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Abstract. In this paper we study the following problem. For ε > 0, take uε as a solution of

Luε := div ( g(|∇uε|)
|∇uε| ∇uε) = βε(uε), uε ≥ 0. A solution to (Pε) is a function uε ∈ W 1,G(Ω)∩L∞(Ω)

such that
∫
Ω

g(|∇uε|) ∇uε

|∇uε|∇ϕdx = − ∫
Ω

ϕ βε(uε) dx for every ϕ ∈ C∞
0 (Ω). Here βε(s) = 1

ε
β
(

s
ε

)
,

with β ∈ Lip(R), β > 0 in (0, 1) and β = 0 otherwise. We are interested in the limiting problem, when
ε → 0. As in previous work with L = Δ or L = Δp we prove, under appropriate assumptions, that
any limiting function is a weak solution to a free boundary problem. Moreover, for nondegenerate
limits we prove that the reduced free boundary is a C1,α surface. This result is new even for Δp.
Throughout the paper, we assume that g satisfies the conditions introduced by Lieberman in [Comm.
Partial Differential Equations, 16 (1991), pp. 311–361].
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1. Introduction. In this paper we study the following singular perturbation
problem: For ε > 0, take uε as a nonnegative solution of

(Pε) Luε = βε(uε), uε ≥ 0,

where Lv := div (g(|∇v|)
|∇v| ∇v).

A solution to (Pε) is a function uε ∈W 1,G(Ω) ∩ L∞(Ω) (see the notation for the
definition of W 1,G(Ω)) such that

(1.1)
∫

Ω

g(|∇uε|) ∇uε

|∇uε|∇ϕdx = −
∫

Ω

ϕβε(uε) dx

for every ϕ ∈ C∞
0 (Ω).

Here βε(s) = 1
εβ

(
s
ε

)
for β ∈ Lip(R), positive in (0, 1) and zero otherwise. We call

M =
∫ 1

0 β(s) ds.
We are interested in studying the uniform properties of solutions and understand-

ing what happens in the limit as ε → 0. We assume throughout the paper that the
family {uε} is uniformly bounded in the L∞ norm. Our aim is to prove that, for
every sequence εn → 0, there exists a subsequence εnk

and a function u = limuεnk

and that u is a weak solution of the free boundary problem

(1.2)

⎧⎨⎩Lu := div
(
g(|∇u|)
|∇u| ∇u

)
= 0 in {u > 0} ∩ Ω,

|∇u| = λ∗ on ∂{u > 0} ∩ Ω

for some constant λ∗ depending on g and M .
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This problem appears in combustion theory in the case L = Δ when studying
deflagration flames. Back in 1938, Zeldovich and Frank-Kamenetskii proposed the
passage to the limit in this singular perturbation problem in [26] (the limit for the
activation energy going to infinity in this flame propagation model). The passage to
the limit was not studied in a mathematically rigorous way until 1990 when Berestycki,
Caffarelli, and Nirenberg studied the case of N dimensional traveling waves (see [3]).
Later, in [10], the general evolution problem in the one phase case was considered.
Much research has been done on this matter ever since. (See, for instance, [7, 8, 16,
25].)

(1.2) is a very well known free boundary problem in the uniformly elliptic case
(0 < c ≤ g(t)/t ≤ C <∞). This problem has also been studied in the two phase case.
Regularity results for the free boundary in the case of the Laplacian can be found in
[1] for one phase distributional solutions and in [4, 5] for two phase viscosity solutions.
See also [2] for one phase distributional solutions in the nonlinear uniformly elliptic
case. The results in [1, 4, 5] were used in [16] to obtain free boundary regularity
results for limit solutions (that is, for u = lim uεk). See also [6, 17] for results in
the inhomogeneous case and [11, 13] for viscosity solutions in the uniformly elliptic,
variable coefficient case.

Recently, this singular perturbation problem in the case of the p-Laplacian (g(t) =
tp−1) was considered in [12]. As in the uniformly elliptic case, the authors find, for a
uniformly bounded family of solutions uε, Lipschitz estimates uniform in ε and prove
that the limit of uε is a solution of (1.2) for L = Δp and λ∗ =

(
p

p−1M
)1/p in a

pointwise sense at points in the reduced free boundary.
See also [24, 22] where the authors treat general elliptic equations of flame prop-

agation type including the study of the regularity of the free boundary.
The aim of our present work is to study this singular perturbation problem—

including the regularity of the free boundary—for operators that can be elliptic de-
generate or singular, possibly nonhomogeneous (the p-Laplacian is homogeneous and
this fact simplifies some of the proofs). Moreover, we admit functions g in the oper-
ator L with a different behavior at 0 and at infinity. Classically, the assumptions on
the behavior of g at 0 and at infinity were similar to the case of the p-Laplacian. Here,
instead, we adopt the conditions introduced by Lieberman in [19] for the study of the
regularity of weak solutions of the elliptic equation (possibly degenerate or singular)
Lu = f with f bounded.

This condition ensures that the equation Lu = 0 is equivalent to a uniformly
elliptic equation in nondivergence form with constants of ellipticity independent of
the solution u in sets where ∇u 	= 0. Furthermore, this condition does not imply any
type of homogeneity on the function g and, moreover, it allows for a different behavior
of g(|∇u|) when |∇u| is near zero or infinity. Precisely, we assume that g satisfies

(1.3) 0 < δ ≤ tg′(t)
g(t)

≤ g0 ∀t > 0

for certain constants 0 < δ ≤ g0.
Let us observe that δ = g0 = p− 1 when g(t) = tp−1, and reciprocally, if δ = g0,

then g is a power.
Another example of a function that satisfies (1.3) is the function g(t) = talog (bt+

c) with a, b, c > 0. In this case, (1.3) is satisfied with δ = a and g0 = a+ 1.
Another interesting case is the one of functions g ∈ C1([0,∞)) with g(t) = c1t

a1

for t ≤ s and g(t) = c2t
a2 + d for t ≥ s. In this case, g satisfies (1.3) with δ =

min(a1, a2) and g0 = max(a1, a2).
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320 SANDRA MARTÍNEZ AND NOEMI WOLANSKI

Furthermore, any linear combination with positive coefficients of functions sat-
isfying (1.3) also satisfies (1.3). On the other hand, if g1 and g2 satisfy (1.3) with
constants δi and gi

0, i = 1, 2, the function g = g1g2 satisfies (1.3) with δ = δ1 + δ2

and g0 = g1
0 + g2

0 , and the function g(t) = g1(g2(t)) satisfies (1.3) with δ = δ1δ2 and
g0 = g1

0g
2
0 .

This observation shows that there is a wide range of functions g under the hy-
pothesis of this work.

In this paper we show that the limit functions are solutions of (1.2) in the weak
sense introduced in [21] where we proved that the reduced boundary of these weak
solutions is a C1,α surface. This notion of weak solution turns out to be very well
suited for limit functions of this singular perturbation problem.

We state here the definition of weak solution and the main results in this paper.
Definition 1.1 (weak solution II in [21]). We call u a weak solution of (1.2) if
1. u is continuous and nonnegative in Ω and Lu = 0 in Ω ∩ {u > 0};
2. for D ⊂⊂ Ω there are constants 0 < cmin ≤ Cmax, γ ≥ 1, such that for balls

Br(x) ⊂ D with x ∈ ∂{u > 0}

cmin ≤ 1
r

(
–
∫
–

Br(x)

uγdx

)1/γ

≤ Cmax;

3. for HN−1 a.e. x0 ∈ ∂red{u > 0}, u has the asymptotic development

u(x) = λ∗〈x− x0, ν(x0)〉− + o(|x − x0|),

where ν(x0) is the unit interior normal to ∂{u > 0} at x0 in the measure theoretic
sense;

4. for every x0 ∈ Ω ∩ ∂{u > 0},

lim sup
x→x0

u(x)>0

|∇u(x)| ≤ λ∗.

If there is a ball B ⊂ {u = 0} touching Ω ∩ ∂{u > 0} at x0, then

lim sup
x→x0

u(x)>0

u(x)
dist(x,B)

≥ λ∗.

Our first result is a bound of ‖∇uε‖L∞ independent of ε.
Theorem 1.1. Let uε be a solution of

Luε = βε(uε) in Ω,

with ‖uε‖L∞(Ω) ≤ L. Then, for Ω′ ⊂⊂ Ω we have

|∇uε(x)| ≤ C in Ω′,

with C = C(N, δ, g0, L, ‖β‖∞, g(1), dist(Ω′, ∂Ω)) if ε ≤ ε0(Ω,Ω′).
Then, we have, via a subsequence, that there exists a limiting function u.
The next step is to prove that the function u is a weak solution in the sense of

Definition 1.1 of the free boundary problem (1.2) for a constant λ∗ depending on g
and M . To this end, we have to prove that Lu = 0 in {u > 0} and that we have an
asymptotic development for u at any point on the reduced free boundary.
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Here we find several technical difficulties associated with the loss of homogeneity
of the operator L and to the fact that we are working in an Orlicz space. This is the
case, for instance, when we need to prove the pointwise convergence of the gradients.

At some point we need to add the following hypothesis on g:
There exists η0 > 0 such that

(1.4) g′(t) ≤ s2g′(ts) if 1 ≤ s ≤ 1 + η0 and 0 < t ≤ Φ−1
(g0
δ
M

)
,

where Φ(λ) = λg(λ) −G(λ).
We remark that condition (1.4) holds for all the examples of functions satisfying

condition (1.3) described above (see section 4).
There holds the following theorem.
Theorem 1.2. Suppose that g satisfies (1.3) and (1.4). Let uεj be a solution to

(Pεj ) in a domain Ω ⊂ R
N such that uεj → u uniformly on compact subsets of Ω and

εj → 0. Let x0 ∈ Ω ∩ ∂{u > 0} be such that ∂{u > 0} has an inward unit normal ν
in the measure theoretic sense at x0, and suppose that u is nondegenerate at x0 (see
Definition 5.1). Under these assumptions, we have

u(x) = Φ−1(M)〈x − x0, ν〉+ + o(|x − x0|),

where Φ(λ) = λg(λ) −G(λ).
Finally, we can apply the theory developed in [21]. We have that u is a weak

solution in the sense of Definition 1.1 of the free boundary problem.
Then, we have the following theorem.
Theorem 1.3. Suppose that g satisfies (1.3) and (1.4). Let uεj be a solution

of (Pεj ) in a domain Ω ⊂ R
N such that uεj → u uniformly in compact subsets of

Ω as εj → 0. Let x0 ∈ Ω ∩ ∂{u > 0} such that there is a unit inward normal ν
to Ω ∩ ∂{u > 0} in the measure theoretic sense at x0. Suppose that u is uniformly
nondegenerate at the free boundary in a neighborhood of x0 (see Definition 5.1). Then,
there exists r > 0 such that Br(x0) ∩ ∂{u > 0} is a C1,α surface.

Finally, we give two examples in which we can apply the regularity results in
this paper. In both examples the nondegeneracy property is satisfied by the limiting
function u. In the first example the limiting function is obtained by taking a sequence
of minimal solutions of (Pε) (see Definition 7.1). In the second one it is obtained by
taking a sequence of minimizers of the functional

Jε(v) =
∫

Ω

[G(|∇v|) +Bε(v)] dx,

where B′
ε(s) = βε(s) (see section 7).

Moreover, in the second example we have that HN−1(∂{u > 0}\∂red{u > 0}) = 0.
Thus, in this case the set of singular points has zero HN−1-measure.

We also have—since the limiting function is a minimizer of the problem considered
in [21]—that in the case of minimizers we don’t need to add any new hypothesis to
the function g. That is, the result holds for functions g satisfying only condition (1.3).
In dimension 2 if we add to condition (1.3) that

(1.5) there exist constants t0 > 0 and k > 0 so that g(t) ≤ kt for t ≤ t0,

then we have that the whole free boundary is a regular surface (see Corollary 2.2 in
[20]).
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Outline of the paper. The paper is organized as follows: In section 3 we prove
the uniform Lipschitz continuity of solutions of (Pε) (Corollary 3.1).

In section 4 we prove that if u is a limiting function, then Lu is a Radon measure
supported on the free boundary (Proposition 4.1). Then we prove Proposition 4.2,
which says that if u is a half-plane, then the slope is 0 or Φ−1(M), and Proposition
4.3, which says that if u is a sum of two half-planes, then the slopes must be equal
and at most Φ−1(M).

In section 5 we prove the asymptotic development of u at points in the reduced
free boundary (Theorem 5.1) and we prove that u is a weak solution according to
Definition 1.1.

In section 6 we apply the results of [21] to prove the regularity of the free boundary
(Theorem 6.1).

In section 7 we give two examples where the limiting function satisfies the nonde-
generacy property. The first one is given by the limit of minimal solutions (Theorem
7.2), and the second one is given by the limit of energy minimizers (Theorem 7.4).

In the appendices we state some properties of the function g, we prove the asymp-
totic development of L-subsolutions, and we prove the existence of extremal solutions
to Pε.

2. Notation. Throughout the paper, N will denote the dimension and

Br(x) =
{
x ∈ R

N , |x− x0| < r
}
,

B+
r (x) =

{
x ∈ R

N , xN > 0, |x− x0| < r
}
,

B−
r (x) =

{
x ∈ R

N , xN < 0, |x− x0| < r
}
.

For v, w ∈ R
N , 〈v, w〉 denotes the standard scalar product.

For a scalar function f , f+ = max(f, 0) and f− = max(−f, 0).
Furthermore, we denote

G(t) =
∫ t

0

g(s) ds,

F (t) = g(t)/t,
Φ(t) = g(t)t−G(t),

A(p) = F (|p|)p for p ∈ R
N ,

aij =
∂Ai

∂pj
for 1 ≤ i, j ≤ N.

We denote by LG(Ω) the Orlicz space that is the linear hull of the set of measurable
functions such that

∫
Ω
G(|u|) dx <∞ with the norm of Luxemburg. That is,

‖u‖LG(Ω) = inf
{
λ > 0

/∫
Ω

G

(
|u|
λ

)
dx ≤ 1

}
.

The set W 1,G(Ω) is the Sobolev–Orlicz space of functions in W 1,1
loc (Ω) such that

both ‖u‖LG(Ω) and ‖|∇u|‖LG(Ω) are finite equipped, with the norm

‖u‖W 1,G(Ω) = max
{
‖u‖LG(Ω), ‖|∇u|‖LG(Ω)

}
.
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3. Uniform bound of the gradient. We begin by proving that solutions of
the perturbation problem are locally uniformly Lipschitz. That is, the uε’s are locally
Lipschitz, and the Lipschitz constant is bounded independently of ε. In order to prove
this result, we first need to prove a couple of lemmas.

