals we take the two closed subinterval of length s2 obtained by removing
the central interval of length s1 − 2s2 this time. (Note that this number is
positive because h(2x) < 2h(x).) We obtain four intervals denoted by I2,1,
I2,2, I2,3, I2,4. These intervals will be called intervals of step 2. Following in
the same manner at each step, we obtain 2k closed intervals of length sk. Our
Cantor set will be

E =
⋂
k≥1

2k⋃
j=1

Ik,j .

We assign to each interval Ik,j measure 2−k obtaining a probability measure
µ supported on E. We can see ([4]) that this measure is HhxE .

We are going to show that this set satisfies the hypothesis of the Theorem
4.2, which means essentially that it is h-quasi regular. It suffices to see that
µ(B(x,ρ))
h(2ρ) ≥ c (where c is a positive constant) for all x ∈ E and for all ρ > 0.

Given x ∈ E and ρ > 0, denote by k the minimum integer such that there
exists j between 1 and 2k satisfying Ik,j ⊂ B(x, ρ). By minimality sk−1 ≥ ρ.
Then

µ(B(x, ρ))
h(2ρ)

≥ µ(Ik,j)
h(2ρ)

=
2−k

h(2ρ)
≥ cd

2
1

2k−1h(ρ)
≥ cd

2
1

2k−1h(sk−1)
=
cd
2
,

using that Ik,j ⊂ B(x, ρ), the definition of µ , Lemma 2.4, the minimality of
k, and the definition of sk. Therefore (4.5) follows.

We also need to prove that µ = HhxE is an h- dimensional measure. In
fact, E ∩ Bρ(x) ⊂ Ik−1,j for some j. Consequently µ(Bρ(x)) ≤ µ(Ik−1,j) =
2−(k−1) = 2h(sk) ≤ h(ρ).

If we take h(x) = xα log(1/x), then we obtain a set E of dimension α but
such that Hα(E) = 0. Therefore for any α, E will not be α-quasi regular and
hence we cannot apply Strichartz’s Theorem.

However since E is h-quasi regular for h(x) = xα log(1/x), we can apply
Theorem 4.3.
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[1] S. Agmon & L. Hörmander, Asymptotic properties of solutions of differ-
ential equations with simple characteristics, Journal d’Analyse Mathema-
tique, 30 (1976), 1–38.

[2] John J. Benedetto & Joseph D. Lakey, The definition of the Fourier
transform for weighted inequalities, J. Funct. Anal., 120(2) (1994), 403–
439.

[3] C. Cabrelli, F. Mendivil, U. Molter, & R. Shonkwiler, On the h-hausdorff
measure of cantor sets, Pacific Journal of Mathematics, 217 (1) (2004),
29–43.

[4] K. J. Falconer, The Geometry of Fractal Sets, Cambridge University
Press, Cambridge, 1985.

[5] K. J. Falconer, Techniques in Fractal Geometry, John Wiley & Sons, New
York, 1997.

[6] K-S. Lau, Fractal measures and mean p-variations, J. Functional Analy-
sis, 108 (2) (1992), 427–457.

[7] K. S. Lau & Y. Wang, Characterizations of Lp-solutions for the two scale
dilation equations, Preprint, 1997.

[8] P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Cam-
bridge University Press, Cambridge, 1995.

[9] C. A. Rogers, Hausdorff Measures, Cambridge University Press, Cam-
bridge, UK, 2nd Edition, 1998.

[10] R. Strichartz, Fourier Asymptotics of Fractal Measures, Journal of Func-
tional Analysis, 89 (1990), 154–187.

[11] R. Strichartz, Self-Similar Measures and their Fourier Transforms I, In-
diana University Mathematics Journal, 39 (3) (1990), 797–817.

[12] R. Strichartz, Self-Similar Measures and their Fourier Transforms II,
Trans. Amer. Math. Soc., (1993).

[13] R. Strichartz, Self-Similarity in Harmonic Analysis, The Journal of
Fourier Analysis and Applications, 1 (1) (1994), 1–37.


