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Abstract

The knowledge of analytical expressions for the electromagnetic (EM) fields produced by the coils used in eddy current testing is an important
point in the development and application of these devices. In the present work, the second order vector potential formulation is used for the
calculation of the fields produced by planar rectangular spiral coils of arbitrary number of turns and finite rectangular cross-section placed on a
conducting half-space. Impedance plane diagrams are calculated for different frequencies, lift-off and half-space conductivity. Tests for
conductivity assessment are also simulated. The theoretical results are compared with experimental measurements.

© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The use of planar coils for defect detection and materials
characterization has been reported by many authors [1-6]. Our
group has been working for some years on the design,
characterization and use of planar rectangular coils [7,8]. For
the design and construction of the coils described used in the
cited papers simple models have been used, through which
only the electrical parameters of the coils could be calculated:
Ly, R and C. The experience acquired in those early works gave
us an insight of the advantages of this type of coils: elimination
of end effect in the inspection of edge cracks, good
performance in the conductivity measurement at high
frequencies, high sensitivity to crazing and other shallow
imperfections, and the fact that any number of identical planar
coils can be made from a single photographic negative. It also
presented us with the challenge to extend our understanding of
the scope and limitations of this type of coils. To achieve this, a
knowledge of the expressions of the EM fields they produce is
fundamental.

In this work, the calculations of the EM fields and the
expressions for inductance and impedance are first
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presented, following the same steps as other authors
[9,10]. Thus, the expressions for field calculations are
derived in the second order vector potential formulation.
The formulae are then applied to the calculation of coil
inductance in air, Ly, and to modeling of the impedance
plane of the coils under study.

In this way, a generalization of the results by Theodoulidis
et al. [9] was achieved. In particular in the present paper results
from three planar coils are presented: two of them consist of
two planar windings of 6 and 10 turns, respectively, placed on
the opposite faces of an isolating substrate, the third one
consists of two planar 7-turn windings, both of them placed on
the same face of the isolating substrate. These results may be
extended to flat rectangular coils with finite rectangular cross-
section and any number of turns.

2. Problem definition

A sketch of the problem to be solved is shown in Fig. 1: a
source J of alternate current above an infinite isotropic,
homogeneous, conducting, non-ferromagnetic half-space of
electrical conductivity ¢ and magnetic permeability u. Here,
uw=pou, with o the permeability of free space and u, the
relative permeability.

The EM fields produced by the source in all the space are to
be calculated. For this task, the second order potential vector
formulation [11] under the quasi-static approximation was
used.
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Fig. 1. Current distribution in an infinite conducting half-space and the regions
of interest. z=0 corresponds to the interface separating the media.

The source is excited with a sinusoidal current density of
frequency f: J(x, N =Jo(x)e’*" with w=2mf. In the Coulomb
gauge (V -A=0) [12], the existence of a second order vector
potential W can be assumed, such that A=V X W. Following
[11] we write W as

Wap =2W,p +Z2XV-W,,, (D

with Z the unit vector in the z-axis direction and W and W, the
two independent scalar potentials on which W depends.
Because we are working in the Coulomb gauge and in a region
free of electric charge sources (p(x, t) =0), the electric potential
is zero (¢(x, £)=0) and the vector potential A satisfies Eq. (2) in
each of the regions of space of interest to the present problem:

VzAa,b + :u'a,bsa,bsza,b = _:u'a,bJa,b’ (2)

The sub indices a and b indicate the a and b regions into which
the problem has been divided for its study, where D, , =¢oE, ;,
because ¢,=¢&,=¢o; B,= uoH,, B,=uHy, J.=0 and J,=0dE,,
and the fields are given by E,,= —0A,/0f and B,,= V X
A, . With these expressions, Eq. (2) can be written as follows in
terms of the vector potential:

2 . 2
v Aa,b _]ua,baa,bwAa,b + Map€ab® Aa,b = VU (3)

For metals and the test frequencies ordinarily used in
electromagnetic nondestructive testing (under 10 MHz), the
value of uow greatly exceeds that of uew?, so that the third term
in (3) can be disregarded [13]. This is known as the quasi-static
approximation. The equations for A can thus be written

V’A, =0 “)

VA, —7’A, =0, (5)
with y>=jwpuo.
In the region, R, Laplace equation (4) is also true for W,

therefore V2W,,=0 and V>W,,=0. A, consequently takes
the form

A, =V XiW,, — (@-V)VW,, 6)
and the corresponding magnetic flux density is
oW
B, =V (—'> @
0z