Lemma 3.1. Let uε be a solution of

Luε = βε(uε) in Br0(x0)

such that uε(x0) ≤ 2ε. Then, there exists C = C(N, r0, δ, g0, ‖β‖∞, g(1)) such that if
ε ≤ 1,

|∇uε(x0)| ≤ C.

Proof. Let v(x) = 1
εu

ε(x0 + εx). Then, if ε ≤ 1, Lv = β(v) in Br0 and v(0) ≤ 2.
By Harnack’s inequality (see [19]) we have that 0 ≤ v(x) ≤ C1 in Br0/2 with C1 =
C1(N, g0, δ, ‖β‖∞). Therefore, by using the derivative estimates of [19] we have that

|∇uε(x0)| = |∇v(0)| ≤ C,

with C = C(N, δ, g0, ‖β‖∞, r0, g(1)).
Lemma 3.2. Let uε be a solution of

Luε = βε(uε) in B1

and 0 ∈ ∂{uε > ε}. Then, for x ∈ B1/4 ∩ {uε > ε},

uε(x) ≤ ε+ C dist(x, {uε ≤ ε} ∩B1),

with C = C(N, δ, g0, ‖β‖∞, g(1)).
Proof. For x0 ∈ B1/4 ∩ {uε > ε} take m0 = uε(x0) − ε and δ0 = dist(x0, {uε ≤

ε} ∩ B1). Since 0 ∈ ∂{uε > ε} ∩ B1, δ0 ≤ 1/4. We want to prove that m0 ≤
C(N, δ, g0, ‖β‖∞, g(1))δ0.

Since Bδ0(x0) ⊂ {uε > ε}∩B1, we have that uε−ε > 0 in Bδ0(x0) and L(uε−ε) =
0. By Harnack’s inequality there exists c1 = c1(N, g0, δ) such that

min
Bδ0/2(x0)

(uε − ε) ≥ c1m0.

Let us take ϕ = e−μ|x|2 − e−μδ2
0 with μ = 2K / δδ20 , where K = 2N if g0 < 1 and

K = 2(g0 − 1) + 2N if g0 ≥ 1. Then, we have that Lϕ > 0 in Bδ0 \ Bδ0/2 (see the
proof of Lemma 2.9 in [21]).

Let now ψ(x) = c2m0ϕ (x− x0) for x ∈ Bδ0(x0) \ Bδ0/2(x0). Then, again by
Lemma 2.9 in [21], we have that if we choose c2 conveniently depending on N, δ, and
g0, ⎧⎪⎨⎪⎩

Lψ(x) > 0 in Bδ0(x0) \Bδ0/2(x0),
ψ = 0 on ∂Bδ0(x0),
ψ = c1m0 on ∂Bδ0/2(x0).

By the comparison principle (see Lemma 2.8 in [21]) we have

(3.1) ψ(x) ≤ uε(x) − ε in Bδ0(x0) \Bδ0/2(x0).
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Take y0 ∈ ∂Bδ0(x0) ∩ ∂{uε > ε}. Then, y0 ∈ B1/2 and

(3.2) ψ(y0) = uε(y0) − ε = 0.

Let vε = 1
εu

ε(y0 + εx). Then, if ε < 1, we have that Lvε = β(vε) in B1/2 and
vε(0) = 1. Therefore, by Harnack’s inequality (see [19]) we have that maxB1/4

vε ≤ c̃

and

(3.3) |∇uε(y0)| = |∇vε(0)| ≤ c̃max
B1/4

vε ≤ c3.

Finally, by (3.1), (3.2), and (3.3) we have that |∇ψ(y0)| ≤ |∇uε(y0)| ≤ c3. Observe
that |∇ψ(y0)| = c2m0e

−μδ2
02μδ0 ≤ c3. Therefore,

m0 ≤ c3e
μδ2

0

c22μδ0
=
c3δe

2K/δ

c24K
δ0

and the result follows.
Now, we can prove the main result of this section.
Proposition 3.1. Let uε be a solution of Luε = βε(uε) in B1. Assume that

0 ∈ ∂{uε > ε}. Then, we have for x ∈ B1/8,

|∇uε(x)| ≤ C,

with C = C(N, δ, g0, ‖β‖∞, g(1)).
Proof. By Lemma 3.1 we know that if x0 ∈ {uε ≤ 2ε} ∩B3/4, then

|∇uε(x0)| ≤ C0,

with C0 = C0(N, δ, g0, ‖β‖∞, g(1)).
Let x0 ∈ B1/8 ∩ {uε > ε} and δ0 = dist(x0, {uε ≤ ε}).
As 0 ∈ ∂{uε > ε} we have that δ0 ≤ 1/8. Therefore, Bδ0(x0) ⊂ {uε > ε} ∩ B1/4

and then Luε = 0 in Bδ0(x0) and, by Lemma 3.2,

(3.4) uε(x) ≤ ε+ C1dist(x, {uε ≤ ε}) in Bδ0(x0).

1. Suppose that ε < c̄δ0 with c̄ to be determined. Let v(x) = 1
δ0
uε(x0 + δ0x).

Then, Lv = δ0βε(uε(x0 + δ0x)) = 0 in B1. Therefore, by the results of [19]

|∇v(0)| ≤ C̃ sup
B1

v,

with C̃ = C̃(N, g0, δ, g(1)). We obtain

|∇uε(x0)| ≤
C̃

δ0
sup

Bδ0 (x0)

uε ≤ C̃

δ0
(ε+ Cδ0) ≤ C̃(c̄+ C).

2. Suppose that ε ≥ c̄δ0. By (3.4) we have

uε(x0) ≤ ε+ C1δ0 ≤
(

1 +
C1

c̄

)
ε < 2ε

if we choose c̄ big enough. By Lemma 3.1, we have |∇uε(x0)| ≤ C, with C =
C(N, g0, δ, ‖β‖∞, g(1)).

The result follows.
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With these lemmas we obtain the following.
Corollary 3.1. Let uε be a solution of

Luε = βε(uε) in Ω,

with ‖uε‖L∞(Ω) ≤ L. Then, we have, for Ω′ ⊂⊂ Ω, that there exists ε0(Ω,Ω′) such
that if ε ≤ ε0(Ω,Ω′),

|∇uε(x)| ≤ C in Ω′,

with C = C(N, δ, g0, L, ‖β‖∞, g(1), dist(Ω′, ∂Ω)).
Proof. Let τ > 0 such that ∀x ∈ Ω′, Bτ (x) ⊂ Ω and ε ≤ τ . Let x0 ∈ Ω′.

1. If δ0 = dist(x0, ∂{uε > ε}) ≤ τ/8, let y0 ∈ ∂{uε > ε} such that |x0−y0| = δ0.
Let v(x) = 1

τ u
ε(y0 + τx) and x̄ = x0−y0

τ , and then |x̄| < 1/8. As 0 ∈ ∂{v > ε/τ} and
Lv = βε/τ (v) in B1, we have by Proposition 3.1

|∇uε(x0)| = |∇v(x̄)| ≤ C.

2. If δ0 = dist(x0, ∂{uε > ε}) ≥ τ/8, there holds that
(i) Bτ/8(x0) ⊂ {uε > ε} or
(ii) Bτ/8(x0) ⊂ {uε ≤ ε}.

In the first case, Luε = 0 in Bτ/8(x0). Therefore,

|∇uε(x0)| ≤ C(N, g0, δ, τ, g(1), L).

In the second case, we can apply Lemma 3.1 and we have

|∇uε(x0)| ≤ C(N, g0, δ, τ, g(1), 2‖β‖∞).

The result is proved.

4. Passage to the limit. Since we have that |∇uε| is locally bounded by a
constant independent of ε, we have that there exists a function u ∈ Liploc(Ω) such
that, for a subsequence εj → 0, uεj → u. In this section we will prove some properties
of the function u.

We start with some technical results.
Proposition 4.1. Let {uε} be a uniformly bounded family of nonnegative solu-

tions of (Pε). Then, for any sequence εj → 0 there exists a subsequence ε′j → 0 and
u ∈ Liploc(Ω) such that the following hold

1. uε′
j → u uniformly in compact subsets of Ω,

2. Lu = 0 in Ω ∩ {u > 0}
3. There exists a locally finite measure μ such that βε′

j
(uε′

j ) ⇀ μ as measures
in Ω′ for every Ω′ ⊂⊂ Ω,

4. Assume g0 ≥ 1. Then, ∇uε′
j → ∇u in Lg0+1

loc (Ω),
5. ∫

Ω

F (|∇u|)∇u∇ϕ = −
∫

Ω

ϕdμ

for every ϕ ∈ C∞
0 (Ω). Moreover, μ is supported on Ω ∩ ∂{u > 0}.

Remark 4.1. We can always assume that g0 ≥ 1. If we don’t want to assume
it, we can change the statement in item (3) by ∇uε′

j → ∇u in Lg1+1
loc (Ω), where

g1 = max (1, g0).
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Proof. (1) follows by Corollary 3.1.
In order to prove (2), take E ⊂⊂ E′ ⊂⊂ {u > 0}. Then, u ≥ c > 0 in E′.

Therefore, uε′
j > c/2 in E′ for ε′j small. If we take ε′j < c/2—as Luε′

j = 0 in {uε′
j >

ε′j}—we have that Luε′
j = 0 in E′. Therefore, by the results in [19], ‖uε′

j‖C1,α(E) ≤ C.
Thus, for a subsequence we have

∇uε′
j → ∇u uniformly in E.

Therefore, Lu = 0.
In order to prove (3), let us take Ω′ ⊂⊂ Ω and ϕ ∈ C∞

0 (Ω) with ϕ = 1 in Ω′ as a
test function in (Pεj ). Since ‖∇uε′

j‖ ≤ C in Ω′, there holds that

C(ϕ) ≥
∫

Ω

βε′
j

(
uε′

j

)
ϕdx ≥

∫
Ω′
βε′

j

(
uε′

j

)
dx.

Therefore, βε′
j
(uε′

j ) is bounded in L1
loc(Ω) so that there exists a locally finite measure

μ such that

βε′
j

(
uε′

j

)
⇀ μ as measures;

that is, for every ϕ ∈ C0(Ω),

∫
Ω

βε′
j

(
uε′

j

)
ϕdx→

∫
Ω

ϕdμ.

We divide the proof of (4) into several steps.
Let Ω′ ⊂⊂ Ω; then by Corollary 3.1, |∇uεj | ≤ C in Ω′. Therefore, for a subse-

quence ε′j we have that there exists ξ ∈ (L∞(Ω′))N such that

(4.1)

∇uε′
j ⇀ ∇u ∗ − weakly in (L∞(Ω′))N ,

A(∇uε′
j ) ⇀ ξ ∗ − weakly in (L∞(Ω′))N ,

uε′
j → u uniformly in Ω′,

where A(p) = F (|p|)p. For simplicity, we call ε′j = ε.
Step 1. Let us first prove that for any v ∈W 1,G

0 (Ω′) there holds that

(4.2)
∫

Ω′
(ξ − A(∇u))∇v dx = 0.

In fact, as A is monotone (i.e., (A(η) − A(ζ)) · (η − ζ) ≥ 0 ∀η, ζ ∈ R
N ) we have

that, for any w ∈W 1,G(Ω′),

(4.3) I =
∫

Ω′

(
A(∇uε) −A(∇w)

)
(∇uε −∇w) dx ≥ 0.
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Therefore, if ψ ∈ C∞
0 (Ω′),

(4.4)

−
∫

Ω′
βε(uε)uε dx−

∫
Ω′
A(∇uε)∇w dx−

∫
Ω′
A(∇w)(∇uε −∇w) dx

= −
∫

Ω′
βε(uε)uε dx−

∫
Ω′
A(∇uε)∇uε dx+ I

= −
∫

Ω′
βε(uε)u dx−

∫
Ω′
βε(uε)(uε − u)ψ dx−

∫
Ω′
βε(uε)(uε − u)(1 − ψ) dx

−
∫

Ω′
A(∇uε)∇uε dx+ I

≥−
∫

Ω′
βε(uε)u dx+

∫
Ω′
A(∇uε)∇(uε − u)ψ dx+

∫
Ω′
A(∇uε)(uε − u)∇ψ dx

−
∫

Ω′
βε(uε)(uε − u)(1 − ψ) dx−

∫
Ω′
A(∇uε)∇uε dx,

where in the last inequality we are using (4.3) and (1.1).
Now, take ψ = ψj → χΩ′ . If Ω′ is smooth, we may assume that

∫
|∇ψj | dx →

Per Ω′. Therefore,∣∣∣∣∫
Ω′
A(∇uε)(uε − u)∇ψj dx

∣∣∣∣ ≤ C‖uε − u‖L∞(Ω′)

∫
Ω′

|∇ψj | dx ≤ C‖uε − u‖L∞(Ω′)

so that with this choice of ψ = ψj in (4.4) we obtain

∫
Ω′
βε(uε)uε dx

∫
Ω′
A(∇uε)∇w dx

∫
Ω′
A(∇w)(∇uε −∇w) dx

≤
∫

Ω′
βε(uε)u dx−

∫
Ω′
A(∇uε)∇(uε − u) dx+ C‖uε − u‖L∞(Ω′) +

∫
Ω′
A(∇uε)∇uε dx

=
∫

Ω′
βε(uε)u dx+

∫
Ω′
A(∇uε)∇udx+ C‖uε − u‖L∞(Ω′).

Therefore, letting ε→ 0 we get by using (4.1) and (3) that

−
∫

Ω′
u dμ−

∫
Ω′
ξ∇w dx −

∫
Ω′
A(∇w)(∇u −∇w) dx ≥ −

∫
Ω′
u dμ−

∫
Ω′
ξ∇u dx

and then

(4.5)
∫

Ω′
(ξ −A(∇w))(∇u −∇w) dx ≥ 0.

Take now w = u− λv with v ∈ W 1,G
0 (Ω′). Dividing by λ and taking λ→ 0+ in (4.5)

we obtain ∫
Ω′

(ξ − A(∇u))∇v dx ≥ 0.

Replacing v by −v we obtain (4.2).
Step 2. Let us prove that

∫
Ω′ A(∇uε)∇uε →

∫
Ω′ A(∇u)∇u.

By passing to the limit in the equation

(4.6) 0 =
∫

Ω′
A(∇uε)∇φ +

∫
Ω′
βε(uε)φdx,
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we have, by Step 1, that for every φ ∈ C∞
0 (Ω′),

(4.7) 0 =
∫

Ω′
A(∇u)∇φ +

∫
Ω′
φdμ.

