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A SINGULAR PERTURBATION PROBLEM FOR A QUASI-LINEAR
OPERATOR SATISFYING THE NATURAL GROWTH CONDITION
OF LIEBERMAN*

SANDRA MARTINEZ! AND NOEMI WOLANSKI'

Abstract. In this paper we study the following problem. For € > 0, take u® as a solution of
Luf = div (%Vus) = fB:(uf), u® > 0. A solution to (P:) is a function u¢ € WG (Q)NL>(Q)
such that [, g(\VuED%VQDdI = — [ ¢ B (uf) da for every ¢ € Cg°(R). Here B:(s) = 13 (%),
with 8 € Lip(R), 8 > 01in (0,1) and 3 = 0 otherwise. We are interested in the limiting problem, when
e — 0. As in previous work with £ = A or £ = A, we prove, under appropriate assumptions, that
any limiting function is a weak solution to a free boundary problem. Moreover, for nondegenerate
limits we prove that the reduced free boundary is a C1® surface. This result is new even for A,.
Throughout the paper, we assume that g satisfies the conditions introduced by Lieberman in [Comm.
Partial Differential Equations, 16 (1991), pp. 311-361].
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1. Introduction. In this paper we study the following singular perturbation
problem: For € > 0, take u® as a nonnegative solution of

(P:) Luf = [ (u®), u® >0,

where Lv := div (%Vu).
A solution to (P.) is a function u® € Wh%(Q) N L>(Q) (see the notation for the

definition of W (Q)) such that

€ Vus _ €
(11) | sV = Veds = - [ o8 da

for every ¢ € C§°(Q).

Here (3.(s) = 13 (2) for 8 € Lip(R), positive in (0, 1) and zero otherwise. We call
M = fol B(s)ds.

We are interested in studying the uniform properties of solutions and understand-
ing what happens in the limit as ¢ — 0. We assume throughout the paper that the
family {u®} is uniformly bounded in the L°° norm. Our aim is to prove that, for
every sequence &, — 0, there exists a subsequence ¢,, and a function v = lim u*"x
and that u is a weak solution of the free boundary problem
Lu = div (%Vu) =0 in {u>0}NQ,

[Vul = \* on M{u>0}NQN

(1.2)

for some constant A* depending on g and M.
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SINGULAR PERTURBATION FOR A QUASI-LINEAR OPERATOR 319

This problem appears in combustion theory in the case £L = A when studying
deflagration flames. Back in 1938, Zeldovich and Frank-Kamenetskii proposed the
passage to the limit in this singular perturbation problem in [26] (the limit for the
activation energy going to infinity in this flame propagation model). The passage to
the limit was not studied in a mathematically rigorous way until 1990 when Berestycki,
Caffarelli, and Nirenberg studied the case of N dimensional traveling waves (see [3]).
Later, in [10], the general evolution problem in the one phase case was considered.
Much research has been done on this matter ever since. (See, for instance, [7, 8, 16,
25].)

(1.2) is a very well known free boundary problem in the uniformly elliptic case
(0 < ¢ <g(t)/t <C < o0). This problem has also been studied in the two phase case.
Regularity results for the free boundary in the case of the Laplacian can be found in
[1] for one phase distributional solutions and in [4, 5] for two phase viscosity solutions.
See also [2] for one phase distributional solutions in the nonlinear uniformly elliptic
case. The results in [1, 4, 5] were used in [16] to obtain free boundary regularity
results for limit solutions (that is, for v = limwu®*). See also [6, 17] for results in
the inhomogeneous case and [11, 13] for viscosity solutions in the uniformly elliptic,
variable coefficient case.

Recently, this singular perturbation problem in the case of the p-Laplacian (g(t) =
tP~1) was considered in [12]. As in the uniformly elliptic case, the authors find, for a
uniformly bounded family of solutions u®, Lipschitz estimates uniform in € and prove
that the limit of u® is a solution of (1.2) for £ = A, and \* = (ﬁM)l/p in a
pointwise sense at points in the reduced free boundary.

See also [24, 22] where the authors treat general elliptic equations of flame prop-
agation type including the study of the regularity of the free boundary.

The aim of our present work is to study this singular perturbation problem—
including the regularity of the free boundary—for operators that can be elliptic de-
generate or singular, possibly nonhomogeneous (the p-Laplacian is homogeneous and
this fact simplifies some of the proofs). Moreover, we admit functions ¢ in the oper-
ator £ with a different behavior at 0 and at infinity. Classically, the assumptions on
the behavior of g at 0 and at infinity were similar to the case of the p-Laplacian. Here,
instead, we adopt the conditions introduced by Lieberman in [19] for the study of the
regularity of weak solutions of the elliptic equation (possibly degenerate or singular)
Lu = f with f bounded.

This condition ensures that the equation Lu = 0 is equivalent to a uniformly
elliptic equation in nondivergence form with constants of ellipticity independent of
the solution u in sets where Vu # 0. Furthermore, this condition does not imply any
type of homogeneity on the function g and, moreover, it allows for a different behavior
of g(J]Vu|) when [Vu| is near zero or infinity. Precisely, we assume that g satisfies

tg'(t)
g(t)

(1.3) 0<6< <go Vt>0
for certain constants 0 < § < go.

Let us observe that § = gg = p — 1 when g(t) = t*~!, and reciprocally, if § = go,
then g is a power.

Another example of a function that satisfies (1.3) is the function g(t) = t*log (bt +
¢) with a,b,c > 0. In this case, (1.3) is satisfied with § = a and go = a + 1.

Another interesting case is the one of functions g € C1([0,00)) with g(t) = c1t™
for t < s and g(t) = cot® + d for t > s. In this case, g satisfies (1.3) with § =
min(aq, as) and go = max(ay, az).
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320 SANDRA MARTINEZ AND NOEMI WOLANSKI

Furthermore, any linear combination with positive coeflicients of functions sat-
isfying (1.3) also satisfies (1.3). On the other hand, if g1 and go satisfy (1.3) with
constants ¢° and gj, i = 1,2, the function g = g1go satisfies (1.3) with § = & + §°
and go = g} + g3, and the function g(t) = g1(g2(t)) satisfies (1.3) with § = 6162 and
90 = 9598

This observation shows that there is a wide range of functions g under the hy-
pothesis of this work.

In this paper we show that the limit functions are solutions of (1.2) in the weak
sense introduced in [21] where we proved that the reduced boundary of these weak
solutions is a C1'® surface. This notion of weak solution turns out to be very well
suited for limit functions of this singular perturbation problem.

We state here the definition of weak solution and the main results in this paper.

DEFINITION 1.1 (weak solution IT in [21]). We call u a weak solution of (1.2) if

1. u is continuous and nonnegative in Q and Lu =0 in QN {u > 0};

2. for D CC Q there are constants 0 < cpmin < Cmax, 7 = 1, such that for balls
B,.(x) C D with x € 9{u > 0}

1 1/y
Cmin S - ][ u’dx S Cmax;
r B, (z)

3. for HN=1 a.e. g € Opeaf{u > 0}, u has the asymptotic development
u(z) = Nz — 20, v(70))” + o(|z — x0]),

where v(xg) is the unit interior normal to d{u > 0} at xo in the measure theoretic
sense;
4. for every xg € QN O{u > 0},

limsup |[Vu(z)| < \*.

rz—xQ

u(xz)>0

If there is a ball B C {u = 0} touching QN 0{u > 0} at o, then

1 ——— > \"
SO dist(z, B) <
u(x)>0

Our first result is a bound of ||Vu®|| L~ independent of e.
THEOREM 1.1. Let u® be a solution of

Lu® = F(u®)  inQ,
with [[u®||pe(qy < L. Then, for Q" CC Q we have
[Vus(z)| <C  in €Y,

with C' = C(N, 6, go, L, || 8]l o0, g(1), dist (', 0Q)) if £ < eo(Q, ).

Then, we have, via a subsequence, that there exists a limiting function wu.

The next step is to prove that the function u is a weak solution in the sense of
Definition 1.1 of the free boundary problem (1.2) for a constant A* depending on g
and M. To this end, we have to prove that Lu = 0 in {u > 0} and that we have an
asymptotic development for u at any point on the reduced free boundary.
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SINGULAR PERTURBATION FOR A QUASI-LINEAR OPERATOR 321

Here we find several technical difficulties associated with the loss of homogeneity
of the operator £ and to the fact that we are working in an Orlicz space. This is the
case, for instance, when we need to prove the pointwise convergence of the gradients.

At some point we need to add the following hypothesis on g:

There exists 79 > 0 such that
(1.4) J(t)<s*g(ts) if 1<s<1l+n and 0<t<® ! (%M) :

where ®(A) = A\g(\) — G(N).

We remark that condition (1.4) holds for all the examples of functions satisfying
condition (1.3) described above (see section 4).

There holds the following theorem.

THEOREM 1.2. Suppose that g satisfies (1.3) and (1.4). Let u be a solution to
(P;) in a domain Q C RN such that usi — u uniformly on compact subsets of Q and
€;j — 0. Let zo € QN 0{u > 0} be such that O{u > 0} has an inward unit normal v
in the measure theoretic sense at xg, and suppose that u is nondegenerate at xq (see
Definition 5.1). Under these assumptions, we have

uw(z) = & Y M)(x — x,v) T + o(|x — o),

where ®(X) = Ag(A) — G(N).

Finally, we can apply the theory developed in [21]. We have that u is a weak
solution in the sense of Definition 1.1 of the free boundary problem.

Then, we have the following theorem.

THEOREM 1.3. Suppose that g satisfies (1.3) and (1.4). Let u% be a solution
of (P;) in a domain Q C RN such that u® — w uniformly in compact subsets of
Qase; — 0. Let zg € QN O{u > 0} such that there is a unit inward normal v
to QN d{u > 0} in the measure theoretic sense at xg. Suppose that w is uniformly
nondegenerate at the free boundary in a neighborhood of xy (see Definition 5.1). Then,
there exists r > 0 such that B,(zo) N d{u > 0} is a CH< surface.

Finally, we give two examples in which we can apply the regularity results in
this paper. In both examples the nondegeneracy property is satisfied by the limiting
function u. In the first example the limiting function is obtained by taking a sequence
of minimal solutions of (P.) (see Definition 7.1). In the second one it is obtained by
taking a sequence of minimizers of the functional

J.(v) = / G(Ve]) + Be(v)) da,

where B.(s) = f(s) (see section 7).

Moreover, in the second example we have that HY =1 (0{u > 0}\0cq{u > 0}) = 0.
Thus, in this case the set of singular points has zero H™V ~!-measure.

We also have—since the limiting function is a minimizer of the problem considered
in [21]—that in the case of minimizers we don’t need to add any new hypothesis to
the function g. That is, the result holds for functions g satisfying only condition (1.3).
In dimension 2 if we add to condition (1.3) that

(1.5) there exist constants top > 0 and k& > 0 so that g(t) < kt for ¢ < o,

then we have that the whole free boundary is a regular surface (see Corollary 2.2 in
[20]).
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322 SANDRA MARTINEZ AND NOEMI WOLANSKI

Outline of the paper. The paper is organized as follows: In section 3 we prove
the uniform Lipschitz continuity of solutions of (P.) (Corollary 3.1).

In section 4 we prove that if « is a limiting function, then Lu is a Radon measure
supported on the free boundary (Proposition 4.1). Then we prove Proposition 4.2,
which says that if u is a half-plane, then the slope is 0 or ®~1(M), and Proposition
4.3, which says that if u is a sum of two half-planes, then the slopes must be equal
and at most ®~1(M).

In section 5 we prove the asymptotic development of u at points in the reduced
free boundary (Theorem 5.1) and we prove that u is a weak solution according to
Definition 1.1.

In section 6 we apply the results of [21] to prove the regularity of the free boundary
(Theorem 6.1).

In section 7 we give two examples where the limiting function satisfies the nonde-
generacy property. The first one is given by the limit of minimal solutions (Theorem
7.2), and the second one is given by the limit of energy minimizers (Theorem 7.4).

In the appendices we state some properties of the function g, we prove the asymp-
totic development of L-subsolutions, and we prove the existence of extremal solutions
to P-.

2. Notation. Throughout the paper, N will denote the dimension and

Br(x):{xeRN,|x—xo| <7"},

B x):{xe]RN,xN>0, |z — xo| <1},

B;(x):{xeRN,xN<0, |z — mo| <r}.
For v,w € RY, (v, w) denotes the standard scalar product.