In the region, R, the vector potential is the sum of the primary
potential A,, produced by the excitation current in the coil and

the secondary potential A, originated in the eddy currents
within the conductive halfspace: A,=A,;+A,s. W, will thus
consist of the same contributions Wy, = W,,+ Wiy, each of
them satisfying Laplace equation:

VWi =0 (8)
and
VZWMS = O (9)

For the calculation of the vector potential in the region Ry, there
is in principle the equation derived from (1). As it is known
[14,15], from the continuity of the tangential component of the
magnetic field intensity and of the normal component of the
magnetic flux density, the boundary conditions for the scalar
potentials at the interface between both media (z=0) can be
determined.

The conditions which W, must satisfy are: 9W,,/0z=0 and
Ws, =0, and because there are no sources in the conductor, W5y,
must be zero in the conductor. Thus, the expression for the
vector potential is

Ab = VXinb, (10)

and substituting this expression in (5), an analogous equation
for Wiy, is obtained

VAW, — Wy, = 0. (11)

The solution to this problem is fully determined once Egs. (8),
(9) and (11) are solved. Therefore, it is only necessary to know
one scalar potential Wy, all over the space. These equations
have general solutions, which can be written in terms of double
Fourier transforms. Wi,, is obtained from the calculation of
A ,p for a known current distribution, as discussed in Section 3.

The solutions of Egs. (9) and (11) in terms of the Fourier
transforms of Wy, and Wy, [16], which we denote X ,(«, 8, ? 72)
and X;,(e, 8,2), respectively, are

Xlas(ang’z) = Klas(avﬁ)eikz and
X1p(,8,2) = Kyp(e,8)e’™s, with k* = o + % and
2=+
If a solution for W, is known

4o +oo
Wi = F ' [Xigp] = J J Kigp(@,B)ee/ ™ dadg,  (12)

—00 —00

with F~U[X 1ap] the inverse Fourier transform of X;,,. The
expressions for the K,; and K, coefficients are determined
applying the boundary conditions for B and H at =0 in terms of
the scalar potentials. Thus, the scalar potentials are

4o oo
k— 4
Wias = J J Kigp(e,8) LY eHeei@ g dg, (13)
E ek +y
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400 4+
Wiy, = J J K ap(et,6) k" e da dg. (14)

3. Rectangular coils
3.1. Single wire rectangular current loop

As above indicated, first W,, for the current distribution
under study must be determined in order to be able to calculate
the expressions for the other scalar potentials using (13) and
(14). We start with the expression for the magnetic flux density
of a current loop calculated using the corresponding vector
potential [17]

J(xy)
BaZVXAaZVX EJ dVS
Vs
I [ dldl
— VX &95__ (15)
4 rr
c

with r=/(x—x,)> + (y —y,)> + (z —z,)%, where ry=(x,, ys,
Zs) 1s a current source point and r=(x, y, z) is a field point. After
using Stokes’ theorem, rearranging, comparing our result with
(7) and solving for W,,,, we get

wol . dz
Wi = —ﬁ JzVS <J7) da. (16)
S

For the calculation of W, let the current source circulate
along a conducting wire in the shape of a rectangular loop,
Fig. 2. Due to the design of the coils under study in the present
work (Section 3.2), for the calculations two loops must be
considered, one centered at (0, 0, z.) and the other at (x', ¥/, z.).

When expression (16) is applied to these distributions, the
desired results for Wy,, are obtained. For the distribution in
Fig. 2 (loop centred at (0, 0, z.)) we use the expression
presented in [9]:

Mol J J ™) sin ax, cos By, OBy dg

g
=7
(17)
zZ 4 Ye
J -
y
X

Fig. 2. Current carrying rectangular loop.

For the case of a loop centred at (x', y', z.), the factor g o'+
A is introduced in the integrand of (17), as shown by an

analogous calculation.