On the other hand, taking φ = uεψ in (4.6) with ψ ∈ C∞
0 (Ω′) we have that

0 =
∫

Ω′
A(∇uε)∇uεψ dx+

∫
Ω′
A(∇uε)uε∇ψ dx+

∫
Ω′
βε(uε)uεψ dx.

Using that ∫
Ω′
A(∇uε)uε∇ψ dx→

∫
Ω′
A(∇u)u∇ψ dx,∫

Ω′
βε(uε)uεψ dx→

∫
Ω′
uψdμ

we obtain

0 = lim
ε→0

(∫
Ω′
A(∇uε)∇uεψ dx

)
+
∫

Ω′
A(∇u)u∇ψ dx+

∫
Ω′
uψdμ.

Now taking φ = uψ in (4.7) we have

0 =
∫

Ω′
A(∇u)∇uψ dx+

∫
Ω′
A(∇u)u∇ψ dx+

∫
Ω′
uψ dμ.

Therefore,

lim
ε→0

∫
Ω′
A(∇uε)∇uεψ dx =

∫
Ω′
A(∇u)∇uψ dx.

Then, ∣∣∣∣∫
Ω′

(A(∇uε)∇uε −A(∇u)∇u) dx
∣∣∣∣

≤
∣∣∣∣∫

Ω′
(A(∇uε)∇uε −A(∇u)∇u)ψ dx

∣∣∣∣ +
∣∣∣∣∫

Ω′
(A(∇uε)∇uε)(1 − ψ) dx

∣∣∣∣
+
∣∣∣∣∫

Ω′
A(∇u)∇u(1 − ψ) dx

∣∣∣∣
≤

∣∣∣∣∫
Ω′

(A(∇uε)∇uε −A(∇u)∇u)ψ dx
∣∣∣∣ + C

∫
Ω′

|1 − ψ| dx

so that taking ε→ 0 and then ψ → 1 a.e. with 0 ≤ ψ ≤ 1 we obtain

(4.8)
∫

Ω′
A(∇uε)∇uεdx→

∫
Ω′
A(∇u)∇u dx.

With similar ideas we can prove that

(4.9)
∫

Ω′
A(∇uε)∇u dx→

∫
Ω′
A(∇u)∇u dx.
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Step 3. Let us prove that

(4.10)
∫

Ω′
G(|∇uε|) dx→

∫
Ω′
G(|∇u|) dx.

First, by the monotonicity of A we have∫
Ω′
G(|∇uε|) dx−

∫
Ω′
G(|∇u|) dx =

∫
Ω′

∫ 1

0

A(∇u + t(∇uε −∇u))∇(uε − u) dx

≥
∫

Ω′
A(∇u)∇(uε − u) dx.

Therefore, we have

lim inf
ε→0

∫
Ω′
G(|∇uε|) dx−

∫
Ω′
G(|∇u|) dx ≥ 0.

Now, by Step 2 we have∫
Ω′
G(|∇uε|) dx−

∫
Ω′
G(|∇u|) dx =

∫
Ω′

∫ 1

0

A(∇u + t(∇uε −∇u))∇(uε − u) dx

≤
∫

Ω′
A(∇uε)∇(uε − u) dx→ 0.

Thus, we have that (4.10) holds.
Step 4. This is the end of the proof of (4).

Let us = su+ (1 − s)uε. Then,

(4.11)∫
Ω′
G(|∇u|) dx −

∫
Ω′
G(|∇uε|) dx =

∫
Ω′

∫ 1

0

A(∇us)∇(u − uε) ds dx

=
∫

Ω′

∫ 1

0

(A(∇us) −A(∇uε))∇(us − uε)
ds

s
dx

+
∫

Ω′
A(∇uε)∇(u− uε) dx.

As in the proof of Theorem 4.1 in [21], we have that∫
Ω′

∫ 1

0

(A(∇us) −A(∇uε))∇(us − uε) ds dx

≥ C

(∫
A2

G(|∇u−∇uε|) dx+
∫

A1

F (|∇u|)|∇u −∇uε|2 dx
)
,

where

A1 = {x ∈ Ω′ : |∇u−∇uε| ≤ 2|∇u|}, A2 = {x ∈ Ω′ : |∇u−∇uε| > 2|∇u|}.

Therefore, by (4.8), (4.9), (4.10), and (4.11) we have( ∫
A2

G(|∇u −∇uε|) dx+
∫

A1

F (|∇u|)|∇u−∇uε|2 dx
)
→ 0.

Then, if we prove that(∫
A2

G(|∇u−∇uε|) dx+
∫

A1

F (|∇u|)|∇u −∇uε|2 dx
)
≥ C

∫
Ω′

|∇u−∇uε|g0+1 dx,

the result follows.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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In fact, for every C0 > 0 there exists C1 > 0 such that g(t) ≥ C1t
g0 if t ≤ C0. Let

C0 be such that |∇u| ≤ C0 and |∇u−∇uε| ≤ C0. Then, by Lemma A.1,

G(|∇uε −∇u|) ≥ C|∇uε −∇u|g0+1,

F (|∇u|) ≥ C1|∇u|g0−1 ≥ C|∇uε −∇u|g0−1 in A1,

and the claim follows.
Finally, (5) holds by (4), (3), and (2).
Lemma 4.1. Let {uεj} be a uniformly bounded family of solutions of (Pεj ) in

Ω such that uεj → u uniformly on compact subsets of Ω and εj → 0. Let x0, xn ∈
Ω∩∂{u > 0} be such that xn → x0 as n→ ∞. Let λn → 0, uλn(x) = 1

λn
u(xn+λnx),

and (uεj )λn(x) = 1
λn
uεj (xn + λnx). Suppose that uλn → U as n → ∞ uniformly on

compact sets of R
N . Then, there exists j(n) → ∞ such that for every jn ≥ j(n) there

holds that εjn/λn → 0 and
1. (uεjn )λn → U uniformly in compact subsets of R

N ,
2. ∇(uεjn )λn → ∇U in Lg0+1

loc (RN ),
3. ∇uλn → ∇U in Lg0+1

loc (RN ).
Proof. The proof follows from Proposition 4.1 as the proof of Lemma 3.2 follows

from Lemma 3.1 in [7].
Now we prove a technical lemma that is the basis of our main results.
Lemma 4.2. Let uε be solutions to

Luε = βε(uε)

in Ω. Then, for any ψ ∈ C∞
0 (Ω) we have

(4.12) −
∫

Ω

G(|∇uε|)ψx1 dx+
∫

Ω

F (|∇uε|)∇uε∇ψ uε
x1
dx =

∫
Ω

Bε(uε)ψx1 ,

where Bε(s) =
∫ s

0
βε(τ) dτ .

Proof. For simplicity, since ε will be fixed throughout the proof, we will denote
uε = u.

We know that |∇u| ≤ C for some constant C. Take gn(t) = g(t) + t
n , and then

(4.13) min{1, δ} ≤ g′n(t)t
gn(t)

≤ max{1, g0}.

Take An(p) = gn(|p|)
|p| p and Ln(v) = div(An(∇v)). For Ω′ ⊂⊂ Ω let us take un as the

solution of

(4.14)

{
Lnun = βε(u) in Ω′,
un = u on ∂Ω′.

By (4.13), we have that all the g′ns belong to the same class, and then, by the
results of [19], we have that for every Ω′′ ⊂⊂ Ω′ there exists a constant C independent
of n such that ‖un‖C1,α(Ω′′) ≤ C.

Therefore, there exists u0 such that, for a subsequence,

un → u0 uniformly on compact subsets of Ω′,
∇un → ∇u0 uniformly on compact subsets of Ω′.
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On the other hand, An(p) → A(p) uniformly in compact sets of R
N . Thus, Lu0 =

βε(u) and u0−u ∈W 1,G(Ω′). Since Lu = βε(u), it holds that u0 = u in Ω′. (Observe
that, in the proof of the comparison principle, in Lemma 2.8 of [21] we can change the
equation Lu = 0 by Lu = f(x) with f ∈ L∞(Ω) to prove uniqueness of the solution
of the Dirichlet problem.)

Now, let us prove that the following equality holds:

−
∫

Ω

Gn(|∇un|)ψx1 dx+
∫

Ω

Fn(|∇un|)∇un∇ψ unx1 dx = −
∫

Ω

βε(u)unx1ψ.

In fact, for n fixed we have that Fn(t) = gn(t)/t ≥ 1/n and then by the uniform
estimates of [14], un ∈ W 2,2(Ω). As un is a weak solution of (4.14) and as un ∈
W 2,2(Ω), taking as test function in the weak formulation of (4.14) the function ψunx1 ,
we have that ∫

Ω

Fn(|∇un|)∇un∇(ψunx1) dx = −
∫

Ω

βε(u)unx1ψ dx.

As (Gn(|∇un|))x1 = gn(|∇un|) ∇un

|∇un| (∇un)x1 = F (|∇un|)∇un(∇un)x1 we have
that

−
∫

Ω

Gn(|∇un|)ψx1 dx+
∫

Ω

Fn(|∇un|)∇un∇ψ unx1 dx = −
∫

Ω

βε(u)unx1ψ dx.

Passing to the limit as n → ∞ and then integrating by parts on the right-hand
side we get

−
∫

Ω

G(|∇u|)ψx1 dx+
∫

Ω

F (|∇u|)∇u∇ψ ux1 dx =
∫

Ω

Bε(u)ψx1 dx.

Now, we characterize some special global limits.
Proposition 4.2. Let x0 ∈ Ω, and let uεk be solutions to

Luεk = βεk
(uεk)

in Ω. If uεk converge to α(x − x0)+1 uniformly in compact subsets of Ω, with εk → 0
as k → ∞ and α ∈ R, there holds that

α = 0 or α = Φ−1(M),

where Φ(t) = g(t)t−G(t).
Proof. Assume, for simplicity, that x0 = 0. Since uεk ≥ 0, we have that α ≥ 0. If

α = 0, there is nothing to prove. So, let us assume that α > 0. Let ψ ∈ C∞
0 (Ω). By

Lemma 4.2 we have

(4.15) −
∫

Ω

G(|∇uεk |)ψx1 dx +
∫

Ω

F (|∇uεk |)∇uεk∇ψ uεk
x1
dx =

∫
Ω

Bεk
(uεk)ψx1 .

Since 0 ≤ Bεk
(s) ≤ M , there exists M(x) ∈ L∞(Ω), 0 ≤ M(x) ≤ M , such that

Bεk
→M ∗ – weakly in L∞(Ω).
If y ∈ Ω ∩ {x1 > 0}, then uεk ≥ αy1

2 in a neighborhood of y for k large. Thus,
uεk ≥ εk and we have

Bεk
(uεk)(x) =

∫ uεk /εk

0

β(s) ds = M.
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On the other hand, if we let K ⊂⊂ Ω ∩ {x1 < 0}, since by Proposition 4.1
βεk

(uεk) → 0 in L1(K), we have that
∫

K

∣∣∇Bεk
(uεk)

∣∣ dx =
∫

K βεk
(uεk)|∇uεk | dx→ 0.

Therefore, we may assume that Bεk
→M in L1

loc({x1 < 0}) for a constantM ∈ [0,M ].
Passing to the limit in (4.15), using the strong convergence result in Proposi-

tion 4.1 we have

−
∫
{x1>0}

G(α)ψx1 dx+
∫
{x1>0}

F (α)α2ψx1 dx = M

∫
{x1>0}

ψx1 +M

∫
{x1<0}

ψx1 .

Then,

(−G(α) + g(α)α)
∫
{x1>0}

ψx1 dx = M

∫
{x1>0}

ψx1 dx+M

∫
{x1<0}

ψx1 dx.

And, integrating by parts, we obtain

(−G(α) + g(α)α)
∫
{x1=0}

ψ dx′ = M

∫
{x1=0}

ψ dx′ −M

∫
{x1=0}

ψ dx′.

Thus, (−G(α) + g(α)α) = M −M .
In order to see that α = Φ−1(M) let us show that M = 0.
In fact, let K ⊂⊂ {x1 < 0} ∩ Ω. Then for any η > 0 there exists 0 < δ < 1 such

that ∣∣K ∩ {η < Bεj (u
εj ) < M − η}

∣∣ ≤ ∣∣K ∩ {δ < uεj/εj < 1 − δ}
∣∣

≤
∣∣K ∩ {βεj (u

εj ) ≥ a/εj}
∣∣ → 0

as j → ∞, where a = inf [δ,1−δ] β > 0, and we are using that βεj (u
εj ) is bounded in

L1(K) uniformly in j.
Now, as B(uεj ) →M in L1(K), we conclude that∣∣K ∩ {η < M < M − η}

∣∣ = 0

for every η > 0. Hence, M = 0 or M = M and, since α > 0, we must have
M = 0.

Proposition 4.3. Let x0 ∈ Ω, and let uεk be a solution to Luεk = βεk
(uεk) in

Ω. Assume g′ satisfies (4.19) below. If uεk converges to α(x − x0)+1 + γ(x − x0)−1
uniformly in compact subsets of Ω, with α, γ > 0 and εk → 0 as k → ∞, then

α = γ ≤ Φ−1(M).

Proof. We can assume that x0 = 0.
As in the proof of Proposition 4.2 we see that Bεk

(uεk) → M uniformly on
compact sets of {x1 > 0} and {x1 < 0}. Since uεk satisfies (4.12) we get, after passing
to the limit, for any ψ ∈ C∞

0 (Ω),

−
∫
{x1>0}

Φ(α)ψx1 dx−
∫
{x1<0}

Φ(γ)ψx1 dx =
∫

Ω

Mψx1 .

Integrating by parts we obtain∫
{x1=0}

Φ(α)ψ dx′ −
∫
{x1=0}

Φ(γ)ψ dx′ = 0

and then α = γ.
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Now assume that α > Φ−1(M). We will prove that this is a contradiction.
Step 1. Let R2 = {x = (x1, x

′) ∈ R
N : |x1| < 2, |x′| < 2}. From the scaling

invariance of the problem, we can assume that R2 ⊂ Ω.
We will construct a family {vεj} of solutions of (Pεj ) in R2 satisfying vεj (x1, x

′) =
vεj (−x1, x

′) in R2 and such that vεj → u uniformly on compact subsets of R2, where
u(x) = α|x1|.

To this end, we take bεj = supR2
|uεj − u| and vεj the least solution constructed

in Theorem C.1 with Ω = R2 and boundary values vεj = u − bεj on ∂R2. The
supersolution that we are taking when applying Theorem C.1 is a constant A ≥ 1 such
that uε ≤ A, and as subsolution we take a negative constant c such that c ≤ u − bε.
Then, we have that c ≤ uε ≤ A, and by this theorem we obtain that vε ≤ uε.