For a scalar function f, f* = max(f,0) and f~ = max(—f,0).
Furthermore, we denote

G(t)
F(t)=g(t)/t,
®(t) = g(t)t — G(t),
A(p) = F(lpl)p  for p e RY,
aij:aAi for 1 <i,5 <N.
8pj

We denote by LE(€2) the Orlicz space that is the linear hull of the set of measurable
functions such that [, G(|u|) dz < oo with the norm of Luxemburg. That is,

ullze ) = inf{)\ >0 // G <%> dx < 1} .
Q

The set W%(Q) is the Sobolev-Orlicz space of functions in W' (Q) such that
both [|ul| o () and [|[[Vul|| e (q) are finite equipped, with the norm

HUHWLG(Q) = max {HuHLG(Q)a |||VU|HLG(Q)}-
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SINGULAR PERTURBATION FOR A QUASI-LINEAR OPERATOR 323

3. Uniform bound of the gradient. We begin by proving that solutions of
the perturbation problem are locally uniformly Lipschitz. That is, the u®’s are locally
Lipschitz, and the Lipschitz constant is bounded independently of €. In order to prove
this result, we first need to prove a couple of lemmas.

LEMMA 3.1. Let u® be a solution of

Lu® = [:(u®)  in By (o)

such that u(xg) < 2e. Then, there exists C = C(N, 19,9, go, ||8]|cos g(1)) such that if
e<1,

[Vu® (z0)] < C.

Proof. Let v(z) = Lu(x¢ + ex). Then, if e < 1, Lv = B(v) in By, and v(0) < 2.

By Harnack’s inequality (see [19]) we have that 0 < v(x) < Cy in B,/ with C; =
C1(N, 90,0, ||B]lc). Therefore, by using the derivative estimates of [19] we have that

[Vus(zo)| = [Vu(0)] < C,

with C' = C(N7 67 90, ||5HOO7T079(1)) o
LEMMA 3.2. Let u® be a solution of

Luf = [:(u®)  in By
and 0 € 0{u® > e}. Then, for x € Byq N {u® > e},
u®(z) < e+ Cdist(z, {u® <e} N By),

with C' = C(N, 4, go, [|8lle: 9(1))-

Proof. For xg € By N{u® > €} take mg = u®(x0) — € and dy = dist(xzo, {u®
e} N By). Since 0 € 9{u® > e} N By, dp < 1/4. We want to prove that mg
C(N, 5,90, | Bloer 9(1))do.

Since Bs, (z9) C {u® > e}N By, we have that u®—e > 0in Bs,(x¢) and L(uf—¢) =
0. By Harnack’s inequality there exists ¢1 = ¢1(N, go, d) such that

<
<

3 g
Baon/lir(lwo)(u g) > c1my.

Let us take ¢ = emnlzl® — e=d8 with pu = 2K /3§62, where K = 2N if gy < 1 and
K =2(go — 1) + 2N if go > 1. Then, we have that Ly > 0 in Bs, \ Bs,/2 (see the
proof of Lemma 2.9 in [21]).

Let now ¢ (z) = camop (v —x0) for x € Bs,(x0) \ Bs,/2(z0). Then, again by
Lemma 2.9 in [21], we have that if we choose ¢y conveniently depending on N, ¢, and
9o,

Ly(x) >0 in By, (7o) \ Bs,/2(20),
=0 on 0Bs, (o),
P = c1myg on 0Bj, /2(x0)-

By the comparison principle (see Lemma 2.8 in [21]) we have

(3.1) Y(x) <u(x) —e  in Bs,(20) \ Bs, /2(20).
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324 SANDRA MARTINEZ AND NOEMI WOLANSKI

Take yo € 0B;s,(z0) N O{u® > e}. Then, yo € By/3 and

(3.2) ¥(yo) = u*(yo) =& = 0.
Let v° = Luf(yo 4+ ex). Then, if ¢ < 1, we have that Lv° = $(v°) in By and
v°(0) = 1. Therefore, by Harnack’s inequality (see [19]) we have that maxg,  v° < ¢
and

(3:3) |Vu® (yo)| = [Vv®(0)] < cmaxv® < cs.

Biya

Finally, by (3.1), (3.2), and (3.3) we have that |V (yo)| < |Vu®(yo)| < c3. Observe
that |V (yo)| = CQmOe_“‘sg 2100 < c3. Therefore,

C3e”5§ c30e2K/0
T Co 2#50 o cod K 0

and the result follows. |

Now, we can prove the main result of this section.

PROPOSITION 3.1. Let u® be a solution of Lu® = B:(u®) in By. Assume that
0 € 9{u® > e}. Then, we have for x € Bys,

Vs (z)] < C,

with C'= C(N, 6, go, ||B]|ocs 9(1))-
Proof. By Lemma 3.1 we know that if 29 € {u® < 2¢} N By/4, then

[V (20)] < Co,
with CO — CO(N7 57 4go, ||5H<>Oag(1))
Let 2o € By/s N{u® > e} and 0 = dist(xo, {u® < €}).
As 0 € 0{u® > ¢} we have that 6o < 1/8. Therefore, Bs,(z0) C {u® > e} N By 4
and then Lu® =0 in By, (xo) and, by Lemma 3.2,
(3.4) u®(z) < e+ Chdist(z, {u® <e}) in Bs,(z0).

1. Suppose that ¢ < ¢y with ¢ to be determined. Let v(z) = z-u®(zo + o).
Then, Lv = 0of:(u®(zg + dpx)) = 0 in By. Therefore, by the results of [19]

[Vu(0)| < C'supw,
B
with C' = C(N, go, 8, g(1)). We obtain
Vs (z0)] <
2. Suppose that € > ¢§y. By (3.4) we have

u(zg) < e+ Crop < <1+ %) €< 2¢

if we choose ¢ big enough. By Lemma 3.1, we have |Vuc(zg)| < C, with C =

C(Na 9o, 57 Hﬁ”ooa g(l))
The result follows. a
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SINGULAR PERTURBATION FOR A QUASI-LINEAR OPERATOR 325

With these lemmas we obtain the following.
COROLLARY 3.1. Let u® be a solution of

Luf = [B(u®)  in L,

with Hu€||L°°(Q)

< L. Then, we have, for Q' CC Q, that there exists £0(Q, Q) such
that if € < eo(£2, ),

Vus(z)| <C  in &,

with C = C(N, 6, go, L, || 8]l s, g(1), dist (€', 0)).
Proof. Let 7 > 0 such that Vo € Q', B;(z) C Q and ¢ < 7. Let xg € Q.
1. If 69 = dist(zg, 0{u® > e}) < 7/8, let yo € O{u® > e} such that |zg—yo| = do.
Let v(z) = 2u(yo 4+ 72) and Z = L2=¥ and then |Z| < 1/8. As 0 € d{v > ¢/7} and
Lv = B./-(v) in By, we have by Proposition 3.1

[Vus(z0)| = [Vo(z)] < C.

2. If 0p = dist(xo, d{u® > €}) > 7/8, there holds that
(i) B;/s(xo) C {u® > e} or
(ii) By/s(xo) C {u® <&}

In the first case, Lu® = 0 in B, /g(x¢). Therefore,

|vu6(x0)| < O(Nv g0, 57 T, g(l)v L)
In the second case, we can apply Lemma 3.1 and we have
|VUE({E0)| < C(Na 90, 57 T, g(l), 2”5”00)

The result is proved. O

4. Passage to the limit. Since we have that |Vu®| is locally bounded by a
constant independent of £, we have that there exists a function u € Lipj,.(§2) such
that, for a subsequence €; — 0, u®/ — w. In this section we will prove some properties
of the function w.

We start with some technical results.

PROPOSITION 4.1. Let {u®} be a uniformly bounded family of nonnegative solu-
tions of (P-). Then, for any sequence €; — O there exists a subsequence 53- — 0 and
u € Lip;,.(2) such that the following hold

1. us —u uniformly in compact subsets of €2,

2. Lu=01in QN{u> 0}

3. There exists a locally finite measure p such that 65; (usg') — L as measures
in Q' for every Q' CC Q,

4. Assume go > 1. Then, Vusi — Vu in LETHQ),

5.

[ FQvavave =~ [ i
Q Q
for every p € C5°(2). Moreover, i is supported on N d{u > 0}.
Remark 4.1. We can always assume that go > 1. If we don’t want to assume

it, we can change the statement in item (3) by Vu® — Vu in Lﬁjl(ﬂ), where
91 = max (1, go).
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326 SANDRA MARTINEZ AND NOEMI WOLANSKI

Proof. (1) follows by Corollary 3.1.

In order to prove (2), take E CC E' CC {u > 0}. Then, u > ¢ > 0 in E'.
Therefore, u¥i > ¢/2 in E' for e small. If we take €’ < ¢/2—as Lufi =0 in {us >

g’ }—we have that Lufi =0 in E'. Therefore, by the results in [19], ||u® lctem < C.
Thus, for a subsequence we have

Vusi — Vu uniformly in FE.

Therefore, Lu = 0.
In order to prove (3), let us take ' CC Q and ¢ € C§°(Q2) with ¢ =1 in ) as a
test function in (F;,). Since |Vui|| < C in €, there holds that

Cly) = /Qﬂsg. (u€9) pdr > /Q Be (u€3) da.

Therefore, 3./ (u%3) is bounded in L;,.(Q) so that there exists a locally finite measure
1 such that

’
65; (uai ) — [ as measures;

that is, for every ¢ € Cy(Q),

/QBE; (usg)cpd;vﬁ/gwd,u.

We divide the proof of (4) into several steps.
Let Q' CC Q; then by Corollary 3.1, [Vu&i| < C in . Therefore, for a subse-
quence €} we have that there exists £ € (L>(Y))N such that

Vusi — Vu * — weakly in (L®(Q)N,
(4.1) A(Vusi) = ¢ % —weakly in (L®(Q))V,

!’
us — uniformly in €,

where A(p) = F(|p|)p. For simplicity, we call &/ = ¢.
Step 1. Let us first prove that for any v € Wol’G(Q’) there holds that

(4.2) //({ — A(Vu))Vodz = 0.

In fact, as A is monotone (i.e., (A(n) — A(C)) - (n —¢) > 0 Vn,¢ € RY) we have
that, for any w € WhHE (),

(4.3) I= / (A(Vu®) — A(Vw)) (Vu® — Vw) dz > 0.
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Therefore, if 1 € C§°(Y),

— | B(wHudr— | A(Vu)Vwdr — [ AVw)(Vu® — Vw)dx
o o o

= | B dr— | AVWE)VuEdr + T
o o
=— | Be(wudr — [ Be(u)(u” —u)pdr — [ B(u)(u® —u)(1 —¢)de
(4.4) % ol o
— [ A(Vu)Vusdx + 1
Q/

>— | B(uHudr+ [ ANV)V(W —uw)pde+ | AVu®)(u® —u)Vipde
% % o

— | B —u)(l—9)de — | A(Vu)Vusdr,
% o
where in the last inequality we are using (4.3) and (1.1).

Now, take ¢ = 1); — xq. If ' is smooth, we may assume that [|V;|dz —
Per . Therefore,

A(Vu®)(u® —u) Vi, dx
Q/

so that with this choice of ¢ =1); in (4.4) we obtain

< Ol - ullpooiery /Q V] dz < Cllu® — ull goo(ery

Be(uudr | A(Vu)Vwdr | A(Vw)(Vu® — Vw)de
o o

Q

< | Be(wudr — [ A(Vu)V(u® —u)dr + Cllu® — ul ooy + / A(Vu®)Vu® dx
o o

Q/

= Be(u)udr + | A(Vu®)Vudr 4 Cl|lu® — ul|pee(qry-
o o

Therefore, letting ¢ — 0 we get by using (4.1) and (3) that

—/ wdp— [ EVwdr — A(Vw)(Vu—Vw)dxz—/ udp— [ EVudx
’ Q/ Q/

Q

/

and then
(4.5) //({ — A(Vw))(Vu — Vw)dzx > 0.

Take now w = u — Av with v € W' (). Dividing by A and taking A — 0T in (4.5)
we obtain

/ (€ — A(Vu))Vodz > 0.
Replacing v by —v we obtain (4.2).