3.2. Rectangular spiral planar coils of finite rectangular
cross-section

We want to calculate the EM fields of coils as those shown
in Fig. 3, similar to those used in [7,8]. The usual technique for
the construction of printed circuits was applied, i.e. the coils
consist of rectangular spiral copper traces on a fiber glass
substrate. The copper traces may lie on one or both faces of the
substrate, and there may be more than one substrate per plate,
the so called multi-layer design. A thin layer of epoxy resin
protects the copper traces. Here, as in [7], single and two-layer
coils have been used. In the present work, the following
configurations are studied: a coil made of two rectangular
6-turn copper traces, each one deposited on the opposite faces
of the isolating substrate (thus resulting in the upper and lower
faces of a two layer coil), another similar coil but with two 10-
turn copper traces and a third coil consisting of two parallel
7-turn copper traces on the same face of the substrate (single-
layer coil). The width of the copper traces and the gap between
them is 0.2 mm and their thickness is approximately 0.065 mm.
All the coils are covered with a solder mask approximately
0.02 mm thick. In what follows these three coils will be
referred to as coils 1, 2 and 3, respectively.

To deduce an expression for the fields and impedance of
these coils, we calculate first the potential of a single
rectangular loop of rectangular cross-section such as that
shown in Fig. 4. For this calculation, we used the method
presented in [10] for the calculation of the vector potential of a
circular coil of finite rectangular cross-section, but applied to
the deduction of the scalar potential W,,. The superposition
principle is here applied to Eq. (17), assuming the excitation

200 um

65 -75 um

200 pm
Coil 2 Coil 3
2x10 turns 2x 7 turns
both faces [‘“ same face

a0

[E]

Fig. 3. General characteristics of the coils used and modelled. Side view of the
upper and lower faces of a two-layer coil.
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Fig. 4. Rectangular loop with a finite rectangular cross-section.

current density is constant in phase and amplitude over the loop
cross-section. In particular in our coils, each turn in the spiral
consisting of a single copper trace, the superposition is made by
calculating the integral of Wi,,, Eq. (17), over the cross-
section, but bearing in mind that this single copper trace is to be
considered as a single ‘turn of wire’. The expressions thus
obtained for the scalar potential W, of the loop in Fig. 4 in the
different regions of space are presented in the Appendix A, and
correspond to the expressions obtained in [9], but with number
of turns N=1. As indicated in Fig. 4, in the formulae in the
Appendix A and in what follows, z; and z, are the positions on
the z-axis, such that z; — z; is the thickness of the finite loop, the
(xc.i» Ye.;) pairs are the half-axes of the inner rectangle forming
the loop (the sub indices i will be used in section when many
turns are considered) and c is the width of the loop.

Once the expressions for the scalar potentials of a rectangular
planar loop with a rectangular cross-section are known, the
calculation of the scalar potentials for the coils under study is
achieved by superposing concentric rectangular loops of the size
corresponding to each turn of the spiral which makes each
particular coil. In all these calculations, edge and skin effect, as
well as the eddy currents inside the coils have been neglected.
Moreover, the cross-section of each loop in the coil is assumed
rectangular, though it is only approximately rectangular. A
further approximation is that the spiral traces making the coils
are substituted by the rectangular concentric loops.

The magnetic flux density in the no-conductor region R,
produced by the current circulating in the coils under study, is
formed by the superposition of the fields produced by their 2n
loops.

3.2.1. Coils 1 and 2

For coils 1 and 2, one half of the total 2n turns lie on one of
the faces of the isolating substrate and the other half lie on the
opposite face. One of these faces is denoted up, the fields
produced by the loops on this face being indicated with the sub
index u. Analogously, the opposite face is denoted down and
the corresponding fields are indicated with the sub index d.
Thus, the magnetic flux density in R, we are calculating is

n

B! 1 1

Beois 12 = Z(B v B = a Z(Wlap,i,u + Wiapia)-
i=1

(18)

For each Wi, and Wi,y 4 the expression (A2) from the
Appendix A is used, the total scalar potential of the coils in free
space thus being of the form

+o00 400 F ,
ToT ,LL()I J kz ZZ: (xc i"Ye, 1)

Wlap Coils 1,2 = m

>< [e—kZZu _e—kzlvu + e—kZZVd

e_kZLd]e/’(aX""ﬁy)da dg

(19)
By comparison between (19) and (12) we deduce that the K lTa(l),T
coefficient, for a n-turn coil, is
Z T(xc,i’yc,i)
K0T wol i=1
lap,Coils 1, 2 = 2752(22 -2z )C 0[,8
—*kzZ1u _ o K22u + —*kz14 _ o k224
x e e e e ] ' 20)

k2
In (19) and (20): z2,4, 21,4, 22,4 and z; 4 are the z-axis positions of
the upper and lower parts of the copper traces on the up and
down faces of coils 1 and 2. Thus, z,—
Z1.4» 18 the thickness of the loops.