We may apply the uniform estimates of the previous section in order to pass to
the limit for a subsequence that we still call vεj , and we get v = lim vεj ≤ u.

Another property that we obtain by using the extremality of vεj is that it is
symmetric with respect to the variable x1. In fact, if we take the function v̄(x1, x

′) =
vεj (−x1, x

′), this is again a solution. Therefore, by Theorem C.1, vεj (−x1, x
′) =

v̄(x1, x
′) ≤ vεj (x1, x

′). Changing x1 to −x1 we reverse the inequality, thus, obtaining
the desired symmetry result.

In order to prove that u ≤ v, we considered two cases.
First, suppose that α > Φ−1(g0

δ M). Let w ∈ C1,β(R) be the weak solution to

(F (|w′|)w′)′ =
g0
δ
β(w) in R, w(0) = 1, w′(0) = α.

Observe that when w′(s) > 0, the equation is locally uniformly elliptic so that,
as long as w′ > 0, there holds that w ∈ C2 and a solution to(

g(w′)
)′ =

g0
δ
β(w).

Suppose that there exists an s ∈ R such that w′(s) = 0. Take s1 as the supremum
of the s’s such that this happens. Then, s1 < 0 and, in (s1, 0], w′ > 0 and F (|w′|)w′ =
g(w′). Multiplying the equation by w′ and integrating in this interval we get

−
∫ 0

s1

g(w′)w′′ + g(w′)w′
∣∣∣0
s1

=
g0
δ
B(w)

∣∣∣0
s1

.

Since g(w′)w′′ =
(
G(w′)

)′, we get

Φ(α) =
g0
δ
M − g0

δ
B
(
w(s1)

)
≤ g0

δ
M,

which is a contradiction.
Then, w′ > 0 everywhere. By the same calculation as before, we obtain that for

any s ∈ R we have

Φ(w′(s)) = Φ(α) +
g0
δ
B(w(s)) − g0

δ
M ≤ Φ(α)

and

(4.16) Φ(w′(s)) = Φ(α) +
g0
δ
B(w(s)) − g0

δ
M ≥ Φ(α) − g0

δ
M = Φ(ᾱ)

for some α > ᾱ > 0. Thus, ᾱ ≤ w′(s) ≤ α.
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Therefore, w′(s) = α for s ≥ 0 and there exists s̄ < 0 such that w(s̄) = 0. This
implies, by (4.16), that w′(s̄) = ᾱ, and then w′(s) = ᾱ for all s ≤ s̄. Therefore,

w(s) =

{
1 + αs, s > 0,
ᾱ(s− s̄), s ≤ s̄.

Let wεj (x1) = εjw(x1
εj

− bεj

ᾱεj
+ s̄); then

wεj (0) = εjw

(
−
bεj

ᾱεj
+ s̄

)
= εjᾱ

(
s̄−

bεj

ᾱεj
− s̄

)
= −bεj

and wεj ′(s) ≤ α. Therefore, wεj ≤ u− bεj in R so that wεj ≤ vεj on ∂R2.
Then, by the comparison principle below (Lemma 4.3), we have that wεj ≤ vεj

in R2.
Take x1 > 0. Then, for j large x1−

bεj

ᾱ > x1
2 . Thus, 1

εj
(x1−

bεj

ᾱ )+ s̄ > x1
2εj

+ s̄ > 0
for j large.

Therefore, wεj (x) = εj + αx1 − α
ᾱbεj + αεj s̄. Hence, wεj → u uniformly on

compact sets of {x1 > 0}.
Passing to the limit, we get that u ≤ v in R2 ∩ {x1 > 0}. Observe that since

vεj (x1, x
′) = vεj (−x1, x

′), we obtain that u ≤ v in R2.
This completes the first case.
Now, suppose that α ≤ Φ−1

(
g0
δ M

)
. Let w ∈ C1,β(R), satisfying

(F (|w′|)w′)′ = β(w) in R, w(0) = 1, w′(0) = α.

Again, when w′(s) > 0, the equation is locally uniformly elliptic and then w ∈ C2.
Proceeding as in the first case we see that ᾱ ≤ w′(s) < α in R where, in the

present case, Φ(ᾱ) = Φ(α) −M .

w(s) =

{
1 + αs, s > 0,
ᾱ(s− s̄), s ≤ s̄.

Let wεj (x1) = εjw(x1
εj

− bεj

ᾱεj
+ s̄); then

wεj (0) = εjw

(
−
bεj

ᾱεj
+ s̄

)
= εjᾱ

(
s̄−

bεj

ᾱεj
− s̄

)
= −bεj

and wεj ′(s) ≤ α. Therefore, wεj ≤ u− bεj in R so that wεj ≤ vεj on ∂R2, and since
wεj ′ ≤ α ≤ Φ−1(g0

δ M), we have, by the comparison principle below (Lemma 4.3),
that wεj ≤ vεj in R2. We can conclude as in the previous case that u ≤ v in R2.

Step 2. Let R+ = {x : 0 < x1 < 1, |x′| < 1}. Define

Fj =
∫

∂R+∩{x1=1}
F (|∇vεj |)(vεj

x1
)2 dx′ +

∫
∂R+∩{|x′|=1}

F (|∇vεj |)vεj
n v

εj
x1
dS,

where vn
εj is the exterior normal of vεj on ∂R+ ∩ {|x′| = 1}. We first want to prove

that

Fj ≤
∫

∂R+∩{x1=1}

(
G(|∇vεj |) +Bεj (v

εj )
)
dx′.
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In order to prove it, we proceed as in the proof of Lemma 4.2. That is, we can
suppose that F (s) ≥ c > 0 by using an approximation argument. Therefore, we can
suppose that vεj ∈W 2,2(R2). Multiplying equation (Pεj ) by vεj

x1 in R+ and using the
definitions of G and F we have

Ej :=
∫ ∫

R+

∂

∂x1
(G(|∇vεj |)) dx =

∫ ∫
R+

F (|∇vεj |)∇vεj∇vεj
x1
dx

=
∫ ∫

R+
div(F (|∇vεj |)∇vεj vεj

x1
) dx−

∫ ∫
R+

βεj (v
εj )vεj

x1
=: Hj −Gj .

Using the divergence theorem and the fact that vεj
x1(0, x′) = 0 (by the symmetry in

the x1 variable) we find that Hj = Fj .
From the convergence of vεj → u = α|x1| in R2 and Proposition 4.1 we have that

∇vεj → αe1 a.e. in R+
2 = R2 ∩ {x1 > 0}.

Since |∇vεj | are uniformly bounded, from the dominate convergence theorem we de-
duce that

(4.17) lim
j→∞

Fj =
∫

∂R+∩{x1=1}
g(α)αdx′

and

Fj = Ej +Gj =
∫ ∫

R+

∂

∂x1

(
G(|∇vεj |) +Bεj (v

εj )
)
dx

=
∫

∂R+∩{x1=0}
−
(
G(|∇vεj |) +Bεj (v

εj )
)
dx′

+
∫

∂R+∩{x1=1}

(
G(|∇vεj |) +Bεj (v

εj )
)
dx′

≤
∫

∂R+∩{x1=1}

(
G(|∇vεj |) +Bεj (v

εj )
)
dx′.

Using again that vεj → u = α|x1| uniformly on compact subsets of R2, we have that
|∇vεj | → α uniformly on ∂R+ ∩ {x1 = 1} and Bεj (vεj ) = M on this set for j large.
Therefore,

(4.18) lim sup
j→∞

Fj ≤
∫

∂R+∩{x1=1}
(G(α) +M) dx′.

Thus, from (4.17) and (4.18) we obtain Φ(α) ≤M , which is a contradiction.
Now, we prove the comparison principle needed in the proof of the lemma above.

This is the step where we need an additional hypothesis: There exist η0 > 0 such that

(4.19) g′(t) ≤ s2g′(ts) if 1 ≤ s ≤ 1 + η0 and 0 < t ≤ Φ−1
(g0
δ
M

)
.

Remark 4.2. We remark that condition (4.19) holds for all the examples of
functions g satisfying condition (1.3) considered in the introduction.

This is immediate when g is a positive power or the sum of positive powers.
If g(t) = talog (b+ ct), we have for s ≥ 1,

s2g′(ts) = sa+1ata−1log (b + cts) + sa+2 cta

b+ cts
≥

[
ata−1log (b+ ct) +

scta

b+ cts

]
.
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Since

g′(t) = ata−1log (b+ ct) +
cta

b+ ct
,

condition (4.19) holds if

s

b+ cts
≥ 1
b+ ct

.

Or, equivalently,

sb+ cst ≥ b+ cst,

and this last inequality holds for s ≥ 1.
Finally, if g ∈ C1(R), g(t) = c1t

a1 for t ≤ k, and g(t) = c2t
a2 + c3 for t > k, we

have

s2g′(ts) =

{
sa1+1a1c1t

a1−1 if st ≤ k,

sa2+1a2c2t
a2−1 if st ≥ k

so that
1. if t ≥ k, then ts ≥ k and

s2g′(ts) = sa2+1a2c2t
a2−1 ≥ a2c2t

a2−1 = g′(t);

2. if ts ≤ k (i.e., t ≤ k/s), we have, in particular, that t ≤ k and

s2g′(ts) = sa1+1a1c1t
a1−1 ≥ a1c1t

a1−1 = g′(t);

3. if k/s < t < k, there holds that s2g′(ts) = sa2+1a2c2t
a2−1 and g′(t) =

a1c1t
a1−1. Therefore, condition (4.19) is equivalent to

(4.20) sa2+1 ≥ a1c1
a2c2

ta1−a2 .

Observe that the condition that g′ be continuous implies that a1c1
a2c2

= ka2−a1 . Thus,
(4.20) is equivalent to

(4.21) sa2+1 ≥
(
t

k

)a1−a2

.

We consider two cases.
(i) If a1 ≥ a2, (4.21) holds since t < k and s ≥ 1.
(ii) If a1 < a2, as t > k/s there holds that(

t

k

)a1−a2

<
1

sa1−a2
≤ sa2+1,

because 1
sa1 ≤ s since s ≥ 1.

Let us now prove the comparison lemma used in the proof of Proposition 4.3.
Lemma 4.3. Let wε(x1) in C2(R) be such that wε′(x1) ≥ ᾱ > 0, and let vε(x) ≥ 0

be a solution of Lvε = βε(vε) in R = {x = (x1, x
′) : a < x1 < b, |x′| < r}, continuous

up to ∂R. Then, the following comparison principle holds: If vε(x) ≥ wε(x1) for all
x ∈ ∂R and if
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1. L(wε) ≥ g0
δ βε(wε) on R

or
2. Lwε ≥ βε(wε), wε′ ≤ Φ−1(g0

δ M), and g′ satisfies condition (4.19),
then vε(x) ≥ wε(x1) for all x ∈ R.

Proof. Since wε′(x1) ≥ ᾱ there exists x0 such that wε(x0) = 0. Let us suppose
that x0 = 0.

Since vε(x) ≥ 0, we can find τ such that

wε(x1 − τ) < vε(x) on R̄.

For η > 0 sufficiently small define

wε,η(x1) := wε(ϕη(x1 − cη)),

where ϕη(s) = s+ηs2 and cη > 0 is the smallest constant such that ϕη(s− cη) ≤ s on
[−2τ, 2τ ] (observe that cη → 0 when η → 0). If cη − 1

η ≤ −2τ , then ϕη(s− cη) ≤ 0 for
s ≤ cη. Observe that, in [−2τ, 2τ ], wε,η ≤ wε and, as η → 0, wε,η → wε uniformly.

If we call ϕ̃η(s) = ϕη(s− cη), we have

(4.22) Lwε,η = g′
(
wε′ (ϕ̃η) ϕ̃′

η

)
wε′′ (ϕ̃η) (ϕ̃′

η)2 + g′
(
wε′ (ϕ̃η) ϕ̃′

η

)
wε′ (ϕ̃η) ϕ̃′′

η .

In the first case, we use that, by condition (1.3), we have for s ≥ 1,

g′(ts) ≥ δ
g(ts)
ts

≥ δ
g(t)
ts

≥ δg′(t)
g0s

.

Therefore,

(4.23) s2g′(ts) ≥ δ

g0
sg′(t).

Taking s = ϕ̃′
η and t = wε′(ϕ̃′

η) and using (4.22), (4.23), and the fact that ϕη
′′ > 0

and wε′ > 0, we have

Lwε,η >
δ

g0
g′
(
wε′ (ϕ̃η)

)
wε′′(ϕ̃η)ϕ̃′

η =
δ

g0
Lwε(ϕ̃η)ϕ̃′

η ≥ βε(wε,η)ϕ̃′
η.

Since βε(wε,η) = 0 when x1 ≤ cη and ϕ̃′
η ≥ 1 when x1 ≥ cη, we have that Lwε,η >

βε(wε,η).
For the second case, choose η small enough so that 0 < cη ≤ 1 and ϕ̃′

η(r) ≤ 1+η0
for a < r < b.

If x1 < cη, we proceed as in the previous case and deduce that L(wε,η) > 0 =
βε(wε,η).

If x1 ≥ cη, we can apply condition (4.19) with s = ϕ̃′
η and t = wε′(ϕ̃′

η) since
wε′ ≤ Φ−1(g0

δ M).
Then, using that ϕη

′′ > 0 and wε′ > 0 and (4.22) we have

Lwε,η > g′
(
wε′(ϕ̃η)

)
wε′′(ϕ̃η) = Lwε(ϕ̃η) ≥ βε(wε,η).

Summarizing, in both cases we have

Lwε,η > βε(wε,η), wε,η → wε as η → 0, and wε,η ≤ wε.
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Let now τ∗ ≥ 0 be the smallest constant such that

wε,η(x1 − τ∗) ≤ vε(x) in R.

We want to prove that τ∗ = 0. By the minimality of τ∗, there exists a point x∗ ∈ R
such that wε,η(x∗1−τ∗) = vε(x∗). If τ∗ > 0, then wε,η(x1−τ∗) < wε,η(x1) ≤ wε(x1) ≤
vε(x) on ∂R, and hence, x∗ is an interior point of R.

At this point observe that the gradient of wε,η(x1 − τ∗) does not vanish and
Lwε,η(x∗1 − τ∗) > βε(wε,η(x∗ − τ∗)) = βε(vε(x∗)) = Lvε(x∗). We also have wε,η(x1 −
τ∗) ≤ vε(x) in R and wε,η(x∗1 − τ∗) = vε(x∗). Then, also ∇wε,η(x∗1 − τ∗) = ∇vε(x∗).