Step 2. Let us prove that [, A(Vu®)Vu® — [, A(Vu)Vu.
By passing to the limit in the equation

(4.6) 0= ANVu )V + | Be(u)ddx,
o o
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we have, by Step 1, that for every ¢ € C5°(§'),
(4.7) 0= A(Vu)V(b—i—/ o dp.
ol ol
On the other hand, taking ¢ = u®¢ in (4.6) with ¢ € C§°(©)) we have that
0= [ ANV)Vude+ [ AV )uVpde + | Be(u)utda.
o o o
Using that
A(Vu®)u*Vip do — A(Vu)uV dx,
ol 0%

Be(u)up do — uhdp
o o

we obtain

0 = lim < A(Vuf)Vuy da:) +
Q/

e—0

A(Vu)uv¢da:+/ uhdps.
% o

Now taking ¢ = ut) in (4.7) we have

0= o A(Vu)Vuyp dx + o A(Vu)uV dx + /, ut) dp.
Therefore,
shi% o A(Vu®)Vuypde = o A(Vu)Vur) dx.
Then,

/ (A(VuE) Vi — A(Va) V) dz

< / (A(VuE )V — A(Va) V) da| +

[ Ave) v ) - o) de

+ A(Vu)Vu(l — ) dx

Q/

< / (A(Vu®)Vu® — A(Vu)Vu)pde| +C | |1 —|dx
’ Q/

so that taking ¢ — 0 and then ¥ — 1 a.e. with 0 < ¥ < 1 we obtain

(4.8) A(Vu®)Vusdr — A(Vu)Vudz.
o o

With similar ideas we can prove that

(4.9) A(Vu®)Vudr — A(Vu)Vudz.
% o
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Step 3. Let us prove that
(4.10) G(|Vu])dx — G(|Vu|) dx.
Q/ Q/

First, by the monotonicity of A we have
1
G(|Vu|) do — / G(|Vul) dz = / / A(Vu + H(VE — V)V (i — ) da
o % +Jo
> A(Vu)V(u® —u) dx.

Ql
Therefore, we have

1iminf/ G(|vuf|)da;—/ G(|Vul)dz > 0.
Q Q

£—0
Now, by Step 2 we have
o G(|Vu®|)dx — /Q, G(|Vu])dx = // /01 A(Vu + t(Vu® — Vu))V(u® —u) dx
< o A(Vus)V(u® —u)dz — 0.
Thus, we have that (4.10) holds.

Step 4. This is the end of the proof of (4).
Let u® = su+ (1 — s)u®. Then,

(4.11) 1
/Q/G(WUDCM—/Q/ G(|Vu€|)dx:///0 A(Vud)V (u — uf) ds dz

_ / /Ol(A(vuS) — AV V(U — ) % da

+ [ AVu)V(u —uf) de.
Q/

As in the proof of Theorem 4.1 in [21], we have that
1

/ / (A(Vu®) — A(VuE))V (0 — ) ds da
+Jo

>C( G(|Vu—Vu5|)dx+/ F(|Vu|)|Vu—Vu5|2dx>,
Az

1

where
Ay ={r e Q' :|Vu—-Vu°| <2|Vul}, Ay ={reQ :|Vu—Vu°|>2|Vul}.
Therefore, by (4.8), (4.9), (4.10), and (4.11) we have

( G(|vu—vu€|)da:+/ F(|Vu|)|Vu—Vu5|2dx) 0.
A2 Al
Then, if we prove that

( G(|Vu — Ve |) dz + F(|Vu|)|Vu—Vu5|2dx)zC IV — Vs |9+ da,
A2 Q

Ay

the result follows.
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In fact, for every Cy > 0 there exists C; > 0 such that g(t) > Cit9% if t < Cy. Let
Cy be such that |Vu| < Cp and |Vu — Vu®| < Cy. Then, by Lemma A.1,

G(|Vu® — Vu|) > C|Vu — Va9,
F(|Vul) > C1|Vul9 ™t > C|Vu — Vu| ™! in Ay,

and the claim follows.
Finally, (5) holds by (4), (3), and (2). o
LEMMA 4.1. Let {u®} be a uniformly bounded family of solutions of (P:;) in
Q such that u® — u uniformly on compact subsets of {1 and €; — 0. Let xg, =, €
QNo{u > 0} be such that x,, — xo asn — co. Let A, — 0, uy, (z) = %u(xn—i—/\nx),
and (u®)y, (z) = ﬁusj (xpn, + Anx). Suppose that uy, — U as n — oo uniformly on
compact sets of RN . Then, there exists j(n) — oo such that for every j, > j(n) there
holds that €, /A, — 0 and
1. (ufin)y, — U uniformly in compact subsets of R,
2. V(uin)y, — VU in LETHRN),

3. Vuy, — VU in LT (RN).

loc
Proof. The proof follows from Proposition 4.1 as the proof of Lemma 3.2 follows

from Lemma 3.1 in [7]. d
Now we prove a technical lemma that is the basis of our main results.
LEMMA 4.2. Let u® be solutions to

Luf = Be(u®)

in Q. Then, for any 1 € C3 () we have
(4.12) —/ GV o, dx+/ F(Va Vs Vap s, dm:/BE(uf)%,
Q Q Q

where B(s) = fos Be(7)dr.

Proof. For simplicity, since £ will be fixed throughout the proof, we will denote
u® = u.

We know that [Vu| < C' for some constant C. Take g,(t) = g(t) + £, and then

9 ()t
gn(t)

Take A, (p) = %p and £, (v) = div(A,(Vv)). For Q@ cC Q let us take u,, as the
solution of

(4.13) min{1,46} <

< max{1, g0}

4.14
( ) Up = U on 0.

{Enun = B(u) in &,

By (4.13), we have that all the g/,s belong to the same class, and then, by the
results of [19], we have that for every Q” CC Q' there exists a constant C' independent
of n such that |[un||c1.e@r < C.

Therefore, there exists ug such that, for a subsequence,

u, — uo uniformly on compact subsets of 7/,

Vu, — Vug uniformly on compact subsets of (.
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On the other hand, A, (p) — A(p) uniformly in compact sets of RY. Thus, Lug =
B:(u) and up —u € WHE(Q'). Since Lu = B:(u), it holds that ug = u in . (Observe
that, in the proof of the comparison principle, in Lemma 2.8 of [21] we can change the
equation Lu = 0 by Lu = f(z) with f € L>(Q2) to prove uniqueness of the solution
of the Dirichlet problem.)

Now, let us prove that the following equality holds:

_/ G|Vt )0, dx+/Fn(|Vun|)VunV1buml dfcz—/ﬁg(u)umlw.
Q Q Q

In fact, for n fixed we have that F,,(t) = g,(t)/t > 1/n and then by the uniform
estimates of [14], u, € W22(Q2). As w, is a weak solution of (4.14) and as u, €
W22(Q), taking as test function in the weak formulation of (4.14) the function ¢, ,
we have that

/Fn(|Vun|)VunV(wuml)dx: —/ﬂa(u)umlwdx.
Q Q

As (Gn(|Vunl))e, = gn(|vun|)%(vun)z1 = F(|Vun|)Vun(Vup)z, we have
that

—/ G|Vt )P, da:+/ Fo(|Vun)) Vi Vb tny, o — —/ﬁs(u)umlwdx.
Q Q Q

Passing to the limit as n — oo and then integrating by parts on the right-hand
side we get

—/G(|Vu|)z/111 d;zc—l—/F(|Vu|)Vqu/1ugC1 d;zc:/BE(u)z/Jgg1 dx. O
Q Q Q

Now, we characterize some special global limits.
PROPOSITION 4.2. Let xg € €2, and let u®* be solutions to

LuF = [, (uF)

in Q. If u* converge to a(x — o) uniformly in compact subsets of Q, with g, — 0
as k — oo and o € R, there holds that

a=0 or a=o M),

where ®(t) = g(t)t — G(t).

Proof. Assume, for simplicity, that o = 0. Since u®* > 0, we have that o > 0. If
a = 0, there is nothing to prove. So, let us assume that a > 0. Let ¢ € C5°(Q2). By
Lemma 4.2 we have

(415) - / GV )b, der + / F(Vu™ ) Vu Vit de = / Be, (4 )b,

Q Q Q
Since 0 < B, (s) < M, there exists M(z) € L>®(Q), 0 < M(x) < M, such that
B., — M x— weakly in L>=(9).

If y € QN {21 > 0}, then u®* > =* in a neighborhood of y for k large. Thus,
u®k > g and we have

u®k /ey,
B., (u*)(z) = /0 B(s)ds = M.
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On the other hand, if we let K CC Qn {1 < 0}, since by Proposition 4.1
Be,, (ut) — 0 in L' (K), we have that [} |VBe, (u)|dz = [, Bc, (u®*)|Vus| dz — 0.
Therefore, we may assume that B., — M in L}, ({1 < 0}) for a constant M € [0, M].

Passing to the limit in (4.15), using the strong convergence result in Proposi-
tion 4.1 we have

—/ G(Q)Y,, dr + / F(a)a*,, de = M Ve, + M Vg, -
{z1>0} {z1>0} {z1>0} {z1<0}
Then,
(—G(a) + g(a)a)/ Yy, de =M Yy, dx + M Yy, d.
{z1>0} {121>0} {121<0}

And, integrating by parts, we obtain

(—G(a) + g(a)a) / Yda' =M Yda' — M da'.
{11:0} {w1:0} {w1:0}
Thus, (—G(a) + g(a)a) = M — M. o
In order to see that a = ®~*(M) let us show that M = 0.
In fact, let K CC {1 < 0} N Q. Then for any n > 0 there exists 0 < ¢ < 1 such
that

|KN{n<B,u7)<M-n}| <|KN{§<u/e; <1-6}
<K N{B:,(u) > a/e;}| — 0
as j — 0o, where a = infj5;_s 3 > 0, and we are using that (., (u"/) is bounded in

L'(K) uniformly in j.
Now, as B(u®) — M in L*(K), we conclude that

|[KNn{n<M<M-n}=0

for every n > 0. Hence, M = 0 or M = M and, since o > 0, we must have
M =0. O
PROPOSITION 4.3. Let xg € Q, and let u®* be a solution to Lu = (., (u*) in

Q. Assume g’ satisfies (4.19) below. If u®* converges to a(x — o) + v(x — 20)]
uniformly in compact subsets of Q, with o,y >0 and €, — 0 as k — oo, then

a=vy< o (M)

Proof. We can assume that xy = 0.

As in the proof of Proposition 4.2 we see that B., (u*) — M uniformly on
compact sets of {z1 > 0} and {z1 < 0}. Since u®* satisfies (4.12) we get, after passing
to the limit, for any ¢ € C§°(),

- /{ oy P /{ Ly P dr = /Q M.

Integrating by parts we obtain

/ O (a)p dz’ — / P(y)pda’ =0
{z1=0} {z1=0}

and then o = 7.
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Now assume that o > ®~1(M). We will prove that this is a contradiction.

Step 1. Let Ry = {x = (z1,2') € RV : |21] < 2,|2'| < 2}. From the scaling
invariance of the problem, we can assume that Ry C Q.

We will construct a family {v%/} of solutions of (P.;) in Ry satisfying v (x1,2") =
v% (—x1,2') in Re and such that v — u uniformly on compact subsets of Ro, where
u(x) = a|z|.

To this end, we take b, = supg, [u® — u| and v®/ the least solution constructed
in Theorem C.1 with = R, and boundary values v*i = u — b, on ORa. The
supersolution that we are taking when applying Theorem C.1 is a constant A > 1 such
that u® < A, and as subsolution we take a negative constant ¢ such that ¢ < u — b..
Then, we have that ¢ < u® < A, and by this theorem we obtain that v* < uf.

We may apply the uniform estimates of the previous section in order to pass to
the limit for a subsequence that we still call v*/, and we get v = limv® < u.

Another property that we obtain by using the extremality of v/ is that it is
symmetric with respect to the variable z1. In fact, if we take the function o(z1,2’) =
v (—xq,2’), this is again a solution. Therefore, by Theorem C.1, v (—x1,2’') =
(1, 2") < 0% (x1,2"). Changing x1 to —z1 we reverse the inequality, thus, obtaining
the desired symmetry result.

In order to prove that u < v, we considered two cases.