A=22u"Zu=22d4d

3.2.2. Coil 3

For coil 3, the 2n=14 loops lie on the same face, in two
parallel intertwined lanes having seven turns each. One of these
lanes is called left and the fields produced by the loops in this
lane are indicated with the sub index 1. Analogously, the other
lane is called right and the corresponding fields are indicated
with the sub index r. The magnetic flux density in R, produced
by the coil is

B! 1 1 -
Beois = Z(Bz?p +B;7) = a Z(Wlap.i,l + Wiap.ir)
i=1

21

The loops which make the left spiral are centred at the
point (x/, ¥)=(—0.2032 mm, —0.2032 mm) on the plane
of the coils, therefore in the expression for Wlap,l in (21),
in which Eq. (A2) is used, the factor &/ “introduced
in Section 3.1, is evaluated at that point. Similarly, the
spiral denoted right is centred at the point (x, y')=
(0.2032 mm, 0.2032 mm), the correction for Wi,, ;. being
consequently evaluated at that point. Thus, the scalar
potential for coil 3 is:

n
I Tt kz Z F(xc,i’yc,i)
WITOTC 13 =— Ho J J € =l
ap. ol (2, —21)C k2 af
—00 —00

X [e ™2 —e ™ cos[(a + 8)2.032

X 10741/ g g (22)
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From comparison between (22) and (12) the coefficient

KIoT for these type of coils is:
Z F(xc,h yc,i)
KTt Y L LA =
lap, Coil 3 7'52(22 _Zl)C aﬁ
—kz; __ —kzp
X [ekize]cos[(a +6)2.032 X107 (23)

In (22) and (23) z, and z; are the z-coordinates of the upper
and lower positions of the copper traces in coil 3.

With the formulae deduced in this section, together with
(13) and (14), the scalar potentials of the coils under study can
be calculated in all the regions of interest, and from them the
EM fields are obtained.

4. Coil impedance

Coil impedance is calculated from the induced voltages on
each of the loops making the coil, which are in turn calculated
by superposition of the flux density produced by each particular
loop through itself and through all the others.

Let us first consider any single loop i in the coil. Let BJ°T be
the sum of the magnetic flux densities through the area
bounded by loop i produced by loop i itself, all the other loops
in the coil and the induced currents in the material. Then the
induced voltage on loop i is

= % J JQB,-TOTdai dArea;  (24)
4

Coil crosssection \ S;

TOT
Vio

On the other hand, we know that:

V =1Z = I(Z, + AZ), (25)
Zy = jXoy = jwLy (26)
and

AZ = AR + jAX. 7)

Here, Z, is the coil impedance in air and AZ is the impedance
change produced by the currents induced in the conducting
material.

4.1. Ly coil inductance

In this case, the BI°T field in (24) is the flux density through
loop i produced by the coil in free space. As explained above,
the active fields in each particular loop i in the coil are its own,
namely Bi1 " and that produced by the other loops in the entire
coil.

4.1.1. Coils 1 and 2

Let loop i lie on the up face and B,TgJTiu be the total flux

density through that loop. Then the z component in (24) is

n

TOT z : lap 2 : lap

z lap,iju — Bz iu,nu + Bz,iu,nd' (28)
n

Each of the B,?E L is given by (A3) through (7), and each of the

lef;ﬁ’nd is given by (A1), also through (7). The reader is referred

to the Appendix A for both cases. Using (22) and (28), the total
induced voltage on loop iu is

yToT . Yolwy
lap,iu TCZ(ZZ —Z1)262
+o0 o0 (e @) — 1)
X J J 2[(Z2,u 1) +k}
> TXepusYenn)
nu=1
G — Xe,iwsYe.iu da d
(B)? el =
400 400

|

Z T(xc,nd’yc,nd)

X IMZIW F(xc,iu ’yc,iu)da dﬂ

J [ (e*](Z]_u — e‘kZz_u) (ekz;d _ ekZ],“) ‘|
k

—©

The total induced Voltage on all the coil deposited on face u is
the sum of the voltages V]ap u on each loop iu of that face. Let
VIOT be that voltage

ldpu
—+o +o0
16jwlp,
TOT _ 0
Vlapu = z(zz_zl)z > J J [(Z2,u_zl,u)
0 0

1
(aB)
+o foo

2 K2 224 —Kz14 (30)
iy J (et (s =)
2k
0

0
n 2
|: Z:] F(xc,n ’yc,n):|
(aB)?