Let

Lv =
N∑

i,j=1

aij(∇wε,η(x1 − τ∗))vxixj .

Since |∇wε,η(x1 − τ∗)| > 0 near x∗, L is well defined near the point x∗ and, by
condition (1.3), L is uniformly elliptic.

Since ∇wε,η(x∗1 − τ∗) = ∇vε(x∗), we have that

Lwε,η(x∗1 − τ∗) = Lwε,η(x∗1 − τ∗) > Lvε(x∗) =
N∑

i,j=1

aij(∇vε(x∗))vε
xixj

= Lvε(x∗).

Moreover, since vε is a solution to

L̃v :=
N∑

i,j=1

aij(∇vε(x))vxixj = βε(v),

L̃ is uniformly elliptic in a neighborhood of x∗ with Hölder continuous coefficients and
βε(vε) ∈ Lip, there holds that vε ∈ C2 in a neighborhood of x∗.

Therefore, we have for some η > 0,⎧⎪⎨⎪⎩
Lwε,η(x1 − τ∗) > Lvε(x) in Bη(x∗),
wε,η(x∗1 − τ∗) = vε(x∗),
wε,η(x1 − τ∗) ≤ vε(x) in R.

But these three statements contradict the strong maximum principle. Therefore,
τ∗ = 0 and, thus, wε,η ≤ vε on R.

Letting η → 0 we obtain the desired result.

5. Asymptotic behavior of limit solutions. Now we want to prove—for g
satisfying conditions (1.3) and (1.4)—the asymptotic development of the limiting
function u. We will obtain this result, under suitable assumptions on the function u.
First, we give the following definition.

Definition 5.1. Let v be a continuous nonnegative function in a domain Ω ⊂
R

N . We say that v is nondegenerate at a point x0 ∈ Ω ∩ {v = 0} if there exist c,
r0 > 0 such that

1
rN

∫
Br(x0)

v dx ≥ cr for 0 < r ≤ r0.

We say that v is uniformly nondegenerate in a set Ω′ ⊂ Ω ∩ {v = 0} if the
constants c and r0 can be taken independent of the point x0 ∈ Ω′.
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We have the following theorem.
Theorem 5.1. Suppose that g satisfies conditions (1.3) and (1.4). Let uεj be

a solution to (Pεj ) in a domain Ω ⊂ R
N such that uεj → u uniformly on compact

subsets of Ω and εj → 0. Let x0 ∈ Ω ∩ ∂{u > 0} be such that ∂{u > 0} has an
inward unit normal ν in the measure theoretic sense at x0, and suppose that u is
nondegenerate at x0. Under these assumptions, we have

u(x) = Φ−1(M)〈x − x0, ν〉+ + o(|x − x0|).

The proof of this theorem makes strong use of the following result.
Theorem 5.2. Suppose that g satisfies conditions (1.3) and (1.4). Let uεj be

a solution to (Pεj ) in a domain Ω ⊂ R
N such that uεj → u uniformly in compact

subsets of Ω and εj → 0. Let x0 ∈ Ω ∩ ∂{u > 0}. Then,

lim sup
x→x0

u(x)>0

|∇u(x)| ≤ Φ−1(M).

Proof. Let

α := lim sup
x→x0

u(x)>0

|∇u(x)|.

Since u ∈ Liploc(Ω), α < ∞. If α = 0, we are done. So, suppose that α > 0. By the
definition of α there exists a sequence zk → x0 such that

u(zk) > 0, |∇u(zk)| → α.

Let yk be the nearest point from zk to Ω ∩ ∂{u > 0}, and let dk = |zk − yk|.
Consider the blow up sequence udk

with respect to Bdk
(yk). That is, udk

(x) =
1
dk
u(yk + dkx). Since u is Lipschitz and udk

(0) = 0 for every k, there exists u0 ∈
Lip(RN) such that (for a subsequence) udk

→ u0 uniformly in compact sets of R
N .

We also have that Lu0 = 0 in {u0 > 0}.
Now, set z̄k = (zk − yk)/dk ∈ ∂B1. We may assume that z̄k → z̄ ∈ ∂B1. Take

νk :=
∇udk

(z̄k)
|∇udk

(z̄k)| =
∇u(zk)
|∇u(zk)| .

Passing to a subsequence and after a rotation we can assume that νk → e1. Observe
that B2/3(z̄) ⊂ B1(z̄k) for k large, and therefore, u0 is an L-solution there. By interior
Hölder gradient estimates (see [19]), we have ∇udk

→ ∇u0 uniformly in B1/3(z̄), and
therefore, ∇u(zk) → ∇u0(z̄). Thus, ∇u0(z̄) = α e1 and, in particular, ∂x1u0(z̄) = α.

Next, we claim that |∇u0| ≤ α in R
N . In fact, let R > 1 and δ > 0. Then, there

exists τ0 > 0 such that |∇u(x)| ≤ α+ δ for any x ∈ Bτ0R(x0). For |zk − x0| < τ0R/2
and dk < τ0/2 we have BdkR(zk) ⊂ Bτ0R(x0) and, therefore, |∇udk

(x)| ≤ α+ δ in BR

for k large. Passing to the limit, we obtain |∇u0| ≤ α + δ in BR, and since δ and R
were arbitrary, the claim holds.

Since ∇u0 is Hölder continuous in B1/3(z̄), there holds that ∇u0 	= 0 in a neigh-
borhood of z̄. Thus, by the results in [18], u0 ∈ W 2,2 in a ball Br(z̄) for some r > 0,
and since ∫

A(∇u0)∇ϕdx = 0 for every ϕ ∈ C∞
0 (Br(z̄)),
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taking ϕ = ψx1 and integrating by parts we see that, for w = ∂u0
∂x1

,

N∑
i,j=1

∫
Br(z̄)

aij

(
∇u0(x)

)
wxjψxi dx = 0.

That is, w is a solution to the uniformly elliptic equation

T w :=
N∑

i=1

∂

∂xi

(
aij (∇u0(x))wxj

)
= 0.

Now let w̄ = α− w. Then, w̄ ≥ 0 in Br(z̄), w̄(z̄) = 0 and T w̄ = 0 in Br(z̄). By
the Harnack inequality we conclude that w̄ ≡ 0. Hence, w ≡ α in Br(z̄).

Now, since we can repeat this argument around any point where w = α, by a
continuation argument, we have that w = α in B1(z̄).

Therefore, ∇u0 = α e1 and we have, for some y ∈ R
N , u0(x) = α(x1 − y1) in

B1(z̄). Since u0(0) = 0, there holds that y1 = 0 and u0(x) = αx1 in B1(z̄). Finally,
since Lu0 = 0 in {u0 > 0}, by a continuation argument, we have that u0(x) = αx1 in
{x1 ≥ 0}.

On the other hand, as u0 ≥ 0, Lu0 = 0 in {u0 > 0}, and u0 = 0 in {x1 = 0}, we
have, by Lemma B.2, that

u0 = −γx1 + o(|x|) in {x1 < 0}

for some γ ≥ 0.
Now, define for λ > 0, (u0)λ(x) = 1

λu0(λx). There exist a sequence λn → 0 and
u00 ∈ Lip(RN) such that (u0)λn → u00 uniformly in compact subsets of R

N . We have
u00(x) = αx+

1 + γx−1 .
By Lemma 4.1 there exists a sequence ε′j → 0 such that uε′

j is a solution to
(Pε′

j
) and uε′

j → u0 uniformly on compact subsets of R
N . Applying a second time

Lemma 4.1 we find a sequence ε′′j → 0 and a solution uε′′
j to (Pε′′

j
) converging uniformly

in compact subsets of R
N to u00. Now we can apply Proposition 4.2 in the case that

γ = 0 or Proposition 4.3 in the case that γ > 0, and we conclude that α ≤ Φ−1

(M).
Proof of Theorem 5.1. Assume that x0 = 0 and ν = e1. Take uλ(x) = 1

λu(λx). Let
ρ > 0 such that Bρ ⊂⊂ Ω, and since uλ ∈ Lip(Bρ/λ) uniformly in λ, uλ(0) = 0, there
exists λj → 0 and U ∈ Lip(RN) such that uλj → U uniformly on compact subsets of
R

N . From Proposition 4.1 and Lemma 4.1, Luλ = 0 in {uλ > 0}. Using the fact that
e1 is the inward normal in the measure theoretic sense, we have, for fixed k,

|{uλ > 0} ∩ {x1 < 0} ∩Bk| → 0 as λ→ 0.

Hence, U = 0 in {x1 < 0}. Moreover, U is nonnegative in {x1 > 0}, LU = 0 in
{U > 0}, and U vanishes in {x1 ≤ 0}. Then, by Lemma B.2 we have that there exists
α ≥ 0 such that

U(x) = αx+
1 + o(|x|).

By Lemma 4.1 we can find a sequence ε′j → 0 and solutions uε′
j to (Pε′

j
) such that

uε′
j
→ U uniformly on compact subsets of R

N as j → ∞. Define Uλ(x) = 1
λU(λx);

then Uλ → αx+
1 uniformly on compact subsets of R

N . Applying again Lemma 4.1
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we find a second sequence σj → 0 and uσj solution to (Pσj ) such that uσj → αx+
1

uniformly on compact subsets of R
N and

∇uσj → αχ{x1>0}e1 in Lg0+1
loc

(
R

N
)
.

Now, we proceed as in the proof of Proposition 4.2. Let ψ ∈ C∞
0 (RN ), and choose

u
σj
x1ψ as test function in the weak formulation of Luσj = βσj (uσj ). Then,

Bσj (u
σj ) →Mχ{x1>0} +Mχ{x1<0} ∗ −weakly in L∞,

with M = 0 or M = M . Moreover, Φ(α) = M −M .
By the nondegeneracy assumption on u we have

1
rN

∫
Br

uλj dx ≥ cr

and then

1
rN

∫
Br

Uλj dx ≥ cr.

Therefore, α > 0 so that we have that M = 0. Then, α = Φ−1(M).
We have shown that

U(x) =

{
Φ−1(M)x1 + o(|x|), x1 > 0,
0, x1 ≤ 0.

By Theorem 5.2, |∇U | ≤ Φ−1(M) in R
N . As U = 0 on {x1 = 0} we have

U ≤ Φ−1(M)x1 in {x1 > 0}.
Since LU = 0 in {x1 > 0}, U = 0 on {x1 = 0}, there holds that U ∈ C1,α({x1 ≥

0}). Thus, |∇U(0)| = Φ−1(M) > 0 so that, near zero, U satisfies a linear uniformly
elliptic equation in nondivergence form and the same equation is satisfied by w =
U − Φ−1(M)x1 in {x1 > 0} ∩ Br(0) for some r > 0. We also have w ≤ 0 so that
by Hopf’s boundary principle we have that w = 0 in {x1 > 0} ∩ Br(0) and then,
by a continuation argument based on the strong maximum principle we deduce that
U(x) = αx+

1 in R
N . The proof is complete.

Now we prove another result that is needed in order to see that u is a weak
solution according to Definition 1.1.

Theorem 5.3. Let uεj be a solution to (Pεj ) in a domain Ω ⊂ R
N such that

uεj → u uniformly in compact subsets of Ω and εj → 0. Let x0 ∈ Ω ∩ ∂{u > 0}, and
suppose that u is nondegenerate at x0. Assume there is a ball B contained in {u = 0}
touching x0; then

(5.1) lim sup
x→x0

u(x)>0

u(x)
dist(x,B)

= Φ−1(M).

Proof. Let � be the finite limit on the left-hand side of (5.1), and yk → x0 with
u(yk) > 0 and

u(yk)
dk

→ �, dk = dist(yk, B).
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Consider the blow up sequence uk with respect to Bdk
(xk), where xk ∈ ∂B are points

with |xk − yk| = dk, and choose a subsequence with blow up limit u0 such that there
exists

e := lim
k→∞

yk − xk

dk
.

Then, by construction, u0(e) = � = �〈e, e〉, u0(x) ≤ �〈x, e〉 for 〈x, e〉 ≥ 0, and
u0(x) = 0 for 〈x, e〉 ≤ 0. In particular, ∇u0(e) = � e.

By the nondegeneracy assumption, we have that � > 0. Since |∇u0(e)| = � > 0
and ∇u0 is continuous, both u0 and �〈x, e〉+ are solutions of Lv = 0 in {u0 > 0} ∩
{〈x, e〉 ≥ 0} ∩ {|∇u0| > 0} where

Lv :=
N∑

i,j=1

bij(∇u0)vx1xj

is uniformly elliptic and

bij(p) = δij +
(
g′(|p|)|p|
g(|p|) − 1

)
pipj

|p|2 .

Now, from the strong maximum principle, we have that they must coincide in a
neighborhood at the point e.

By continuation we have that u0 = �〈x, e〉+. Thus, we have, by Proposition 4.2,
that � = Φ−1(M).

6. Regularity of the free boundary. We can now prove a regularity result
for the free boundary of limits of solutions to (Pε).

Theorem 6.1. Assume that g satisfies conditions (1.3) and (1.4). Let uεj be a
solution to (Pεj ) in a domain Ω ⊂ R

N such that uεj → u uniformly in compact subsets
of Ω and εj → 0. Let x0 ∈ Ω ∩ ∂{u > 0} be such that there is an inward unit normal
ν in the measure theoretic sense at x0. Suppose that u is uniformly nondegenerate
at the free boundary in a neighborhood of x0 (see Definition 5.1). Then, there exists
r > 0 such that Br(x0) ∩ ∂{u > 0} is a C1,α surface.

Proof. By Corollary 3.1, Theorems 5.1 and 5.3, and the nondegeneracy assump-
tion we have that u is a weak solution in the sense of Definition 1.1. Therefore,
Theorem 9.4 of [21] applies, and the result follows.

7. Some examples. In this section we give some examples in which the nonde-
generacy condition is satisfied so that in these cases ∂red{u > 0} is a C1,α surface.

For the case of a limit of minimizers of the functionals

(7.1) Jε(v) =
∫

Ω

G(|∇v|) dx +
∫

Ω

Bε(v) dx

with B′
ε(s) = βε(s), we will also prove that HN−1(∂{u > 0} \ ∂red{u > 0}) = 0.

The uniform nondegeneracy condition will follow from the linear growth away
from the free boundary. This is a well known result for the case of the Laplacian. We
prove it here for the operator L (Theorem 7.1). The proof is based on an iteration
argument that, in the case of the proof for the Laplacian, makes use of the mean value
property (see [9]). We replace it here by a blow up argument (see Lemma 7.1).