First, suppose that a > ®~1(%M). Let w € CV#(R) be the weak solution to

(ﬂmwwy:%mm R, w0)=1, w'(0)=a
Observe that when w’(s) > 0, the equation is locally uniformly elliptic so that,
as long as w’ > 0, there holds that w € C? and a solution to

ny 9
(o)’ = 250

Suppose that there exists an s € R such that w’(s) = 0. Take s; as the supremum
of the s’s such that this happens. Then, s; < 0 and, in (s1,0], w’ > 0 and F(|Ju'|) v’ =
g(w"). Multiplying the equation by w’ and integrating in this interval we get

0 0

0
- [ s+ g = S Bw)

S1

Since g(w')w” = (G(w'))/, we get

D) = 90— @B(w(sl)) <

M
0 0

3

SIS

which is a contradiction.
Then, w’ > 0 everywhere. By the same calculation as before, we obtain that for
any s € R we have

(w/(s)) = B(a) + L B(w(s)) - TM < d(a)

and
(4.16) @mw»:w®+%mmm—%M2yw_%M:y@

for some a > @ > 0. Thus, a < w'(s) < a.
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Therefore, w'(s) = a for s > 0 and there exists § < 0 such that w(5) = 0. This
implies, by (4.16), that w'(5) = @, and then w’'(s) = & for all s < 5. Therefore,

1+ as, s >0,
w(s)=9§_ _
a(s — s), s <.

w(0) = gjw (_oziaj + s) =¢ja (s - 07;- - s) = —b,

and w®’(s) < a. Therefore, w® < u — be, in R so that w® < v on ORa.
Then, by the comparison principle below (Lemma 4.3), we have that w® < v
in RQ.
be.
Take 21 > 0. Then, for j large v — =- > 4. Thus L(951 —

(0%

for j large.

Therefore, w® (r) = ¢; + axy — Sb., + ae;5. Hence, w™ — wu uniformly on
compact sets of {z1 > 0}.

Passing to the limit, we get that v < v in Ro N {xz1 > 0}. Observe that since
v (21, 2") = v% (—x1,2"), we obtain that u < v in Ra.

This completes the first case.

Now, suppose that o < &1 (L M). Let w € C#(R), satisfying

(F(Jw')w") = Bw) inR, w(0)=1, w'(0)=a.

Again, when w’(s) > 0, the equation is locally uniformly elliptic and then w € C2.
Proceeding as in the first case we see that @ < w/(s) < « in R where, in the
present case, ®(a) = ®(a) — M.

1+ as, s> 0,
w(s)=9§_ _
a(s — s), s <.

be ; _
Let w®i(x1) = ajw(ﬁ—; —a T 5); then

be be
w(0) = gjw (— 4 s) =¢ja (s— —1 s) = —b,
Qe Qg

and waf’(s) < a. Therefore, w < u — bEj in R so that w® < v% on dRs, and since

w' < o < ®71(LM), we have, by the comparison principle below (Lemma 4.3),

that w® < v% in Rs. We can conclude as in the previous case that u < v in Rs.
Step 2. Let RY = {z:0 < z; < 1,|2/| < 1}. Define

F; = / F(IVvs (032 da’ + / P(IVof s dS,
OR*tN{z1=1} OR*TN{|z’|=1}

where v,% is the exterior normal of v on OR™ N {|z/| = 1}. We first want to prove
that

< / (G(IVv™ |) + Be, (v*9)) da'.
OR+N{z1=1}
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In order to prove it, we proceed as in the proof of Lemma 4.2. That is, we can
suppose that F(s) > ¢ > 0 by using an approximation argument. Therefore, we can
suppose that v57 € W22(Ry). Multiplying equation (P- ;) by vy, in RT and using the
definitions of G and F' we have

/ 83: G(|[Vv®i))) d;v—// F(|Vv® |)Vv® Vg dx
R+ 1

// div(F(| Vo™ ) Vo ug) d;v—// Be,; (v vyl =: Hj — Gj.

Using the divergence theorem and the fact that vy7(0,2') = 0 (by the symmetry in
the x; variable) we find that H; = Fj.
From the convergence of v%7 — u = «|z1| in R2 and Proposition 4.1 we have that

Vv — ae;  ae. in Ry = RaN{x >0}

Since |Vv©i | are uniformly bounded, from the dominate convergence theorem we de-
duce that

(4.17) lim F; = g(a)adx’

J—oo OR+N{x1=1}

and
9 . .
Fj:Ej+Gj:// 8—(G(|VUJ|)+B€].(’U])) dx
R+ 01
-], ~ () + Bey () d’
8R+ﬁ{11:0}
*/ (G ) + Be, (v")) da’
OR+N{x1=1}

< / (G(V)) + B., (v°7)) da'.
OR+N{z1=1}

Using again that v — u = a|x| uniformly on compact subsets of Ra, we have that
|V | — o uniformly on OR* N {z1 = 1} and B.,(v)) = M on this set for j large.
Therefore,

(4.18) limsup F; < / (G(a) + M) da’
j—o0 OR+ {1 =1}

Thus, from (4.17) and (4.18) we obtain ®(«) < M, which is a contradiction. O

Now, we prove the comparison principle needed in the proof of the lemma above.

This is the step where we need an additional hypothesis: There exist 19 > 0 such that

(4.19) g(t) <s%g'(ts) if 1<s<1+mn and 0<t<®~ (Q;M),

Remark 4.2. We remark that condition (4.19) holds for all the examples of
functions g satisfying condition (1.3) considered in the introduction.

This is immediate when g is a positive power or the sum of positive powers.

If g(t) = t*log (b + ct), we have for s > 1,

ct®

2 7 a+1 _ ja—1 a+2
ts) = t* “log (b t —_—
s°g'(ts) = s"""a og (b+cts) + s PR

sct® }

t* Nog (b + ct .
[a o8 ( +C)+b+cts
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Since

ta/
() = at® og (b + ct) + ———
(1) = ot Mog (b cf) 4 ;o

condition (4.19) holds if

S 1
> .
b+cts — b+ct

Or, equivalently,
sb+ cst > b+ cst,

and this last inequality holds for s > 1.
Finally, if g € C1(R), g(t) = 1t for t < k, and g(t) = 2t + c3 for t > k, we
have

2 _ ATt A if st <k,
s9 (tS) - az+1 az—1 3
s T agcot®2 if st >k

so that
1. if t > k, then ts > k and

52g'(ts) = 592 agcat®? ™! > ageat®™ ™ = ¢'(1);
2. if ts <k (i.e., t < k/s), we have, in particular, that ¢t < k and
s2g'(ts) = s a1 > ajeit™ 1 = ¢/ (¢);

3. if k/s < t < k, there holds that s2¢/(ts) = s%Tlagcat® ™! and ¢'(t) =
aicit® 1. Therefore, condition (4.19) is equivalent to

aici _
_tal az .

(4.20) st >
a9Co

Observe that the condition that ¢’ be continuous implies that % = k%~ Thus,

(4.20) is equivalent to

t al1—az
4.21 aztl > (2 .
2y = (5)

We consider two cases.
(i) If a1 > ag, (4.21) holds since t < k and s > 1.
(i) If a1 < ag, as t > k/s there holds that

)" 1
_ < < 8a2+1,
k §01—a2

because S%l < s since s > 1.
Let us now prove the comparison lemma used in the proof of Proposition 4.3.
LEMMA 4.3. Let w®(x1) in C*(R) be such that w®'(x1) > & > 0, and let v¥(z) > 0
be a solution of Lv¢ = B.(v°) in R = {x = (z1,2') : a <z < b, |2'| < r}, continuous
up to OR. Then, the following comparison principle holds: If v¢(x) > w®(x1) for all
x € OR and if
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1. L(w®) > LB (w®) on R
or
2. Lw® > Be(w), w’ <O H(LM), and g’ satisfies condition (4.19),
then v¢(x) > we(x1) for all x € R.
Proof. Since w®'(z1) > @ there exists xp such that w®(x¢) = 0. Let us suppose
that Tro = 0.
Since v¢(x) > 0, we can find 7 such that

w (1 —7) <v°(x) onR.
For n > 0 sufficiently small define
W™ (1) = w (pn (21 — ¢p)),

where ¢, (s) = s+ns* and ¢,, > 0 is the smallest constant such that ¢, (s —c,) < s on

[—27,27] (observe that ¢;, — 0 when n — 0). If ¢, — % < =27, then ¢, (s —¢,) <0 for

s < ¢;. Observe that, in [-27,27], w=" < w® and, as n — 0, w*" — w* uniformly.
If we call @, (s) = @,(s — ¢,), we have

(422)  Luw™" =g (0 (89) &) w™ (8y) (8))° + 9" (W (29) &) w' (&) B

In the first case, we use that, by condition (1.3), we have for s > 1,

/
§(ts) > 59s) > 590 5 99 (t)
ts ts gos
Therefore,
2 7 d /
(4.23) s°g'(ts) > g—sg (t).
0

Taking s = ¢}, and t = w*'(¢;) and using (4.22), (4.23), and the fact that ¢,"” > 0
and w®’ > 0, we have

6 ~ £ ~ 5 E( = \ £ >
Lw®" > %g’ (wsl (‘Pn)) w H(‘Pn)‘»";? - %Ew (%7)@;7 2 fe(w ,n)(p%.

Since f.(w*") = 0 when z; < ¢, and {5;7 > 1 when z1 > ¢, we have that Lw®" >

Be(we).

For the second case, choose 7 small enough so that 0 < ¢, <1 and @ (r) < 1+
for a < r <b.

If z1 < ¢, we proceed as in the previous case and deduce that L(w®7) > 0 =

ﬂa(w&n)'

If 1 > ¢,, we can apply condition (4.19) with s = ¢ and t = w*'($;,) since
we' < &L M).

Then, using that ¢,” > 0 and w® > 0 and (4.22) we have

Lw®" > ¢ (wa/(@n)) waﬁ(@n) = Lw®(py) = Be(w™1).
Summarizing, in both cases we have

Lw™" > G (w), w™" —w®asn—0, andw™" <wc.
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Let now 7* > 0 be the smallest constant such that
wsM(xy —7%) <0v°(z) inR.

We want to prove that 7* = 0. By the minimality of 7*, there exists a point z* € R
such that w®(z} —7*) = v°(2*). If 7% > 0, then w®"(x; —7*) < W= (z1) < we(z1) <
v¥(z) on OR, and hence, z* is an interior point of R.

At this point observe that the gradient of w®"(x; — 7*) does not vanish and
Lw=M(xf —7%) > B (w(x* — 7)) = B (v (2*)) = Lo®(a*). We also have w®"(x —
7*) <v%(z) in R and w®"(x} — 7*) = v*(«*). Then, also Vw®"(z] —7*) = Vo (z*).

Let

N
Lv = Z aij (Vw1 — 77))Vs,z; -
ij=1
Since |Vw®"(x; — 7*)| > 0 near z*, L is well defined near the point z* and, by

condition (1.3), L is uniformly elliptic.
Since Vw®"(z} — 7%) = Vo (2*), we have that

N
Lw®Ma] = 7) = L™ (x] — 77) > Lo (27) = Z aij (Vo (z%))vg, ., = Lo (z7).
ij=1
Moreover, since v° is a solution to
B N
Lv = Z aij (VU (2))Vz,0, = Be(v),
ij=1

Lis uniformly elliptic in a neighborhood of x* with Holder continuous coefficients and
B-(v¥) € Lip, there holds that v* € C? in a neighborhood of z*.
Therefore, we have for some 7 > 0,

Lw®"(xy — 7) > Lv°(x) in B, (z*),
wo (x — %) = v (x*),
wM(xy — 1) <vf(x) in R.

But these three statements contradict the strong maximum principle. Therefore,
7% = 0 and, thus, w*" < v on R.
Letting n — 0 we obtain the desired result. O

5. Asymptotic behavior of limit solutions. Now we want to prove—for g
satisfying conditions (1.3) and (1.4)—the asymptotic development of the limiting
function u. We will obtain this result, under suitable assumptions on the function w.
First, we give the following definition.

DEFINITION 5.1. Let v be a continuous nonnegative function in a domain £ C
RY. We say that v is nondegenerate at a point xo € QN {v = 0} if there exist c,
ro > 0 such that

1

—~ vdr > cr  for 0 <r <rg.
,

By (o)

We say that v is uniformly nondegenerate in a set Q' C QN {v = 0} if the
constants ¢ and o can be taken independent of the point xo € €.
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We have the following theorem.

THEOREM 5.1. Suppose that g satisfies conditions (1.3) and (1.4). Let usi be
a solution to (P;) in a domain Q C RN such that u® — w uniformly on compact
subsets of Q and €; — 0. Let zp € QN O{u > 0} be such that O{u > 0} has an
inward unit normal v in the measure theoretic sense at xg, and suppose that u is
nondegenerate at xg. Under these assumptions, we have

u(z) = & Y M) (x — x,v) " + o(|x — o).

The proof of this theorem makes strong use of the following result.

THEOREM 5.2. Suppose that g satisfies conditions (1.3) and (1.4). Let u®i be
a solution to (P.;) in a domain 2 C RN such that u® — w uniformly in compact
subsets of Q and e; — 0. Let z9 € QN {u > 0}. Then,

limsup [Vu(z)| < ®~'(M).

z—xQ

u(x)>0

Proof. Let

a = limsup |Vu(z)|.
r—xq

u(x)>0

Since u € Lip;oc(f2), a < oco. If @ =0, we are done. So, suppose that a > 0. By the
definition of « there exists a sequence zx — x( such that

u(zy) > 0, [Vu(zp)| — a.