n 2
(e He2z10) — > r (xc,n,yc,n)}
+ 1 = da dg

X da dg

Besides, Vlapu jwiILy, and, because of coil symmetry the
inductance in air results

Ly, coits 12 = 2Lg4- 3D

4.1.2. Coil 3

Loop i of coil 3 lies on the same face of the isolating
substrate as all the other loops making the coil. Let that coil
belong to the left spiral and B,T%Ti, be the total flux density
through that loop, then the z component is:

n

TOT lap lap

Z lap,ill — E B" ,il,nl + § :Bz,il,nr' (32)
nr=1
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Here, both BI%, and B! are calculated applying (7) and

(A3) to these coils; but with the corrections due to the position
of the centre of spirals 1 and r, that is, the factor e /** B
must be evaluated as indicated in Section 3.2.1. From (24), but

now with (32), the induced voltage on loop il is

i —k(@—)
[ ] oo s

tor _  jwlug

Vl i —
ap,t 7'52(12 _ZI)ZCZ k

—00 —00

E F(xc,m ’yc,m)

m=1

2=
(aB)
X c0s[2.032 X 10 *(a + 8)]dax dB.

I'(xeiyein)

(33)

The total induced voltage on all the 1 coil is the sum of the
voltages Vldp ;1 on all of its il loops. Let Vldpl be that voltage.
Then

+o +o0

8j(,()1,LLO J J (e_k(m Z1) 1 )
VTaOT — _ S — A
lap = P (@2 —21) k
" 2
|:Z F(xc,m’yc,m):|
X L=l . c0s[2.032 X 10 *(a + 8)1dec dB
(e3)
(34)
In (32)—(34), sub index m stands for m=nl=nr.
Besides, VI)| = jwlLy;, and
Ly, coit 3 = 2Lg)- 35)

4.2. Coil 4Z

For the calculation of the impedance change produced by
the currents induced in the conducting material, the expression
derived by Auld et al. in [18] was used:

1
AZ = 7 Sﬁﬁ-(Eo X H® —E¢ X H%)dS.. (36)

SC

Here, S, is an arbitrary closed surface enclosing the conductor
but excluding the coil. E° and H® are the fields in absence of the
conductor, while E® and HC are the fields in its presence. The
surface S, is that of the conductor (at z=0) and is closed at
infinity by surface S. which extends within the conductor for
z<<0. With this choice for S, applying (7) and vector identities
to the integrand in (36), and considering the divergence
theorem and Farady’s law, Eq. (36) becomes

Az =12
ol
T s, 0w a*w, aw,
0 c c 0
X — dxd 37
J J < 922 0z 9 9z >(z=0) oD

For our problem, Wy=W,,, and W.=W,,+ W,,,. From the
calculation of each of the factors in the integrand of (37) using
(12) and (13) the expression for AZ results:

“+00 —o0

J J K (0, 0)K 1 gp(—at, — B)

—00 —00

8w
,u012

AZ =

X ,Ler—’Y

dad 38
wek 4y «df ©8)

This is a general expression, valid for any particular
distribution determined by Kj,p.

4.2.1. Coils 1 and 2

For coils 1 and 2, the K|, factor in the integrand of (38) is
given by (20). Considering that KlTaOp,Tcoﬂs 1) =
KT coits 12(—, —B) and substituting (20) in (38) we get the
expression for the impedance change due to the presence of the
conducting material

n 2
Fooe |:E T(-xc,i5yc,i):|

J8wiy J J i=1
AZcoits =
2T 12y — )2 (aB)?
0 0
[ekaLu _eszz,u + eszl,d _e*kzz.d]z
X
k
ek —y
X —dad 39
uck +y @ db 59
4.2.2. Coil 3

The factor Ki,, for coil 3 is given by (23). Here also
1ap Coil 3(0,8) = ﬁg?cmls 3(—a, — 8), thus analogously to the
procedure for coils 1 and 2, the impedance change of coil 3 due

to the presence of the conducting material is

) 2
oo o {z r(xc,i,yc,i)]
i=1

_ J32wpg
Acuiss = 2, — g Vo2 J J (aB)?
0 0
—kz; __ k272 k—
wle e P mkTY o 032
k uck +y
X 1074« + 8)]da dB. (40)