Lemma 7.1. Let c1 > 1, and let uε ∈ C(Ω), |∇uε| ≤ L with Luε = 0 in {uε > ε}
be such that there exists C > 0 so that uε(x) ≥ C dist(x, ∂{uε > ε}) if uε(x) > c1ε
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and d(x) = dist(x, ∂{uε > ε}) < 1/2 dist(x, ∂Ω). Then, there exists δ0 > 0 and δ0 =
δ0(c1, C) such that ∀ε > 0 and ∀x ∈ {uε > c1ε} with d(x) < 1/2 dist(x, ∂Ω) we have

sup
Bd(x)(x)

uε ≥ (1 + δ0)uε(x).

Proof. Suppose by contradiction that there exist sequences δk → 0, εk > 0, and
xk ∈ {uεk > c1εk} with dk = d(xk) < 1/2 dist(xk, ∂Ω) such that

sup
Bdk

(xk)

uεk ≤ (1 + δk)uεk(xk).

Take wk(x) = uεk (xk+dkx)
uεk (xk) . Then, wk(0) = 1 and

max
B1

wk ≤ (1 + δk), wk > 0, and Lkwk = 0 in B1,

where Lkv = div(gk(|∇v|)
|∇v| ∇v) with gk(t) = g(uεk (xk)t

dk
).

On the other hand, in B2 we have

‖∇wk‖L∞(B2) = ‖∇uεk(xk + dkx)‖L∞(B2)
dk

uεk(xk)
≤ L

C
.

Then, there exists w ∈ C(B1) such that

wk → w uniformly in B1.

Take 0 < r < 1, and let vk(x) = (1 + δk) − wk(x). Then, since gk satisfies (1.3),
by the Harnack inequality we have

0 ≤ vk(x) ≤ c(r)vk(0) for |x| < r.

By passing to the limit we have

0 ≤ 1 − w ≤ c(r)(1 − w(0)) = 0.

Therefore, w = 1 in B1.
Let yk ∈ ∂{uk > εk} with |xk − yk| = dk. Then, if zk = yk−xk

dk
, we have

wk(zk) =
εk

uεk(xk)
≤ 1
c1

and we may assume that zk → z̄ ∈ ∂B1. Thus, 1 = w(z̄) ≤ 1
c1

< 1. This is a
contradiction, and the lemma is proved.

Theorem 7.1. Let c1 > 1, C, L > 0, and Ω′ ⊂⊂ Ω. There exist c0, r0 > 0 such
that if uε ∈ C(Ω) is such that Luε = 0 in {uε > ε}, ‖uε‖L∞(Ω′), ‖∇uε‖L∞(Ω′) ≤ L,
and uε(x) ≥ C dist(x, ∂{uε > ε}) if x ∈ {uε > c1ε} ∩ Ω′ and d(x) = dist(x, ∂{uε >
ε}) < 1/2 dist(x, ∂Ω′), then if x0 ∈ Ω′ ∩ {uε > c1ε} with dist(x0, ∂{uε > ε}) <
1/2 dist(x, ∂Ω′), it holds that

sup
Br(x0)

uε ≥ c0r for 0 < r < r0.

Proof. The proof follows as that of Theorem 1.9 in [9] by using Lemma 7.1 and
the same iteration argument as in that theorem.

As a corollary we get the locally uniform nondegeneracy of u = lim uε if uε are
solutions to (Pε) with linear growth. In fact, see the following corollary.
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Corollary 7.1. Let uεj be uniformly bounded solutions to (Pεj ) in Ω such
that for every Ω′ ⊂⊂ Ω there exist constants c1 > 1 and C > 0 such that uεj (x) ≥
C dist(x, ∂{uεj > εj}) if x ∈ {uεj > c1εj} ∩ Ω′ and d(x) = dist(x, ∂{uεj > εj}) <
1/2 dist(x, ∂Ω′). Assume uεj → u uniformly on compact subsets of Ω.

Then, there exist constants c0 and r0 depending on c1 and C, the uniform bound of
‖uεj‖L∞(Ω) and Ω′, such that for every x0 ∈ Ω′ ∩ {u > 0} such that
dist(x0, ∂{u > 0}) < 1/2 dist(x0, ∂Ω′),

sup
Br(x0)

u ≥ c0r for 0 < r < r0.

Proof. The proof follows from Theorem 7.1 as in Chapter 1 in [9].

7.1. Example 1. Before we give the first example we need the following defini-
tion.

Definition 7.1. Let uε be a solution to (Pε). We say that uε is a minimal
solution to (Pε) in Ω if whenever we have vε a strong supersolution to (Pε) in Ω′ ⊂⊂ Ω,
i.e.,

vε ∈ W 1,G(Ω) ∩ C
(
Ω′) , g(|∇vε|) ∇vε

|∇vε| ∈ W 1,1(Ω′), Lvε ≤ βε(vε) in Ω′,

which satisfies

vε ≥ uε on ∂Ω,

then

vε ≥ uε in Ω′.

We will not discuss the existence of minimal solutions of the operator L in this
paper. But, let us point out that the interest in considering this kind of solution is
that when Ω = (−∞,+∞) × Σ, a solution uε of Pε that is strictly decreasing in the
x1 variable with limx1→+∞ uε(x1, x

′) = 0 uniformly for x′ ∈ Σ is a minimal solution.
The proof of this fact follows the lines of the comparison result Lemma 4.3. See also
[3, Theorem 7.1] for the proof that traveling waves of the equation Δuε −uε

t = βε(uε)
are minimal solutions.

We can prove for minimal solutions, as in Theorem 4.1 in [3], the following lemma.
Lemma 7.2. Let uε be minimal solutions to (Pε) in a domain Ω ⊂ R

N . For
every Ω′ ⊂⊂ Ω, there exist C, ρ, and ε0, depending on N, δ, g0, dist(Ω′, ∂Ω), and the
function β such that, if ε ≤ ε0 and x ∈ Ω′, then

uε(x) ≥ C dist(x, {uε ≤ ε})

if dist(x, {uε ≤ ε}) ≤ ρ.
Proof. We drop the superscript ε.
The proof is similar to the one of Theorem 4.1 in [3]. We have to make a modifi-

cation, since we are dealing with the operator L instead of the Laplacian.
Let x0 ∈ {u > ε}. Without loss of generality we may suppose that x0 is the origin,

and let dε(0) = dist(0, {u ≤ ε}) = 2γ. In B2γ , u satisfies Lu = 0, and, therefore, by
the Harnack inequality, we have u ≤ Cu(0) in Bγ for some constant C.

We will construct a radial supersolution satisfying the hypotheses in Definition 7.1
such that v(0) = aε < u(0) for some constant 0 < a < 1. Also v(γ) ≥ Dγ for some
constant D under control.
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By our hypothesis that u is a minimal solution it follows that we cannot have
v ≥ u everywhere on ∂Bγ . Therefore,

Dγ ≤ v(γ) ≤ Cu(0),

and this is what we want to prove.
Let 0 < a < b < 1, and let v ∈ C1(Bγ) be defined as

v(r) =

⎧⎪⎨⎪⎩
εa, 0 ≤ r ≤ r0,

εa+ k(r − r0)
δ+1

δ , r0 ≤ r ≤ λ,

H −A(γ − r)
δ+1

δ , λ ≤ r ≤ γ,

with r0, λ, k,H , and A to be chosen. Take λ = r0 + C̃ε(b − a) with C̃ to be chosen
and γ − λ = μ0γ. Set v(λ) = εb. Then,

k =
ε(b − a)

(λ− r0)
δ+1

δ

=
1

C̃
δ+1

δ

(
ε(b− a)

)1/δ
.

Since |∇v| 	= 0, we have

Lv =
g(|∇v|)
|∇v|

⎡⎣Δv +
∑
i,j

(
g′(|∇v|)|∇v|
g(|∇v|) − 1

)
vxi

|∇v|
vxj

|∇v|vxixj

⎤⎦ .
Thus, in λ ≤ r ≤ γ, since |∇v| = A δ+1

δ (γ − r)1/δ, we have

Lv = g(|∇v|)
[
N − 1
r

− g′(|∇v|)|∇v|
g(|∇v|)

1
δ(γ − r)

]
≤ g(|∇v|)

[
N − 1
r

− 1
γ − r

]
≤ g(|∇v|)

[
N − 1
λ

− 1
γ − λ

]
= g(|∇v|)

[
(N − 1)
γ(1 − μ0)

− 1
μ0γ

]
.

Then, if μ0 is sufficiently small, we have Lv ≤ 0 in λ ≤ r ≤ γ.
In r0 ≤ r ≤ λ we have

Lv = g(|∇v|)
[
N − 1
r

+
g′(|∇v|)|∇v|
g(|∇v|)

1
δ(r − r0)

]
≤ g(|∇v|)

[
N − 1
r

+
g0

δ(r − r0)

]
,

and then since |∇v| = k δ+1
δ (r − r0)1/δ,

Lv ≤
g
(
k δ+1

δ (r − r0)1/δ
)

r − r0
L,

with L = L(g0, δ,N).
Since k(r − r0)1/δ ≤ 1/C̃ if r ≤ λ, we have

g

(
k
δ + 1
δ

(r − r0)1/δ

)
≤ R

(
k
δ + 1
δ

(r − r0)1/δ

)δ

,
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with R = C̃δg( 1

C̃
). Thus,

(7.2) Lv ≤ L
R
(
k δ+1

δ (r − r0)1/δ
)δ

r − r0
= LR

(
δ + 1
δ

)δ

kδ.

Let κ = min [a,b]β and C̃ large enough so that

L g
(

1

C̃

) (
δ+1

δ

)δ

C̃(b− a)
≤ κ.

Since

kδ =
1

C̃δ+1ε(b− a)
,

we have that in r0 ≤ r ≤ λ, aε ≤ v ≤ bε and

Lv ≤ κ

ε
≤ βε(v).

So, with this election of λ, k, and r0 we have that Lv ≤ βε(v) in Bγ .
On the other hand, by the continuity of v′ we have that

k
δ + 1
δ

(λ− r0)1/δ = A
δ + 1
δ

(γ − λ)1/δ.

Thus, k(λ− r0)1/δ = A(γ − λ)1/δ so that

A(μ0γ)1/δ =

(
C̃ε(b− a)

)1/δ

C̃
δ+1

δ (ε(b− a))1/δ
= C̃−1.

On the other hand, by the continuity of v, since v(λ) = εb,

v(γ) = H = εb+A(γ − λ)
δ+1

δ ≥ A(μ0γ)
δ+1

δ = C̃−1μ0γ = Dγ,

with D = D(g0, δ, κ, a, b,N). We have the desired result.
Then, by Theorems 6.1 and 7.1, we have the following theorem.
Theorem 7.2. Assume that g satisfies conditions (1.3) and (1.4). Let uεj be

uniformly bounded minimal solutions to (Pεj ) in a domain Ω ⊂ R
N such that uεj → u

uniformly in compact subsets of Ω as εj → 0. Then, Ω ∩ ∂red{u > 0} ∈ C1,α.

7.2. Example 2. We consider solutions of (Pε) that are local minimizers of the
functional

(7.3) Jε(v) =
∫

Ω

[G(|∇v|) +Bε(v)] dx

where B′
ε(s) = βε(s). That is, for any Ω′ ⊂⊂ Ω, uε minimizes∫

Ω′
[G(|∇v|) +Bε(v)] dx

in uε +W 1,G(Ω′).
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By Theorem 7.1, in order to prove the nondegeneracy we need only to prove the
linear growth away from ∂{uε > ε}. The proof follows the lines of Corollary 1.7 in
[9].

Lemma 7.3. Given c1 > 1 there exists a constant C such that if uε is a local
minimizer of Jε in B1 and uε(x0) > c1ε, x0 ∈ B1/4, then

uε(x0) ≥ C dist(x0, {uε ≤ ε})

if dist(x0, {uε ≤ ε}) ≤ 1/4.
Proof. The proof follows as in Theorem 1.6 in [9].
Therefore, we have that minimizers satisfy the uniform nondegeneracy condition.
Now, we want to prove that for the limiting function we have that almost every

point of the free boundary belongs to the reduced free boundary. To this end, we will
prove that the limiting function is a minimizer of the problem treated in [21]. We will
follow the steps of Theorem 1.16 in [9]. We will give only the details when the proof
parts from the one in [9].

First, we want to estimate the measure of the level sets ∂Ωλ where Ωλ = {uε > λ}.
Without loss of generality we may assume that B1 ⊂⊂ Ω.

For a given set D we denote by Nδ(D) the set of points x such that dist(x,D) < δ.
Theorem 7.3. Given c1 > 1 there exist c2, c3 > 0 such that if λ ≥ c1ε and

1/4 ≥ δ ≥ c2λ, then, for R < 1/4, we have

|Nδ(∂Ωλ) ∩BR| ≤ c3δR
N−1.

In order to prove this theorem, we need two lemmas.
Lemma 7.4. If λ > ε and R ≤ 3/4, then∫

{λ<uε<δ}∩BR

G(|∇uε|) dx ≤ cδRN−1.

Proof. First, let us prove that for w ∈ W 1,G(BR) such that suppw ⊂ {uε ≥ λ}
with λ > ε, we have

(7.4)
∫

BR

F (|∇uε|)∇uε∇w dx =
∫

∂BR

wF (|∇uε|) ∂u
ε

∂ν
dHN−1.

We follow the ideas in the proof of Lemma 4.2. That is, we suppose first that
F (t) ≥ c and then we use an approximation argument as in that lemma.

If F (t) ≥ c, then, by the estimates of [14], we have that the solutions are in
W 2,2(Ω), so (7.4) follows by integrating by parts and using the fact that Luε = 0 in
{uε > ε}. Finally, we use the approximation argument of Lemma 4.2 and the result
follows.

Now, let w = min{(uε − λ)+, δ − λ}. Then, w ∈ W 1,G(BR) suppw ⊂ {uε ≥ λ}
so that by (7.4) we have∫

{λ<uε<δ}∩BR

G(|∇uε|) dx ≤ C

∫
∂BR

wF (|∇uε|) ∂u
ε

∂ν
dHN−1 ≤ CδRN−1

and the result follows.
Lemma 7.5. Given c1 > 1 there exist C1, C2, c2 > 0 such that if λ ≥ c1ε and

1/8 > δ ≥ c2λ, we have, for R < 1/4,

|Nδ(∂Ωλ) ∩BR| ≤ C2

∫
{λ<uε<C1δ}∩BR+δ

G(|∇uε|) dx.
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Proof. First, we cover Nδ(∂Ωλ) ∩ BR with balls Bj = Bδ(xj) with centers xj ∈
∂Ωλ ∩BR which overlap at most by n0 (with n0 = n0(N)).