Let yi be the nearest point from z to Q N d{u > 0}, and let dp = |z — Y-
Consider the blow up sequence uq, with respect to Bg, (yx). That is, ug, (x) =
diku(yk + dyx). Since u is Lipschitz and ug, (0) = 0 for every k, there exists ug €
Lip(RN) such that (for a subsequence) ug, — wuo uniformly in compact sets of RY.
We also have that Lug =0 in {up > 0}.
Now, set Z = (2x — yx)/di, € 0B1. We may assume that z — z € 0B;. Take
Vudk (Ek) Vu(zk)

V = =

"~ Vua, ()] [Vau(zr)]

Passing to a subsequence and after a rotation we can assume that v, — e;. Observe
that By/3(2) C B1(Zk) for k large, and therefore, ug is an £-solution there. By interior
Holder gradient estimates (see [19]), we have Vug, — Vug uniformly in By /3(Z), and
therefore, Vu(z) — Vug(2). Thus, Vug(Z) = a ey and, in particular, 0y, uo(2) = o

Next, we claim that |[Vug| < o in RV, In fact, let R > 1 and 6 > 0. Then, there
exists 9 > 0 such that |[Vu(z)| < a+ 6 for any « € By r(zo). For |z, — zo| < T0R/2
and dj, < 709/2 we have Bg, r(21) C Bryr(xo) and, therefore, |Vug, (z)| < a+§ in B
for k large. Passing to the limit, we obtain |Vug| < @ + 6 in Bg, and since 6 and R
were arbitrary, the claim holds.

Since Vug is Hélder continuous in By/3(Z), there holds that Vug # 0 in a neigh-
borhood of z. Thus, by the results in [18], ug € W?? in a ball B,.(z) for some r > 0,
and since

/A(Vuo)Vgo dx =0 for every ¢ € C5°(B, (%)),
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Oug

taking ¢ = 1., and integrating by parts we see that, for w = 5=

8w1’
Z/ a;j Vuo ))w%d)m dx = 0.

7,j=1

That is, w is a solution to the uniformly elliptic equation

Now let w = o« — w. Then, w > 0 in B,.(2), w(zZ) =0 and 7w = 0 in B,.(Z). By
the Harnack inequality we conclude that w = 0. Hence, w = « in B,.(2).

Now, since we can repeat this argument around any point where w = «, by a
continuation argument, we have that w = « in Bq(2).

Therefore, Vug = ae; and we have, for some y € RV, ug(z) = a(z; — y1) in
Bi(z). Since ug(0) = 0, there holds that y; = 0 and ug(z) = azy in By(Z). Finally,
since Lug = 0 in {ug > 0}, by a continuation argument, we have that ug(z) = a1 in

On the other hand, as ug > 0, Lug = 0 in {ug > 0}, and up = 0 in {21 = 0}, we
have, by Lemma B.2, that

ug = —vyx1 +o(|z|) in {x; <0}

for some v > 0.

Now, define for A > 0, (ug)a(z) = uo(Az). There exist a sequence A, — 0 and
ugo € Lz’p(RN ) such that (ug)x, — ugo uniformly in compact subsets of RY. We have
ugo(z) = axy +yzy .

By Lemma 4.1 there exists a sequence a — 0 such that u% is a solution to
(Ps;) and U — ug uniformly on compact subsetb of RY. Applying a second time
Lemma 4.1 we find a sequence aj — 0 and a solution u%/ to (PE;/) converging uniformly
in compact subsets of RV to ugg. Now we can apply Proposition 4.2 in the case that
~ = 0 or Proposition 4.3 in the case that v > 0, and we conclude that o < ®~!
(M). O

Proof of Theorem 5.1. Assume that zy = 0 and v = e;. Take ux(z) = u(Az). Let
p > 0 such that B, CC ©, and since uy € Lip(B,/,) uniformly in A, ux(0) = 0, there
exists \; — 0 and U € Lip(R") such that uy, — U uniformly on compact subsets of
RY. From Proposition 4.1 and Lemma 4.1, Luy = 0 in {uy > 0}. Using the fact that
ey is the inward normal in the measure theoretic sense, we have, for fixed k,

Hux >0} N{x; <0}NB| -0 as\—0.

Hence, U = 0 in {x; < 0}. Moreover, U is nonnegative in {z; > 0}, LU = 0 in
{U > 0}, and U vanishes in {z1 < 0}. Then, by Lemma B.2 we have that there exists
« > 0 such that

U(x) = az] +o(|z)).

By Lemma 4.1 we can find a sequence €, — 0 and solutions usi to (Ps;) such that
;. — U uniformly on compact subsets of RY as j — oco. Define Uy(z) = $U(Ax);

then Uy — ax] uniformly on compact subsets of RY. Applying again Lemma 4.1
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we find a second sequence o; — 0 and u?’ solution to (P,,) such that u% — azf

uniformly on compact subsets of RY and

Vu%i — QX {z;>0)€1 in Lfgjl (RN) .

Now, we proceed as in the proof of Proposition 4.2. Let ¢ € C$°(RY), and choose
ug]v as test function in the weak formulation of Lu% = f3,, (u®7). Then,

By (u%) — MX{z,>0} + HX{IKO} x —weakly in L%,

with M =0 or M = M. Moreover, ®(a) = M — M.
By the nondegeneracy assumption on u we have

1
— U, dx > cr
T B,
and then
1
- Uy, dx > cr.
T B,

Therefore, o > 0 so that we have that M = 0. Then, o = ®~1(M).
We have shown that

Ulr) = O~ (M)xy + of|z|), x1 > 0,
0, I S 0

By Theorem 5.2, [VU| < @ }(M) in RY. As U = 0 on {z; = 0} we have
U<® Y M)z in {z1 > 0}.

Since LU =0 in {x; > 0}, U =0 on {z; = 0}, there holds that U € C**({z; >
0}). Thus, [VU(0)| = ®~1(M) > 0 so that, near zero, U satisfies a linear uniformly
elliptic equation in nondivergence form and the same equation is satisfied by w =
U— & M)z in {1 > 0} N B,(0) for some r > 0. We also have w < 0 so that
by Hopf’s boundary principle we have that w = 0 in {z; > 0} N B,.(0) and then,
by a continuation argument based on the strong maximum principle we deduce that
U(x) = az] in RN, The proof is complete. O

Now we prove another result that is needed in order to see that u is a weak
solution according to Definition 1.1.

THEOREM 5.3. Let u be a solution to (P.,) in a domain Q@ C RY such that
u® — w uniformly in compact subsets of Q@ and e; — 0. Let xg € QN {u > 0}, and
suppose that u is nondegenerate at xo. Assume there is a ball B contained in {u = 0}
touching xq; then

. u(z) -1
1 1 =0 (M).
o et er R
u(x)>0

Proof. Let ¢ be the finite limit on the left-hand side of (5.1), and y, — xo with
u(yr) > 0 and

— 0, dj = dist(yx, B).
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Consider the blow up sequence uy, with respect to Bg, (z1), where 3, € OB are points
with |xx — yx| = di, and choose a subsequence with blow up limit ug such that there
exists

e:= lim Yk — Lk
k—o0 dk
Then, by construction, ug(e) = £ = €{e,e), up(x) < £(x,e) for {(x,e) > 0, and
uo(z) =0 for (x,e) < 0. In particular, Vug(e) = Le.
By the nondegeneracy assumption, we have that ¢ > 0. Since |Vug(e)] =¢ > 0
and Vug is continuous, both ug and £(z,e)™ are solutions of Lv = 0 in {ug > 0} N
{{z,e) > 0} N {|Vug| > 0} where

N
LU = Z bij(vuo)vwle

i,j=1
is uniformly elliptic and

oy s (9Dl Y pip;
vute) =0+ (L5 1) B

Now, from the strong maximum principle, we have that they must coincide in a
neighborhood at the point e.

By continuation we have that ug = £(z,e)™. Thus, we have, by Proposition 4.2,
that £ = &~ 1(M). d

6. Regularity of the free boundary. We can now prove a regularity result
for the free boundary of limits of solutions to (F:).

THEOREM 6.1. Assume that g satisfies conditions (1.3) and (1.4). Let u be a
solution to (P:,) in a domain 2 C R such that u® — u uniformly in compact subsets
of Q and e; — 0. Let o € QN O{u > 0} be such that there is an inward unit normal
v in the measure theoretic sense at xy. Suppose that w is uniformly nondegenerate
at the free boundary in a neighborhood of xo (see Definition 5.1). Then, there exists
r >0 such that B.(zo) N0{u > 0} is a CH* surface.

Proof. By Corollary 3.1, Theorems 5.1 and 5.3, and the nondegeneracy assump-
tion we have that u is a weak solution in the sense of Definition 1.1. Therefore,
Theorem 9.4 of [21] applies, and the result follows. a

7. Some examples. In this section we give some examples in which the nonde-
generacy condition is satisfied so that in these cases Ocq{u > 0} is a C1* surface.
For the case of a limit of minimizers of the functionals

(7.1) Js(v):/QG(|VU|)da:+/QBE(U)dm

with B (s) = B.(s), we will also prove that HN~1(0{u > 0} \ Oyea{u > 0}) = 0.

The uniform nondegeneracy condition will follow from the linear growth away
from the free boundary. This is a well known result for the case of the Laplacian. We
prove it here for the operator £ (Theorem 7.1). The proof is based on an iteration
argument that, in the case of the proof for the Laplacian, makes use of the mean value
property (see [9]). We replace it here by a blow up argument (see Lemma 7.1).

LEMMA 7.1. Let ¢c; > 1, and let u® € C(2), |Vu®| < L with Lu® =0 in {u > &}
be such that there exists C > 0 so that u®(z) > Cdist(z, 0{u® > €}) if us(x) > c1e
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and d(z) = dist(x, 0{u® > e}) < 1/2dist(x, 0Q). Then, there exists o > 0 and 5y =
do(c1, C) such that Ve > 0 and Vo € {u® > cie} with d(x) < 1/2dist(z, 0Q) we have

sup u® > (1 4+ dp)u(x).
By ()
Proof. Suppose by contradiction that there exist sequences o — 0, £ > 0, and
xp € {uh > cier} with di, = d(xy) < 1/2dist(zg, I) such that

sup  uF < (14 0p)u*(xg).
Ba,, (k)

Take wy,(z) = LE@etdes)  Then 4, (0) = 1 and

uk (z)

max wy < (1 + 5k>, wyg > 0, and Lrwr =0 in By,
By

where Lyv = div(wvw with gx(t) = g(%ﬁ’“)t).
On the other hand, in By we have

dy,

L
usk (z))

L
[V wy|| Lo (8y) = VU™ (25, + di) || Loe () rok
Then, there exists w € C(B;) such that
wg — w uniformly in Bi.

Take 0 < r < 1, and let vi(x) = (1 + dx) — wi(z). Then, since gj satisfies (1.3),
by the Harnack inequality we have

0 <wp(z) <e(r)vg(0) for |z] <.
By passing to the limit we have
0<1—w<c(r)(l—w(0))=0.

Therefore, w = 1 in Bj.
Let yx € O{ur > ex} with |xg, — yg| = dg. Then, if 2, = 7% we have

k

€k

wklok) = ) = o

and we may assume that z; — z € 9B;. Thus, 1 = w(z) < L < 1. This is a

contradiction, and the lemma is proved. 0 o

THEOREM 7.1. Letcy > 1, C, L >0, and Q' CC Q. There exist ¢y, 19 > 0 such
that if u® € C(2) is such that Lu® = 0 in {u® > e}, |[u®]|p~(ar), [[VUT| L) < L,
and uf(x) > Cdist(z,0{u® > e}) if x € {u® > c1e} N Q' and d(z) = dist(x, O{u® >
e}) < 1/2dist(x,09Q'), then if zo € Q' N{u® > cie} with dist(zg,{u® > e}) <
1/2dist(x,08'), it holds that

sup u® >cor  for 0 <r <.
BT(IQ)

Proof. The proof follows as that of Theorem 1.9 in [9] by using Lemma 7.1 and
the same iteration argument as in that theorem. O

As a corollary we get the locally uniform nondegeneracy of u = limu® if u® are
solutions to (P-) with linear growth. In fact, see the following corollary.
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COROLLARY T7.1. Let u® be uniformly bounded solutions to (P:,) in Q such
that for every Q' CC Q there exist constants ¢; > 1 and C > 0 such that ui (z) >
Cdist(x, 0{u® > ¢;}) if v € {u¥ > c1g;} N Q' and d(z) = dist(z, 0{u® > ¢;}) <
1/2dist(x, 0Q"). Assume u®i — w uniformly on compact subsets of Q.

Then, there exist constants co and ro depending on ¢1 and C, the uniform bound of
lu¥i||poo(y and ', such that for every xo € Q' N {u>0} such that
dist(zo, 0{u > 0}) < 1/2dist(xq, '),

sup u > cor  for 0 <r <.
BT(wo)

Proof. The proof follows from Theorem 7.1 as in Chapter 1 in [9]. O

7.1. Example 1. Before we give the first example we need the following defini-
tion.

DEFINITION 7.1. Let u® be a solution to (P.). We say that u® is a minimal
solution to (Pr) in € if whenever we have v¢ a strong supersolution to (P:) in Q) CC Q,
i.e.,

Vo
|Voe|

v e WhHEQ)NC (), g(IVoe)) e Wwhi(Q), Lov® < B(v°) in @,

which satisfies

v > u® on 09,
then

v > uf in .

We will not discuss the existence of minimal solutions of the operator £ in this
paper. But, let us point out that the interest in considering this kind of solution is
that when ©Q = (—o0,+00) X 3, a solution u® of P. that is strictly decreasing in the
21 variable with limg, —, 4o v (21, 2’) = 0 uniformly for 2’ € ¥ is a minimal solution.
The proof of this fact follows the lines of the comparison result Lemma 4.3. See also
[3, Theorem 7.1] for the proof that traveling waves of the equation Au® —uf = [ (u®)
are minimal solutions.

We can prove for minimal solutions, as in Theorem 4.1 in [3], the following lemma.

LEMMA 7.2. Let u® be minimal solutions to (P.) in a domain Q C RN. For
every ) CC Q, there exist C, p, and €q, depending on N, 0, go, dist(Q2',09), and the
function B such that, if e < e¢ and x € V', then

u®(z) > Cdist(z, {u <e})

if dist(z, {u® < e}) < p.

Proof. We drop the superscript .

The proof is similar to the one of Theorem 4.1 in [3]. We have to make a modifi-
cation, since we are dealing with the operator £ instead of the Laplacian.

Let 29 € {u > e}. Without loss of generality we may suppose that x is the origin,
and let d.(0) = dist(0, {u < €}) = 2. In By, u satisfies Lu = 0, and, therefore, by
the Harnack inequality, we have v < Cu(0) in B, for some constant C.

We will construct a radial supersolution satisfying the hypotheses in Definition 7.1
such that v(0) = ae < u(0) for some constant 0 < a < 1. Also v(y) > D~ for some
constant D under control.
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By our hypothesis that « is a minimal solution it follows that we cannot have
v > u everywhere on 0B,,. Therefore,

Dy < wv(y) < Cu(0),

and this is what we want to prove.
Let 0 <a <b<1,andlet v € C'(B,) be defined as

€a, 0<r<r,
v(r) = 6a—|—k(r—r0)6+71, o <1 <\,
H-A(y-n)%, A<r<q,

with ro, A\, k, H, and A to be chosen. Take \ = rg + éa(b — a) with C to be chosen
and v — A = poy. Set v(\) = €b. Then,

b eb—a) 1
A=r0)5 O (eb—a)/*

Since |Vu| # 0, we have

g(|Vl]) ( (|Vo]) |Vl > Vg, Vg
Evzi Av + -1 : J (S
|Vl Z 9(|Vol) Vol [Vl

Thus, in A < r <+, since |Vv| = A%('y —7)1/? we have

B N1 (Vv 1
=9VoD | =5 = i 5(7—7“)]

N -1 1

T | <av) | -

9([Vol)

r y—r v—=A

(N —1) _L]

= g(|Vv|) S0=0) oy

Then, if g is sufficiently small, we have Lo < 0in A <7 < 7.
In rg <7 < X\ we have

— 4(|¥)) N -1 n 9 (|Vv])| V| 1 }

r g(IVol)  o(r —ro)

and then since |Vov| = k%(r )

with L = L(go,9, N).
Since k(r —rg)t/® < 1/C if r < \, we have

&
1 1
g (K =) < R (K =)
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with R = 5%(%). Thus,

(7.2) Lv<L

5 5
RO (1),
rT—7To

0

Let £ = min 458 and C large enough so that

Lo(t) (3

- i < K.
C(b—a)
Since
5 _ 1
Cotle(b—a)’
we have that in rg <7 <\, ac < v < be and
Ly < g < Be(v).

So, with this election of A, k, and 79 we have that Lv < (.(v) in B,.
On the other hand, by the continuity of v" we have that

0+1

5+1
k—5 (A —r)/? = A—5

(v =N,
Thus, k(X — 79)Y/% = A(y — A9 so that

~ 1/6
C=(b - a)) N
1/6 _ ( _ -1
A(,U*O’Y) 66}-1 (E(b— a))1/5 c.

On the other hand, by the continuity of v, since v(\) = €b,

o+1 S+1

o) =H=eb+Aly =N+ > Alpoy)+ =C oy =D,

with D = D(go, 0, k,a,b, N). We have the desired result. d

Then, by Theorems 6.1 and 7.1, we have the following theorem.

THEOREM 7.2. Assume that g satisfies conditions (1.3) and (1.4). Let u® be
uniformly bounded minimal solutions to (P;) in a domain Q C RYN such that u®i — u
uniformly in compact subsets of Q as €; — 0. Then, QN Jpea{u > 0} € che,

7.2. Example 2. We consider solutions of (P.) that are local minimizers of the
functional

(7.3) 1(0) = [ [G(90) + Belo)] da
Q
where B.(s) = f.(s). That is, for any ' CC 2, u® minimizes
[ 166 + B(o)] da

in u + WhG(Q).
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By Theorem 7.1, in order to prove the nondegeneracy we need only to prove the
linear growth away from 9{u® > }. The proof follows the lines of Corollary 1.7 in
[9].

LEMMA 7.3. Given ¢q > 1 there exists a constant C' such that if u® is a local
minimizer of J. in By and u®(xo) > c1€, xo € By)4, then

u®(xg) > Cdist(xg, {u® <e})

if dist(zo, {u® <e}) <1/4.

Proof. The proof follows as in Theorem 1.6 in [9]. 0

Therefore, we have that minimizers satisfy the uniform nondegeneracy condition.

Now, we want to prove that for the limiting function we have that almost every
point of the free boundary belongs to the reduced free boundary. To this end, we will
prove that the limiting function is a minimizer of the problem treated in [21]. We will
follow the steps of Theorem 1.16 in [9]. We will give only the details when the proof
parts from the one in [9].

First, we want to estimate the measure of the level sets 92y where 2\ = {u® > A}.
Without loss of generality we may assume that By CC Q.

For a given set D we denote by Ns(D) the set of points z such that dist(z, D) < 4.

THEOREM 7.3. Given ¢y > 1 there exist ca,c3 > 0 such that if X > ci1e and
1/4 > 8§ > o)\, then, for R < 1/4, we have

|N5(3Q)\) n BR| < CgaRN_l.

In order to prove this theorem, we need two lemmas.
LEMMA 7.4. If A\ > ¢ and R < 3/4, then

/ G(|Vuf|)dr < SRV,
{A<us<8}NBr

Proof. First, let us prove that for w € W1 (Bg) such that suppw C {u® > A}
with A > ¢, we have

(7.4) PVl )V Vi do — / F(IVu €|) dHN 3
Br 8BR

We follow the ideas in the proof of Lemma 4.2. That is, we suppose first that
F(t) > ¢ and then we use an approximation argument as in that lemma.

If F(t) > ¢, then, by the estimates of [14], we have that the solutions are in
W22(Q), so (7.4) follows by integrating by parts and using the fact that Lu® = 0 in
{u® > ¢}. Finally, we use the approximation argument of Lemma 4.2 and the result
follows.

Now, let w = min{(u® — \)*,§ — A}. Then, w € WH%(Bg) suppw C {u® > A}
so that by (7.4) we have

/ G(|Vul]) do < c/ F(IVu €|) "Nl < O§RN1
{A<us<6}NBRr
and the result follows. a

LEMMA 7.5. Given ¢; > 1 there exist C1,Cy,co > 0 such that if A > ci1e and
1/8 > 0 > o\, we have, for R < 1/4,

IN5(0Qx) N Br| < C2/ G(|Vuf|) dz

{A<us<C16}NBRr+s
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Proof. First, we cover N5(0Qy) N Br with balls B; = Bj(z;) with centers x; €
082\ N Br which overlap at most by ng (with ng = ng(V)).

We claim that in each of these balls there exist two subballs B jl and Bj2- with radii
r; = C'§ with C to be fixed below such that if v = (u® — X\)™, then

Co . 1 €o . 2
vzgé mBj, vgﬁé mBj7

where ¢ is the constant of nondegeneracy for balls centered in By, with radii at
most 1/8.

In fact, take B} = B, (z;) with r; = &6 (here ||[Vu®||p~(p,,,) < L). Observe

that since u(z;) = A, then v(z) < Lrj = $36 if 2 € B
Now let y; € Bs/4(x;) such that

W)= s el
Bsa(x4)

Let Bj = B, (y;). Then if z € B},

)
u®(z) > u(y;) — Lr; > COZ — Lrj.

Thus,

. —1 co
if e < 98-

Let m; = f v. We claim that in one of the balls B} and B} we must have
|v —m;| > ¢d for a certain constant ¢ > 0.

Suppose by contradiction that there exist z; € le- and x4 € BJQ- with
[v(z1) —m;| < cd, [v(z2) —m;| < €.

Then,

Co

co
—— < —
5 0 166 <w(x1) —v(re) < 20

which is a contradiction if we take co/16 > 2c.

Therefore, if k is such that |Bi| = |B7| = k|B;|, we have by the convexity of G
and Poincaré inequality that

1 / 1
L[ v de > —/ Vo] da
1Bl Jg, 1Bl Jg,

C |[v —m,]| ( C
>a —/ =™l g ) >a —k|B-|c>.
<|Bj| B 0 ) B[

This implies that

/ G(|Vo|) dz > C|B;].
B.

J
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BrNN;3(00) c | B

we have

1
BrONs @ < T8I < 53 [ GUelda
no

<o G(|IVo|) do = 2 G(IVue)) d.
¢ Jys, C JuBinfu>x

On the other hand, if # € Bj, then u®(z) < C16, where C = 02_1 + L. Then, as
\UBj C Bgrys, we have

|Br NN (092,)] < %/ GV dz. O

{A<us<C16}NBRr+s

Proof of Theorem 7.3. Using Lemmas 7.4 and 7.5 we have

|Br_s N N3 (00| < co/ G(|Vuf]) d < CocCLoRN 1.

{A<us<C16}NBr

As |Bg \ Br_s| < CORN~! we obtain the conclusion of Theorem 7.3. O

Now, we can pass to the limit as ¢ — 0. There exists a subsequence u** converging,
as ex — 0, to a function ug € WH%(Q) strongly in LO+1(€), weakly in W1¢(), and
uniformly in every compact subset of 2.

Let ' CC Q, xg € Q' NO{up > 0}, and py < 1/2dist(2',09). Then, by using the
previous results we can prove as in Theorem 1.16 in [9] that ug is a local minimizer of

Jow) = [ (GOTel) + Mquso) e
Bp(zo)

Finally, we can apply the results of [21] and conclude that H™~!-almost every
point of the free boundary belongs to the reduced free boundary. Moreover, by ap-
plying the regularity results for minimizers of .Jy from [21] (see [20] for the regularity
of the whole free boundary in dimension 2) we have the following theorem.

THEOREM 7.4. Suppose that g satisfies (1.3). Let usi be a local minimizer of
(7.3) in a domain Q@ C RN such that u — u uniformly in compact subsets of Q and
e; — 0. Then, Opeq{u > 0} is a C1* surface and HY =1 (9{u > 0} \ Orea{u > 0}) = 0.
In dimension 2, if there exist to and k such that g(t) < kt fort < ty, there holds that
the whole free boundary is a reqular surface.

Appendix A. Properties of G. The following result is proved in [21].
LEMMA A.1. The function g satisfies the following properties:

(g1) min{s’,s%}g(t) < g(st) < max{s’, s*}g(1),

(g2) G is convex and C?,

(£3) 49 < G(t) <tg(t) Vi>0.
Remark A.1. By (gl) and (g3) we have a similar inequality for G.