We claim that in each of these balls there exist two subballs B1
j and B2

j with radii
rj = C δ with C to be fixed below such that if v = (uε − λ)+, then

v ≥ c0
8
δ in B1

j , v ≤ c0
16
δ in B2

j ,

where c0 is the constant of nondegeneracy for balls centered in B1/4 with radii at
most 1/8.

In fact, take B2
j = Brj (xj) with rj = c0

16Lδ (here ‖∇uε‖L∞(B3/4) ≤ L). Observe
that since uε(xj) = λ, then v(x) ≤ Lrj = c0

16δ if x ∈ B2
j .

Now let yj ∈ Bδ/4(xj) such that

uε(yj) = sup
Bδ/4(xj)

uε ≥ c0
δ

4
.

Let B1
j = Brj (yj). Then if x ∈ B1

j ,

uε(x) ≥ uε(yj) − Lrj ≥ c0
δ

4
− Lrj .

Thus,

uε(x) − λ ≥ c0
δ

4
− Lrj − λ ≥

(c0
4

− c0
16

− c−1
2

)
δ ≥ c0

8
δ

if c−1
2 ≤ c0

16 .
Let mj = –

∫
–Bj

v. We claim that in one of the balls B1
j and B2

j we must have
|v −mj | ≥ cδ for a certain constant c > 0.

Suppose by contradiction that there exist x1 ∈ B1
j and x2 ∈ B2

j with

|v(x1) −mj| < cδ, |v(x2) −mj | < cδ.

Then,

c0
8
δ − c0

16
δ ≤ v(x1) − v(x2) < 2cδ

which is a contradiction if we take c0/16 ≥ 2c.
Therefore, if k is such that |B1

j | = |B2
j | = k|Bj |, we have by the convexity of G

and Poincaré inequality that

1
|Bj |

∫
Bj

G(|∇v|) dx ≥ G

(
1

|Bj |

∫
Bj

|∇v| dx
)

≥ G

(
C

|Bj |

∫
Bj

|v −mj |
δ

dx

)
≥ G

(
C

|Bj |
k|Bj |c

)
.

This implies that ∫
Bj

G(|∇v|) dx ≥ C|Bj |.
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As

BR ∩Nδ(∂Ωλ) ⊂
⋃
Bj

we have

|BR ∩ Nδ(∂Ωλ)| ≤
∑

|Bj | ≤
1
C

∑∫
Bj

G(|∇v|) dx

≤ n0

C

∫
⋃

Bj

G(|∇v|) dx =
n0

C

∫
⋃

Bj∩{uε>λ}
G(|∇uε|) dx.

On the other hand, if x ∈ Bj , then uε(x) < C1δ, where C1 = c−1
2 + L. Then, as⋃

Bj ⊂ BR+δ, we have

|BR ∩ Nδ(∂Ωλ)| ≤ n0

C

∫
{λ<uε<C1δ}∩BR+δ

G(|∇uε|) dx.

Proof of Theorem 7.3. Using Lemmas 7.4 and 7.5 we have

|BR−δ ∩ Nδ(∂Ωλ)| ≤ C0

∫
{λ<uε<C1δ}∩BR

G(|∇uε|) dx ≤ C0cC1δR
N−1.

As |BR \BR−δ| ≤ CδRN−1 we obtain the conclusion of Theorem 7.3.
Now, we can pass to the limit as ε→ 0. There exists a subsequence uεk converging,

as εk → 0, to a function u0 ∈ W 1,G(Ω) strongly in Lδ+1(Ω), weakly in W 1,G(Ω), and
uniformly in every compact subset of Ω.

Let Ω′ ⊂⊂ Ω, x0 ∈ Ω′ ∩ ∂{u0 > 0}, and ρ0 ≤ 1/2dist(Ω′, ∂Ω). Then, by using the
previous results we can prove as in Theorem 1.16 in [9] that u0 is a local minimizer of

J0(v) :=
∫

Bρ(x0)

[G(|∇v|) +Mχ{v>0}] dx.

Finally, we can apply the results of [21] and conclude that HN−1-almost every
point of the free boundary belongs to the reduced free boundary. Moreover, by ap-
plying the regularity results for minimizers of J0 from [21] (see [20] for the regularity
of the whole free boundary in dimension 2) we have the following theorem.

Theorem 7.4. Suppose that g satisfies (1.3). Let uεj be a local minimizer of
(7.3) in a domain Ω ⊂ R

N such that uεj → u uniformly in compact subsets of Ω and
εj → 0. Then, ∂red{u > 0} is a C1,α surface and HN−1(∂{u > 0} \∂red{u > 0}) = 0.
In dimension 2, if there exist t0 and k such that g(t) ≤ k t for t ≤ t0, there holds that
the whole free boundary is a regular surface.

Appendix A. Properties of G. The following result is proved in [21].
Lemma A.1. The function g satisfies the following properties:

(g1) min{sδ, sg0}g(t) ≤ g(st) ≤ max{sδ, sg0}g(t),
(g2) G is convex and C2,
(g3) tg(t)

1+g0
≤ G(t) ≤ tg(t) ∀ t ≥ 0.

Remark A.1. By (g1) and (g3) we have a similar inequality for G.
(G1) min{sδ+1, sg0+1} G(t)

1+g0
≤ G(st) ≤ (1 + g0)max{sδ+1, sg0+1}G(t),

and then using the convexity of G and this last inequality we have
(G2) G(a+ b) ≤ 2g0(1 + g0)(G(a) +G(b)) ∀ a, b > 0.
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As g is strictly increasing we can define g−1. Now, we prove that g−1 satisfies a
condition similar to (1.3). That is, see the following lemma.

Lemma A.2. The function g−1 satisfies the inequalities

(A.1)
1
g0

≤
t
(
g−1

)′(t)
g−1(t)

≤ 1
δ

∀t > 0.

Moreover, g−1 satisfies

(g̃1) min
{
s1/δ, s1/g0

}
g−1(t) ≤ g−1(st) ≤ max

{
s1/δ, s1/g0

}
g−1(t),

and if G̃ is such that G̃′(t) = g−1(t), then

(g̃2)
δtg−1(t)

1 + δ
≤ G̃(t) ≤ tg−1(t) ∀ t ≥ 0,

(G̃1)
(1 + δ)
δ

min
{
s1+1/δ, s1+1/g0

}
G̃(t) ≤ G̃(st) ≤ δ

1 + δ
max

{
s1+1/δ, s1+1/g0

}
G̃(t),

(g̃3) ab ≤ εG(a) + C(ε)G̃(b) ∀ a, b > 0 and ε > 0 small,

(g̃4) G̃(g(t)) ≤ g0G(t).

Theorem A.1. LG̃(Ω) is the dual of LG(Ω). Moreover, LG(Ω) and W 1,G(Ω) are
reflexive.

Appendix B. A result on L-solutions with linear growth. In this section
we will state some properties of L-subsolutions.

Lemma B.1. Let 0 < r ≤ 1. Let u ∈ C(B+
r ) be such that Lu ≥ 0 in B+

r and
0 ≤ u ≤ αxN in B+

r , u ≤ δ0αxN on ∂B+
r ∩ Br0(x̄) with x̄ ∈ ∂B+

r , x̄N > 0, and
0 < δ0 < 1.

Then, there exist 0 < γ < 1 and 0 < η ≤ 1, depending only on r and N such that

u(x) ≤ γαxN in B+
ηr.

Proof. By the invariance of the equation Lu ≥ 0 under the rescaling ū(x) =
u(rx)/r we can suppose that r = 1.

Let ψα be a Lα-solution in B+
1 , with smooth boundary data, such that⎧⎪⎨⎪⎩

ψα = xN on ∂B+
1 \Br0(x̄),

δ0xN ≤ ψα ≤ xN on ∂B+
1 ∩Br0(x̄),

ψα = δ0xN on ∂B+
1 ∩Br0/2(x̄),

where Lαv = div(gα(|∇v|)
|∇v| ∇v) and gα(t) = g(αt).

Therefore, L(αψα) = 0 and, by the comparison principle (see [21]), u ≤ αψα in
B+

1 .
If we see that there exist 0 < γ < 1 and η > 0, independent of α, such that

ψα ≤ γxN in B+
η , the result follows.
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First, observe that

(B.1) δ ≤ g′α(t)t
gα(t)

≤ g0.

Then, by the results in [19], for 0 < ρ0 < 1 and some 0 < β < 1,

(B.2)
ψα ∈ C1,β(B+

ρ0) ∩ Cβ(B+
1 ).

The C1,β(B+
ρ0) and Cβ(B+

1 ) norms are bounded by a constant independent of α.
The constant of the Harnack inequality is independent of α.

If |∇ψα| ≥ μ > 0 in some open set U , we have that ψα ∈ W 2,2(U) and ψα is a
solution of the linear uniformly elliptic equation

(B.3) Tαψ =
N∑

i,j=1

bαijψxixj = 0 in U,

where

bαij = δij +
(
g′α(|∇ψα|)|∇ψα|

gα(|∇ψα|) − 1
)
Diψ

αDjψ
α

|∇ψα|2 ,

and the constant of ellipticity depends only on g0 and δ.
Now, we divide the proof into several steps.
Step 1. Let wα = xN − ψα. Then, wα ∈ C1,β(B+

ρ0) ∩Cβ(B+
1 ) and it is a solution

of Tαw
α = 0 in any open set U where |∇ψα| ≥ μ > 0.

On the other hand, as ψα ≤ xN on ∂B+
1 and both functions are Lα-solutions we

have, by comparison, that ψα ≤ xN in B+
1 . Therefore, wα ≥ 0 in B+

1 .
Step 2. Let us prove that there exist ρ, c̄, and α0 such that |∇ψα| ≥ c̄ in B+

ρ if
0 < α ≤ α0.

First, let us see that there exist c > 0 and α1 such that

(B.4) ψα(1/2eN) ≥ c if 0 < α ≤ α1.

If not, there exists a sequence αk → 0 such that ψαk(1/2eN) → 0. Since the
constant in the Harnack inequality is independent of α (see (B.2)), we have that
ψαk → 0 uniformly in compact sets of B+

1 .
On the other hand, using the fact that ψα are uniformly bounded in Cβ(B+

1 ), we
have that there exists ψ ∈ C1(B+

1 ) ∩Cβ(B+
1 ) such that, for a subsequence, ψαk → ψ

uniformly in B+
1 .

Therefore, ψ = 0 in B+
1 . But we have that ψ = δ0xN on Br0/2(x̄) ∩ ∂B+

1 , which
is a contradiction.

Now, let x1 ∈ {xN = 0} ∩ B1/2. Take x0 = x1 + eN

4 . By (B.2) we have that
there exists a constant c1 independent of α such that ψα(x) ≥ c1ψ

α(1/2eN) for any
x ∈ ∂B1/8(x0) and, therefore, by (B.4), ψα ≥ c̃ on ∂B1/8(x0).

Take v = ε(e−λ|x−x0|2 − e−λ/16), and choose λ such that Lαv > 0 in B1/4(x0) \
B1/8(x0) and ε such that v = c̃ on ∂B1/8(x0) (observe that by Lemma 2.9 in [21] λ
and ε can be chosen independent of α).

Since ψα ≥ 0 = v on ∂B1/4(x0) and ψα ≥ v on ∂B1/8(x0), we have, by compari-
son, that ψα ≥ v in B1/4(x0) \B1/8(x0).
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On the other hand, vxN (x1) = ε2λ(x0 − x1)Ne
−λ|x1−x0|2 = λε

2 e
−λ/16 = c̄, and,

therefore, ψα
xN

(x1) ≥ c̄.
As ∇ψα are uniformly Hölder in B+

3/4, we have that there exists ρ independent
of α and x1 such that ψα

xN
(x) ≥ c̄ in B+

ρ (x1).
Step 3. Since |∇ψα| ≥ c̄ in B+

ρ , we have that Tαw
α = 0 there.

Suppose that wα(1/2ρeN) ≥ c̃, with c̃ independent of α. Then, by Hopf’s principle
we have that there exists σ1 depending only on N and the ellipticity of Tα such that
wα ≥ σ1xN in B+

ρ/2. Then, taking γ = 1 − σ1 we obtain the desired result.
Step 4. Finally, let us see that the assumption in Step 3 is satisfied. That is, let

us see that wα(1/2ρeN) ≥ c̃ > 0, where c̃ is independent of α.
Suppose by contradiction that, for a subsequence, wαk(1/2ρeN) → 0. We know

that in B+
ρ Tαw

α = 0. Therefore, applying the Harnack inequality we have that
wαk → 0 in B+

ρ .

On the other hand, since ψα → ψ and ∇ψα → ∇ψ uniformly in B+
ρ0 for every

0 < ρ0 < 1, it holds that wαk → w = xn − ψ in C1(B+
ρ0 ). Let

A = {x ∈ B+
1 / w = 0},

and suppose that there exists a point x1 ∈ ∂A ∩B+
1 . Then, as wα ≥ 0 we have that

w attains its minimum at this point. Therefore, ∇w(x1) = 0.
Since ∇wαk → ∇w uniformly in a neighborhood of x1, we have that for some

τ > 0 independent of αk, |∇ψαk | ≥ 1/2 in Bτ (x1). Thus, in this ball, wαk satisfies
Tαk

wαk = 0.
Now, applying the Harnack inequality in Bτ (x1) and then passing to the limit we

obtain that w = 0 in Bτ/2(x1), which is a contradiction.
Hence, w = 0 in B+

1 . But, on the other hand, we have w = xN − δ0xN > 0 on
∂B1 ∩Br0/2(x̄), which is a contradiction.

With Lemma B.1 we can also prove the asymptotic development of L-solutions.
Lemma B.2. Let u be Lipschitz continuous in B+

1 , u ≥ 0 in B+
1 , Lu = 0 in

{u > 0}, and u = 0 on {xN = 0}. Then, in B+
1 , u has the asymptotic development

u(x) = αxN + o(|x|),

with α ≥ 0.
Proof. Let

αj = inf
{
l / u ≤ lxn in B+

2−j

}
.

Let α = limj→∞ αj .
Given ε0 > 0 there exists j0 such that for j ≥ j0 we have αj ≤ α+ ε0. From here,

we have u(x) ≤ (α+ ε0)xN in B+
2−j so that

u(x) ≤ αxN + o(|x|) in B+
1 .