(G1) min{séﬂ,sg“l}% < G(st) < (1 + go) max{s®+1 s90F11G(¢),

and then using the convexity of G and this last inequality we have
(G2) G(a+0b) <29(1+ go)(G(a) + G(b) ¥V a,b > 0.
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As g is strictly increasing we can define g~!. Now, we prove that g~ satisfies a
condition similar to (1.3). That is, see the following lemma.

LEMMA A.2. The function g~ satisfies the inequalities

1t 1
Al — <X 22 < VE>0.
. 6= g 0
Moreover, g=! satisfies
(g1) min {51/5, sl/go} g 1 (t) < g7 (st) < max {51/5, sl/go} g (1),

and if G is such that G'(t) = g~1(t), then

~ dtg~'(t) _ ~ -1
— < < >
(92) 55 =GO =stg™(t) V=0,
(G1)
(L+0) . [ 141/ 141/90\ & & g 141/6 1+1/g0 \ 7
5 mln{s )5 }G(t) < G(st) < 1+5max{s )5 }G(t),
(33) ab < £G(a) + C(e)G(b) V a,b> 0 and ¢ > 0 small,
(94) Glg(t)) < goG(t).

THEOREM A.1. Lé(Q) is the dual of LY (). Moreover, L% (Q) and W% (Q) are
reflexive.

Appendix B. A result on L-solutions with linear growth. In this section
we will state some properties of L-subsolutions.

LEMMA B.1. Let 0 <r < 1. Letu € C(B;") be such that Lu > 0 in B and
0 <u<azry in Bf, u < dpaxny on OB} N By, (Z) with & € B}, Tn > 0, and
0<dp <.

Then, there exist 0 < v <1 and 0 < n <1, depending only on r and N such that

u(z) <vyaxy in B;rr.

Proof. By the invariance of the equation Lu > 0 under the rescaling u(z) =
u(rz)/r we can suppose that r = 1.
Let 1® be a L,-solution in B}, with smooth boundary data, such that

Y =xN on (’9Bfr \ By, (T),
Sorn <Y <zy ondBf N B, (7),
Y = dpx N on an n BTO/Q(j),

where L,v = div(%Vu) and go(t) = g(at).

Therefore, L(at)®) = 0 and, by the comparison principle (see [21]), u < at)® in
B .
If we see that there exist 0 < v < 1 and n > 0, independent of «a, such that
Y < vyay in B, the result follows.
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First, observe that

AL
B.1 0 < < go.
(B-1) Ja(t) 0
Then, by the results in [19], for 0 < pp < 1 and some 0 < 3 < 1,
(B.2)

v e CHA(B,) N CP(BY).
The C*?(B},) and C°(B;") norms are bounded by a constant independent of a.
The constant of the Harnack inequality is independent of a.

If [Vy®| > p > 0 in some open set U, we have that v* € W22(U) and 9 is a
solution of the linear uniformly elliptic equation

N
(B.3) Tot =Y bithes, =0 iU,
i,j=1
where
9o (VY| [V | ) Dip* D™
bza = 61” + ( = - ]- ’
o 9a(|VY*]) [V |?

and the constant of ellipticity depends only on gg and §.

Now, we divide the proof into several steps.

Step 1. Let w® = xy —¢®. Then, w* € CYP(BJ,) N CP(B]) and it is a solution
of T,w® = 0 in any open set U where |V¢*| > p > 0.

On the other hand, as ¥ < xx on <9Bfr and both functions are L,-solutions we
have, by comparison, that ¥ < xx in Bf. Therefore, w® > 0 in Bfr.

Step 2. Let us prove that there exist p, ¢ and ag such that |[V¢®| > ¢ in B;r if
0<a<ap.

First, let us see that there exist ¢ > 0 and a; such that

(B.4) P*(1/2en) > ¢ if0<a <.

If not, there exists a sequence oy — 0 such that ¢**(1/2en) — 0. Since the
constant in the Harnack inequality is independent of « (see (B.2)), we have that
1@ — 0 uniformly in compact sets of B,

On the other hand, using the fact that ¢)® are uniformly bounded in C*(Bj"), we
have that there exists 1 € C*(B;) N CP?(B;) such that, for a subsequence, 9 — )
uniformly in Bj".

Therefore, 1 = 0 in Bf". But we have that ¢ = dozn on B, 5(Z) N 9By, which
is a contradiction.

Now, let z; € {zxy = 0} N Byjp. Take vo = 21 + <%. By (B.2) we have that
there exists a constant ¢; independent of « such that ¥*(z) > c¢;¢*(1/2ey) for any
x € OBy 5(xo) and, therefore, by (B.4), * > ¢ on 0B s(z0).

Take v = 5(6_)““”_“”0|2 — e M16)and choose A such that L,v > 0 in B /4(o) \
By s(wo) and e such that v = ¢ on 9By g(wo) (observe that by Lemma 2.9 in [21] A
and e can be chosen independent of «).

Since ¥ > 0 = v on 9By 4(x0) and Y > v on B 3(xo), we have, by compari-
son, that ¥ > v in By 4(z0) \ B1/s(2o).
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On the other hand, v, (1) = e2X (g — 1) ye Me1%0" = 2£=M16 — & and,
therefore, ¢ (z1) > ¢.

As V¢ are uniformly Holder in B;r/ 4» We have that there exists p independent
of v and z; such that ¢, (x) > ¢ in B} (21).

Step 3. Since |[Vy*| > ¢ in B}, we have that T,w® = 0 there.

Suppose that w*(1/2pey) > ¢, with ¢ independent of ae. Then, by Hopf’s principle
we have that there exists o7 depending only on N and the ellipticity of 7, such that
w® > oyxy in BT 5+ Then, taking v =1 — o1 we obtain the desired result.

Step 4. Finally, let us see that the assumption in Step 3 is satisfied. That is, let
us see that w*(1/2pey) > &> 0, where ¢ is independent of «.

Suppose by contradiction that, for a subsequence, w**(1/2pey) — 0. We know
that in B;r Tow® = 0. Therefore, applying the Harnack inequality we have that
w* — 0 in Bf.

On the other hand, since ¥® — 1 and V¢® — Vi uniformly in B, for every
0 < po < 1, it holds that w* — w = x, — 1 in CY(B},). Let

A={z e Bf /w=0},

and suppose that there exists a point z;7 € A N Byf. Then, as w® > 0 we have that
w attains its minimum at this point. Therefore, Vw(z;) = 0.

Since Vw* — Vw uniformly in a neighborhood of x1, we have that for some
7 > 0 independent of ay, |[Vi*| > 1/2 in B(x1). Thus, in this ball, w** satisfies
To,w* = 0.

Now, applying the Harnack inequality in B, (x1) and then passing to the limit we
obtain that w = 0 in B, /5(x1), which is a contradiction.

Hence, w = 0 in B}". But, on the other hand, we have w = xn — Jozn > 0 on
0By N B, /2(7), which is a contradiction. d
With Lemma B.1 we can also prove the asymptotic development of L-solutions.

LEMMA B.2. Let u be Lipschitz continuous in Bi", u >0 in Bi", Lu =0 in
uw>0Y, andu=0 on {xx =0}. Then, in By, u has the asymptotic development
1

u() = azy + offe]),

with o > 0.
Proof. Let

o =inf{l /u<lz, in B ;}.
Let o = limj_. ;.

Given gy > 0 there exists jo such that for j > jo we have a; < av4€¢. From here,
we have u(z) < (a+ eg)zn in B, so that
u(z) < axy +o(|z]) in B .

Since u > 0, if a = 0, the result follows. So, let us assume that o > 0.
Suppose that u(x) # axy + o(|z]). Then there exists xx — 0 and ¢ > 0 such that

u(zy) < azp N — S|wgl.
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Let rj, = |z)| and uy(x) = 7, 'u(rrz). Then, there exists ug such that, for a subse-
quence that we still call ug, ur — uo uniformly in Bi" and
ug(Zy) < aZp,n — 0,

ug(z) < (v +eo)rn in Bf,

where T, = i—]‘:, and we can assume that T, — xg.
In fact, u(z) < (a+eo)xy in B, and, therefore, uy(z) < (a+eo)zy in B;%lzfjo,

and the claim follows if k is big enough so that 7‘,;12_j0 > 1.
If we take @ = o + ¢, we have

Lup >0 in By,

up =0 on {xy =0},
0<u, <axy onan,

up < dpar N on (9Bfr N B:(Z)

for some 7 € anr and Ty > 0 and some small 7 > 0.
In fact, as the uy’s are continuous with uniform modulus of continuity, we have

) _
ug(zo) < azon — 5 if k> k.

Moreover, there exists ro > 0 such that ug(z) < azy — g in Byy,(z0). If zon > 0,
we take T = xg, and if not, we take & € dBs,(x0) N OB;. Then, Ty > 0 and

ug(r) < azy — g in B, () CC {zn > 0}.

Moreover, there exists 0 < dg < 1 such that axy — g < dpaxy < dpaxy in By, (T),
and the claim follows.

Now, by Lemma B.1, there exists 0 < v < 1 and n > 0 independent of ¢y and
k such that uy(r) < y(a +eo)zn in B,. As v and 7 are independent of k& and &,
taking eg — 0, we have

ug(z) < vyazy in B;‘

so that

+
TEN"

u(x) < ~yoxy in B

Now, if j is big enough, we have ya < o; and 277 < rn. But this contradicts the
definition of a;. Therefore,

u(z) = axy + o(|z|)

as we wanted to prove. O

Appendix C. Existence of extremal L-solutions. In this section we will
prove the existence of extremal solutions. First, we will give the definition of sub- and
supersolution of problem (1.1) in a more general sense (for simplicity, we will omit
the €).

In [23] there is a review on this topic.
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DEFINITION C.1. A function u € WY%(Q) is called a supersolution if 4 is of the
form

@ = min{ay, U, ..., U},

where Uy, U, . . ., Uy € WHE(Q) and each uj, 1 < j <'m, satisfies the condition:
Lu; < B(uj) on L,
(Hsuper) { ! !

Uj > U on 0N)

in a weak sense, with ug € C*(Q) NWhHE(Q) .

Subsolutions are defined in the same way as the maxima of a finite number of
functions in W (Q) satisfying condition (Hy,;) obtained by reversing the inequalities
in (Hsuper)-

We will assume in this section the existence of a subsolution v = max{u,,...,u;}
and a supersolution @ = min{@y, ..., 4, } such that u < @. We will also assume that
there exists a constant A such that for all ¢ = 1,...,k and 7 = 1,...,m we have

lu;] < A and |u;| < A.

Using the same technique as in Theorem 8 in [15], we will prove the following
theorem.

THEOREM C.1. 1. Problem (FP.) has a least solution w,—with boundary data
greater than or equal to uy on OQ—in the order interval [u, @], i.e., u < u, < 4, and
if w is any solution of (P.) with u > ug on 0 such that u < u < u, then u, < u.
Moreover, u, = ug on 0S.

2. Problem (P:) has a greatest solution u*—uwith boundary data less than or equal
to ug on OQ—in the order interval [u,a], i.e., u < u* < 4, and if u is any solution
of (P:) with u < ug on 9 such that u < u < u, then u* > u. Moreover, u* = ug
on 082.

The proof of this theorem is based on the following lemma.

LEMMA C.1. There exists a solution uw of (1.1) with u = ug on 9 such that
u<u < U

Proof. We use a construction similar to the one in [15]. Here, we have to make a
modification, since we are dealing with the space W& (Q). We define b : Q x R — R

g(10A — u(x)) if t>104,
g(t — u(x)) if 104>t > u(x),
b(x,t) =40 it w(x) <t<a(z),

—g(u(r) —t) it —10A <t < u(x),
—g(u(z) +104)  if < -10A.

Since |u|, |u| < A, there holds that |b(x,t)| < g(11 A) for every x € Q and t € R.
Let 1 <i<kand 1< j <m, and define, for each u € Wh%(Q),

w(x) i u(z) <w(e),
Tij(u)(x) = § ulx) it w;(r) < () < a;(x),
aj(x) it w(x) > a,(x)

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



SINGULAR PERTURBATION FOR A QUASI-LINEAR OPERATOR 355

and

u(e) if u(z) <w(z),

T()() = {ule) i ule) < ulo) < (),

u(x it w(z)>alx

for a.e. x € Q.
Next, we consider the following equation:

(C.1) —L(u) + B(u) + C(u) = 0 weakly in Q, w = ug on 99,
where

B(u)(x) = b(, u(x))
and

Clu) = B(T(w) = Y |B(T(w) = BT (w)
1<i<k
1553m

First, we want to show the existence of the solution of (C.1). We will use a fixed
point argument.