Since u ≥ 0, if α = 0, the result follows. So, let us assume that α > 0.
Suppose that u(x) 	= αxN + o(|x|). Then there exists xk → 0 and δ̄ > 0 such that

u(xk) ≤ αxk,N − δ̄|xk|.
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Let rk = |xk| and uk(x) = r−1
k u(rkx). Then, there exists u0 such that, for a subse-

quence that we still call uk, uk → u0 uniformly in B+
1 and

uk(x̄k) ≤ αx̄k,N − δ̄,

uk(x) ≤ (α+ ε0)xN in B+
1 ,

where x̄k = xk

rk
, and we can assume that x̄k → x0.

In fact, u(x) ≤ (α+ε0)xN inB+
2−j0 and, therefore, uk(x) ≤ (α+ε0)xN in B+

r−1
k 2−j0

,
and the claim follows if k is big enough so that r−1

k 2−j0 ≥ 1.
If we take ᾱ = α+ ε0, we have⎧⎪⎪⎪⎨⎪⎪⎪⎩

Luk ≥ 0 in B+
1 ,

uk = 0 on {xN = 0},
0 ≤ uk ≤ ᾱxN on ∂B+

1 ,

uk ≤ δ0ᾱxN on ∂B+
1 ∩Br̄(x̄)

for some x̄ ∈ ∂B+
1 and x̄N > 0 and some small r̄ > 0.

In fact, as the uk’s are continuous with uniform modulus of continuity, we have

uk(x0) ≤ αx0,N − δ̄

2
if k ≥ k̄.

Moreover, there exists r0 > 0 such that uk(x) ≤ αxN − δ̄
4 in B4r0(x0). If x0,N > 0,

we take x̄ = x0, and if not, we take x̄ ∈ ∂B3r0(x0) ∩ ∂B1. Then, x̄N > 0 and

uk(x) ≤ αxN − δ̄

4
in Br0(x̄) ⊂⊂ {xN > 0}.

Moreover, there exists 0 < δ0 < 1 such that αxN − δ̄
4 ≤ δ0αxN ≤ δ0ᾱxN in Br0(x̄),

and the claim follows.
Now, by Lemma B.1, there exists 0 < γ < 1 and η > 0 independent of ε0 and

k such that uk(x) ≤ γ(α + ε0)xN in B+
η . As γ and η are independent of k and ε0,

taking ε0 → 0, we have

uk(x) ≤ γαxN in B+
η

so that

u(x) ≤ γαxN in B+
rkη.

Now, if j is big enough, we have γα < αj and 2−j ≤ rkη. But this contradicts the
definition of αj . Therefore,

u(x) = αxN + o(|x|)

as we wanted to prove.

Appendix C. Existence of extremal L-solutions. In this section we will
prove the existence of extremal solutions. First, we will give the definition of sub- and
supersolution of problem (1.1) in a more general sense (for simplicity, we will omit
the ε).

In [23] there is a review on this topic.
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Definition C.1. A function ū ∈W 1,G(Ω) is called a supersolution if ū is of the
form

ū = min{ū1, ū2, . . . , ūm},

where ū1, ū2, . . . , ūm ∈W 1,G(Ω) and each ūj, 1 ≤ j ≤ m, satisfies the condition:

(Hsuper)

{
Lūj ≤ β(ūj) on Ω,
ūj ≥ u0 on ∂Ω

in a weak sense, with u0 ∈ Cα(Ω̄) ∩W 1,G(Ω) .
Subsolutions are defined in the same way as the maxima of a finite number of

functions inW 1,G(Ω) satisfying condition (Hsub) obtained by reversing the inequalities
in (Hsuper).

We will assume in this section the existence of a subsolution u = max{u1, . . . , uk}
and a supersolution ū = min{ū1, . . . , ūm} such that u ≤ ū. We will also assume that
there exists a constant A such that for all i = 1, . . . , k and j = 1, . . . ,m we have
|ui| ≤ A and |ūj | ≤ A.

Using the same technique as in Theorem 8 in [15], we will prove the following
theorem.

Theorem C.1. 1. Problem (Pε) has a least solution u∗—with boundary data
greater than or equal to u0 on ∂Ω—in the order interval [u, ū], i.e., u ≤ u∗ ≤ ū, and
if u is any solution of (Pε) with u ≥ u0 on ∂Ω such that u ≤ u ≤ ū, then u∗ ≤ u.
Moreover, u∗ = u0 on ∂Ω.

2. Problem (Pε) has a greatest solution u∗—with boundary data less than or equal
to u0 on ∂Ω—in the order interval [u, ū], i.e., u ≤ u∗ ≤ ū, and if u is any solution
of (Pε) with u ≤ u0 on ∂Ω such that u ≤ u ≤ ū, then u∗ ≥ u. Moreover, u∗ = u0

on ∂Ω.
The proof of this theorem is based on the following lemma.
Lemma C.1. There exists a solution u of (1.1) with u = u0 on ∂Ω such that

u ≤ u ≤ ū.
Proof. We use a construction similar to the one in [15]. Here, we have to make a

modification, since we are dealing with the space W 1,G(Ω). We define b : Ω×R −→ R

by

b(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

g
(
10A− ū(x)

)
if t ≥ 10A,

g
(
t− ū(x)

)
if 10A ≥ t > ū(x),

0 if u(x) ≤ t ≤ ū(x),
−g

(
u(x) − t

)
if − 10A ≤ t < u(x),

−g
(
u(x) + 10A

)
if t ≤ −10A.

Since |u|, |ū| ≤ A, there holds that |b(x, t)| ≤ g(11A) for every x ∈ Ω and t ∈ R.
Let 1 ≤ i ≤ k and 1 ≤ j ≤ m, and define, for each u ∈ W 1,G(Ω),

Tij(u)(x) =

⎧⎪⎨⎪⎩
ui(x) if u(x) < ui(x),
u(x) if ui(x) ≤ u(x) ≤ ūj(x),
ūj(x) if u(x) > ūj(x)
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and

T (u)(x) =

⎧⎪⎨⎪⎩
u(x) if u(x) < u(x),
u(x) if u(x) ≤ u(x) ≤ ū(x),
ū(x) if u(x) > ū(x)

for a.e. x ∈ Ω.
Next, we consider the following equation:

(C.1) −L(u) +B(u) + C(u) = 0 weakly in Ω, u = u0 on ∂Ω,

where

B(u)(x) := b(x, u(x))

and

C(u) := β(T (u)) −
∑

1≤i≤k
1≤j≤m

|β(Tij(u)) − β(T (u))|.

First, we want to show the existence of the solution of (C.1). We will use a fixed
point argument.

For each v ∈ C(Ω̄) take u as the weak solution of Lu = γ(x, v), where γ(x, v) =
[b(x, v) + C(v)].

Observe that since |b(x, v)| ≤ g(11A) and since β is bounded, we have |γ(x, v)| ≤
CA.

Moreover, since u0 ∈ Cα(Ω), there exist 0 < μ̃ < 1 and a constant KA such that
‖u‖Cμ̃(Ω) ≤ KA.

Let 0 < μ < μ̃, and consider the operator M : BKA → BKA , where BKA =
{v ∈ Cμ(Ω) : ‖v‖Cμ(Ω) ≤ KA}, such that M(v) = u, where u is the solution of
Lu = γ(x, v) with u = u0 on ∂Ω. We want to show that this operator has a fixed
point, that is, a solution of Lu = γ(x, u). By Schauder’s fixed point theorem, this
holds if the operator M is compact.

Let us see that this is the case. In fact, let ‖vn‖Cμ(Ω) ≤ KA. Then, by the
results of Lieberman [19], the corresponding solutions un satisfy ‖un‖Cμ̃(Ω) ≤ KA

and ‖∇un‖Cα(Ω̄′) ≤ C̄A,Ω′ for every Ω′ ⊂⊂ Ω. Therefore, for a subsequence, unk
→ u

in Cμ(Ω) and ∇unk
→ ∇u uniformly on compact sets of Ω. Moreover, without loss of

generality we may assume that vnk
→ v uniformly in Ω. Then, passing to the limit,

we have that u ∈ BKA is the weak solution of Lu = γ(x, v), u = u0 on ∂Ω, so u = Mv.
Thus, M is compact.

We will show that any solution u of (C.1) must satisfy

(C.2) uq ≤ u ≤ ūr ∀q ∈ {1, . . . , k}, r ∈ {1, . . . ,m}.

(C.2) implies that u = max{uq : 1 ≤ q ≤ k} ≤ u ≤ min{ūr : 1 ≤ r ≤ m} = ū.
Then, by the definition of b we have that b(x, u(x)) = 0 a.e. in Ω, i.e., B(u) = 0. Also
Tij(u) = T (u) = u ∀i, j. Thus, C(u) = β(u). Therefore, u is a solution of (1.1) and
u ≤ u ≤ ū.

So, let us prove that uq ≤ u (similarly we can show that u ≤ ūr).
Since uq satisfies (Hsub), we have that

L(uq) ≥ β(uq).
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Subtracting (C.1), we obtain for φ ∈ W 1,G, φ ≥ 0,

(C.3)

− 〈L(uq), φ〉 + 〈L(u), φ〉

≤ −
∫

Ω

⎡⎢⎣β(uq) − β(T (u)) +
∑

1≤i≤k
1≤j≤m

|β(Tij(u)) − β(T (u))|

⎤⎥⎦φdx
+
∫

Ω

b(x, u)φdx.

Taking φ = (uq − u)+ as a test function in (C.3) we get, by the monotonicity of
the operator −L,
(C.4)

〈−L(uq) + L(u), φ〉 =
∫

Ω

[
g(|∇uq|)

∇uq

|∇uq|
− g(|∇u|) ∇u

|∇u|

]
∇φdx

=
∫
{uq>u}

[
g(|∇uq|)

∇uq

|∇uq|
− g(|∇u|) ∇u

|∇u|

] [
∇uq −∇u

]
dx ≥ 0.

On the other hand,

(C.5)∫
Ω

⎡⎢⎣β(uq) + β(T (u)) +
∑

1≤i≤k
1≤j≤m

|β(Tij(u)) − β(T (u))|

⎤⎥⎦ (uq − u)+ dx

=
∫
{uq>u}

⎡⎢⎣β(uq) − β(T (u)) +
∑

1≤i≤k
1≤j≤m

|β(Tij(u)) − β(T (u))|

⎤⎥⎦ (uq − u) dx ≥ 0.

In fact, for uq(x) > u(x), we have u(x) ≥ u(x) and

Tqj(u)(x) = uq(x), T (u)(x) = u(x).

Hence,

β(uq) − β(T (u)) +
∑

1≤i≤k
1≤j≤m

∣∣β(Tij(u)) − β(T (u))
∣∣

≥ β(uq) − β(T (u)) +
∣∣β(Tqj(u)) − β(T (u))

∣∣ = β(uq) − β(u) + |β(uq) − β(u)| ≥ 0

and, thus, (C.5) holds.
Using (C.3), (C.4), and (C.5) and observing that uq ≤ u we obtain

0 ≤
∫

Ω

b(·, u)(uq − u)+ dx =
∫
{uq(x)>u(x)}

b(·, u)(uq − u) dx

=
∫
{uq(x)>u(x)>−10A}

−g(u− u)(uq − u) dx

+
∫
{uq(x)>u(x),−10A≥u}

−g(u+ 10A)(uq − u) dx ≤ 0,
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from where it follows that

0 =
∫
{uq(x)>u(x)>−10A}

g(u− u)(uq − u) dx

≥
∫
{uq(x)>u(x)>−10A}

g(uq − u)(uq − u) dx =
∫
{u>−10A}

g((uq − u)+)(uq − u)+ dx.

This implies (uq − u)+ = 0 a.e. in {u > −10A}, i.e., uq ≤ u in {u > −10A}.
On the other hand,

0 =
∫
{uq(x)>u(x),u≤−10A}

g(u+ 10A)(uq − u) dx

≥
∫
{uq(x)>u(x),u≤−10A}

g(9A)9Adx = g(9A)9A
∣∣{uq(x) > u(x), u ≤ −10A}

∣∣ .
This implies |{uq(x) > u(x), u ≤ −10A}| = 0.

Then, uq ≤ u a.e. in {u ≤ −10A}. (Then, {u ≤ −10A} = ∅.)
In any case, uq ≤ u. The result follows.
Proof of Theorem C.1. To complete the proof we follow the lines of Theorem 8 in

[15].
To prove (1), let C̃ be any bound of u0 in W 1,G(Ω). Let C̄ be the a priori bound

in W 1,G(Ω) of a solution to (1.1) with boundary value bounded by C̃ in W 1,G(Ω).
Define

TC̄ =
{
u ∈W 1,G(Ω) : ‖u‖W 1,G ≤ C̄ and

u is a solution of (1.1) such that u ≤ u ≤ ū and u ≥ u0 on ∂Ω
}
.

Then, T is not empty by the previous lemma. We have to prove that T (with the
order ≤) has a least element. The proof is based on Zorn’s lemma and a continuity
argument.

Since in our case |ū|, |u| ≤ A, we can take v = A−u, β̄(t) = − 1
εβ(A−t

ε ), v̄ = A−ū,
v = A− u, and

(C.6) Lv = β̄(v).

We consider the set (with a constant C related to C̄, A, and Ω)

SC =
{
v ∈W 1,G(Ω) : ‖v‖W 1,G ≤ C and v is a solution of (C.6) such that v ≤ v ≤ v̄

and v ≤ v0 on ∂Ω
}

and prove that S has a largest element. Observe that now v ≥ 0 for all v ∈ S. By
the previous lemma S 	= ∅.

The proof of Theorem 8 in [15] uses the fact that the functions in SC are nonnega-
tive and a compactness argument. In our case, since the functions in SC are uniformly
bounded in W 1,G(Ω), any sequence in SC has a subsequence that converges a.e. in Ω,
HN−1–a.e. on the boundary, weakly in W 1,G(Ω), and uniformly on compact subsets
of Ω together with their gradients. Therefore, the limit belongs to SC . Using this
argument, we can follow the lines of that theorem and conclude that any chain in SC

has an upper bound in SC . Then, by Zorn’s lemma, SC has a maximal element v∗ in
SC with respect to the partial order ≤.
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Let us see that v∗ is the largest element of SC . Let v ∈ SC . Since v and v∗ are
both subsolutions, max{v, v∗} is a subsolution of (C.6). Then, by Lemma C.1 there
exists a solution w of (C.6) with w = v0 on ∂Ω such that v ≤ max{v, v∗} ≤ w ≤ v̄.
Thus, w ∈ SC and w ≥ v∗. By the maximality of v∗, w = v∗ and then v ≤ v∗.

Observe, in particular, the fact that w = v∗ implies that v∗ = v0 on ∂Ω.
Observe that, in an analogous way, we can prove (2) by taking a set similar

to S.
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