For each v € C(2) take u as the weak solution of Lu = y(z,v), where y(x,v) =
(b(z,v) + C(v)].

Observe that since |b(x,v)| < g(11 A) and since 3 is bounded, we have |y(x,v)| <
Cay.

Moreover, since ug € C%(€Q), there exist 0 < fi < 1 and a constant K 4 such that
[ullen @) < Ka-

Let 0 < p < fi, and consider the operator M : Bg, — Bk,, where Bg, =
{v e CHQ) : [vllcn@ < Ka}, such that M(v) = u, where u is the solution of
Lu = v(z,v) with u = up on 092. We want to show that this operator has a fixed
point, that is, a solution of Lu = 7(z,u). By Schauder’s fixed point theorem, this
holds if the operator M is compact.

Let us see that this is the case. In fact, let [|vn[lc. @) < Ka. Then, by the
results of Lieberman [19], the corresponding solutions w, satisfy ||un|| cn@) < Ky
and HVuana(g,) < Oy for every ' CC Q. Therefore, for a subsequence, u,, — u
in C*(Q) and Vu,,, — Vu uniformly on compact sets of (2. Moreover, without loss of
generality we may assume that v,, — v uniformly in ). Then, passing to the limit,
we have that u € By, is the weak solution of Lu = v(z,v), u = up on 9, sou = Mwv.
Thus, M is compact.

We will show that any solution w of (C.1) must satisfy

(C.2) u, <u<a, Yge{l,... .k}, re{l,...,m}

(C.2) implies that u = max{yq 1 <g¢<k}<u<min{a :1<r<m}=a
Then, by the definition of b we have that b(z,u(x)) = 0 a.e. in £, i.e., B(u) = 0. Also
T;j(u) = T(u) = u ¥i,j. Thus, C(u) = B(u). Therefore, u is a solution of (1.1) and
u < u<u.

So, let us prove that u, < u (similarly we can show that u < u,.).

Since u, satisfies (Hgup), we have that

L(u,) = Blug).
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Subtracting (C.1), we obtain for ¢ € W% ¢ >0,

— (L(uy), &) + (L(u), 9)

(©3) <- / {ﬂ(uq)ﬁ(T(U)H > ﬂ(ng(U))ﬂ(T(U))]Mw

1<i<k
1<j<m

+ /Q b(x,u)pde.

Taking ¢ = (u, —u)" as a test function in (C.3) we get, by the monotonicity of
the operator —L,
(C4)

(=) + £ 01 = [ o1, s -

gV ] Vo dr

|Vl
qu B v . . i
_/{uq>u} [ 90V gy 1 | 9Vl g |] [Vu, — Vu] da > 0.

On the other hand,
(C.

/{ﬂ )BT+ Y 18T BT (u))] (u, —u)" do

1<i<k
1<j<m

1<i<k
1<i<m

:/{ - |:5(uq Z |B(T; 1] B(T (u))] (ﬂq_u)d$2 0.

In fact, for u,(x) > u(z), we have u(z) > u(z) and

Tyj(u)(@) = uy(x), T(u)(z) = u(z).

Hence,

Blug) = BT(w) + Y [B(Ty(w) = BT (w))|

1<i<k
1<i<m

> B(u,) — B(T(w)) + |B(Ty;( u))| = Blug) — Bu) +[B(ug) — Blu)] > 0

and, thus, (C.5) holds.
Using (C.3), (C.4), and (C.5) and observing that u, < u we obtain

0< [ b(,u yq—u+dx: b uuq—udx
7/(2( I ) /'u. (z)>u(r)}( ) )

:/ —g(g—u)(gq —u)dz
w, () >u(x)>—10A}

+/ —g(u+104)(u, —u)dz <0,
u, (x)>u(x),—10A>u}
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from where it follows that

Oz/ g(u—u)(u, —u)dzx
{u,(@)>u(z)>-10A4}

>

/ o, — u)(u, — u)dz = / ol(y — w)* )y — u)* da.
{u,(@)>u(z)>-10A4} {u>—10A}

This implies (u, —u)* = 0 a.e. in {u > —104}, i.e., u, < uin {u > —10A4}.
On the other hand,

0= / g(u+104)(u, — u) dx
{u,(2)>u(z),u<—104}

>

/ 9(94)9A dr = g(94)9A | {u,(z) > u(z).u < —104}] .
{1, (2)>u(2).u<~104}

This implies [{u,(z) > u(z),u < —104}| = 0.

Then, u, <wu a.e. in {u < —10A4}. (Then, {u < —104} =0.)

In any case, U, < u. The result follows. 0

Proof of Theorem C.1. To complete the proof we follow the lines of Theorem 8 in
[15].

To prove (1), let C' be any bound of ug in W% (Q). Let C be the a priori bound
in WhH%(Q) of a solution to (1.1) with boundary value bounded by C in W& (Q).
Define

Te={ueWh9(Q): |u|wre < C and

u is a solution of (1.1) such that u < u < u and u > ug on 90}.

Then, T is not empty by the previous lemma. We have to prove that 7' (with the
order <) has a least element. The proof is based on Zorn’s lemma and a continuity
argument.

Since in our case |, |u| < A, we can take v = A—u, B(t) = —18(4=2), v = A—
v=A—u, and

I

3

(C.6) Lv = [(v).
We consider the set (with a constant C related to C, A, and Q)

Sc={veW"%(Q) : |Jv||lwre < C and v is a solution of (C.6) such that v < v < v
and v < vo on 90N}

and prove that S has a largest element. Observe that now v > 0 for all v € S. By
the previous lemma S # ().

The proof of Theorem 8 in [15] uses the fact that the functions in S¢ are nonnega-
tive and a compactness argument. In our case, since the functions in S¢ are uniformly
bounded in W% (Q), any sequence in Sc has a subsequence that converges a.e. in €2,
HN~L1-a.e. on the boundary, weakly in W1 (Q), and uniformly on compact subsets
of Q together with their gradients. Therefore, the limit belongs to S¢. Using this
argument, we can follow the lines of that theorem and conclude that any chain in S¢
has an upper bound in S¢. Then, by Zorn’s lemma, S¢ has a maximal element v* in
Sc with respect to the partial order <.
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Let us see that v* is the largest element of Sc. Let v € S¢. Since v and v* are
both subsolutions, max{v,v*} is a subsolution of (C.6). Then, by Lemma C.1 there
exists a solution w of (C.6) with w = vy on 9 such that v < max{v,v*} < w < o.
Thus, w € S¢ and w > v*. By the maximality of v*, w = v* and then v < v*.

Observe, in particular, the fact that w = v* implies that v* = vy on 0.

Observe that, in an analogous way, we can prove (2) by taking a set similar
to S. d

REFERENCES

[1] H. W. ALt AND L. A. CAFFARELLI, Ezistence and regularity for a minimum problem with free
boundary, J. Reine Angew. Math., 325 (1981), pp. 105-144.
2] H. W. Art, L. A. CAFFARELLI, AND A. FRIEDMAN, A free boundary problem for quasilinear
elliptic equations, Ann. Sc. Norm. Super. Pisa Cl. Sci., 11 (1984), pp. 1-44.
(3] H. BERESTYCKI, L. A. CAFFARELLI, AND L. NIRENBERG, Uniform estimates for regularization
of free boundary problems, in Analysis and Partial Differential Equations, Lecture Notes
in Pure and Appl. Math. 122, Dekker, New York, 1990, pp. 567-619.
[4] L. A. CAFFARELLI, A Harnack inequality approach to the regularity of free boundaries. Part I:
Lipschitz free boundaries are C1**, Rev. Mat. Iberoamericana, 3 (1987), pp. 139-162.
(5] L. A. CAFFARELLI, A Harnack inequality approach to the regularity of free boundaries. Part I1:
Flat free boundaries are Lipschitz, Comm. Pure Appl. Math. 42, (1989), pp. 55-78.
6] L. A. CAFFARELLI, D. JERISON, AND C. E. KENIG, Regularity for Inhomogeneous Two-phase
Free Boundary Problems. Part 1: Flat Free Boundaries are C%, preprint.
[7] L. A. CAFFARELLI, C. LEDERMAN, AND N. WOLANSKI, Pointwise and viscosity solutions for the
limit of a two phase parabolic singular perturbation problem, Indiana Univ. Math. J., 46
(1997), pp. 719-740.
[8] L. A. CAFFARELLI, C. LEDERMAN, AND N. WOLANSKI, Uniform estimates and limits for a two
phase parabolic singular perturbation problem, Indiana Univ. Math. J., 46 (1997), pp. 453—
489.
[9] L. A. CAFFARELLI AND S. SALSA, A Geometric Approach to Free Boundary Problems, Grad.
Stud. Math. 68, American Mathematical Society, Providence, RI, 2005.
[10] L. A. CAFFARELLI AND J. L. VAZQUEZ, A free-boundary problem for the heat equation arising
in flame propagation, Trans. Amer. Math. Soc., 347 (1995), pp. 411-441.
[11] M. C. CERUTTI, F. FERRARI, AND S. SALSA, Two-phase problems for linear elliptic operators
with variable coefficients: Lipschitz free boundaries are C1Y, Arch. Ration. Mech. Anal.,
171 (2004), pp. 329-348.
[12] D. DANIELLI, A. PETROSYAN, AND H. SHAHGHOLIAN, A singular perturbation problem for the
p-Laplace operator, Indiana Univ. Math. J., 52 (2003), pp. 457-476.

[13] F. FERRARI AND S. SALSA, Regularity of the free boundary in two-phase problems for linear
elliptic operators, Adv. Math., 214 (2007), pp. 288-322.

O. LADYZHENSKAYA AND N. URAL'TSEVA, Linear and Quasilinear Elliptic Equations, Academic
Press, New York, 1968.

(15] V. K. LE aND K. ScHMITT, On boundary value problems for degenerate quasilinear elliptic
equations and inequalities, J. Differential Equations, 144 (1998), pp. 170-218.

C. LEDERMAN AND N. WOLANSKI, Viscosity solutions and regularity of the free boundary for
the limit of an elliptic two phase singular perturbation problem, Ann. Sc. Norm. Super.
Pisa Cl. Sci., 27 (1998), pp. 253-288.

[17] C. LEDERMAN AND N. WOLANSKI, A two phase elliptic singular perturbation problem with a

forcing term, J. Math. Pures Appl., 86 (2006), pp. 552-589.
[18] G. M. LIEBERMAN, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear
Anal., 12 (1988), pp. 1203-1219.

[19] G. M. LIEBERMAN, The natural generalization of the natural conditions of Ladyzhenskaya and
Ural' tseva for elliptic equations, Comm. Partial Differential Equations, 16 (1991), pp. 311—
361.

. MARTINEZ, An optimization problem with volume constraint in Orlicz spaces, J. Math. Anal.
Appl., 340 (2008), pp. 1407-1421.

. MARTINEZ AND N. WOLANSKI, A minimum problem with free boundary in Orlicz spaces,
Adv. Math., 218 (2008), pp. 1914-1971.

[22] D. R. MOREIRA AND E. V. TEIXEIRA, A singular perturbation free boundary problem for elliptic

equations in divergence form, Calc. Var. Partial Differential Equations, 29 (2007), pp. 161
190.

)
=
9]

IS
=
wn

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



SINGULAR PERTURBATION FOR A QUASI-LINEAR OPERATOR 359

[23] K. SCHMITT, Revisiting the method of sub- and supersolutions for nonlinear elliptic problems, in
Proceedings of the Sixth Mississippi State-UAB Conference on Differential Equations and
Computational Simulations, Starkville, MS, Electron. J. Differ. Equ. Conf. 15, Southwest
Texas State Univ., San Marcos, TX, 2007, pp. 377-385.

[24] E. V. TEIXEIRA, A variational treatment for general elliptic equations of the flame propagation
type: Regularity of the free boundary, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008),
pp. 633—-658.

[25] G. S. WEIss, A singular limit arising in combustion theory: Fine properties of the free bound-
ary, Calc. Var. Partial Differential Equations, 17 (2003), pp. 311-340.

[26] YA. B. ZeLpovicH AND D. A. FRANK-KAMENETSKII, The theory of thermal propagation of
flames, Zh. Fiz. Khim, 12 (1938), pp. 100-105 (in Russian); selected Works of Yakov
Borisovich Zeldovich, Vol. 1, Princeton Univ. Press, Princeton, NJ (1992 in English).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