5. Implementation and results

In order to determine the scope and validity of the
derived formulae, we calculated first the values of L, the
inductance in air of the coils under study, and compared them
with the measured values. Egs. (30) and (31) were used for
coils 1 and 2 and Egs. (34) and (35) for coil 3. The
measurements for coils 2 and 3 were presented in [7]. They
were made using a resonant R—L—C circuit, as explained there.
These results as well as the measurements corresponding to
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Table 1
Calculated and measured in-air inductances of the three coils under study

LO,Calculated LO,Measured (tu) A%
(nHy)
Coil 1 0.98 1.23£0.03 20.3
Coil 2 3.20 3.38+£0.03 53
Coil 3 1.45 1.58+0.02 8.2

coil 1 are presented in Table 1. Column 4 of Table 1 shows the
percentage difference (A%) of the calculated L, with respect to
the experimental L. Considering the approximations in these
calculations, it may be said that the theoretical derivations
presented here yield predictions of L.

As mentioned above, the Ly measured values for the three
coils, which are compared with the calculated values, were
obtained using a R-L-C resonant circuit. The resonance
frequencys, f;, is measured in this circuit; and then Ly is obtained
through the expression: Ly(f;, C)= 1/(21'cfr)2C. The value of C
that appears in this formula is known and is determined with its
correspondent error, just like f,. The error in L, is then
calculated by error propagation for the expression above. The
values shown in the third column of Table 1 were calculated in
that way. Of the two magnitudes in the formula, the capacity
and the frequency of resonance, the latter and its error are the
magnitudes, which have the most influence in the calculation of
Ly and its error.

In addition to the quasi-stationary approximation introduced
in Section 2, the following approximations, mentioned in
Section 3.2, were considered for the application of the model
developed to the coils in question:

¢ In all these calculations, edge and skin effect, as well as the
eddy currents inside the coils have been neglected.

e Moreover, the cross-section of each loop in the coil is
assumed rectangular, though it is only approximately
rectangular.

o A further approximation is that the spiral traces making the
coils are substituted by the rectangular concentric loops.

These last two approximations are the ones that have the
most severe influence in the theoretical description of the real
coils, possibly because this kind of approximations are directly
related to the actual shape of the coils. As to the approximation
of the spirals by concentric rectangular loops, it is no surprise

Fig. 5. Cross-section of a cooper trace.

that it will be a better description of the real coils if the spiral
tracks are very narrow and very close to each other. The fact
that assuming a rectangular cross-section is an approximation
can be evaluated by optical microscopy of a cut of the copper
traces of the coils, see Fig. 5. As it can be seen in this figure,
there is a rectangular section plus a trapezoidal one. The area
taken for the calculation was a rectangular equivalent section
of the same area as the sum of the rectangle plus the trapezoid
areas. This approximation will be a better description of the
real coils as the cross-section of the copper tracks decreases.

There is an aspect of the real coils, which has not been taken
into account in the calculation and also explains in part the
discrepancy among the calculated and measured values of L,
specially for coil 1 which showed the bigger discrepancy (see
Table 1). This aspect is related to the manufacture of the coils,
and it is that in the central part of the coils we have constructed
the connectors, on which the cables are to be welded (see
Fig. 3). These connectors are also made of copper as the spiral
tracks; but they are quite larger: they are 1.6 mm side squares.
The variation of the electromagnetic field in the surface of
these square connectors produces an increment in the
impedance of the coils. This variation would explain, in part,
that with our calculations we always obtain values smaller than
the measured ones. Thus, this increment in the inductance
relative to the total area of the coil is more important for the
smaller coil than for the bigger ones. This would explain the
bigger discrepancy between the calculated and the measured
value of L, for the coil 1.

With the expressions (39) and (40) together with (25), the
impedance diagrams for the inductors under study were
determined in different conditions. For the simulations, lift-
off values between 0 and 30 mm and excitation frequencies
between 0 and 100 MHz were considered. All the frequency
range for eddy current testing was thus covered. As the
materials for the conducting half-spaces, Zircaloy-4 (Zry-4)
and aluminum were selected. Their electrical conductivities are
1.35X10° S/m [19] and 3.56 X 107 S/m [20], respectively, and
both have u,=1. Impedance diagrams were also calculated
varying the conductivity of the half-space in all the possible
range, to obtain a full diagram. As is usual practice in eddy
current testing, the complex impedance given by (25) is
normalized to X, the inductive reactance of the coil in air.

Fig. 6 shows the impedance diagrams for Zry-4 and Al of
the three coils under study, when frequency is varied. A 2.0 X
10> m lift-off was used for the calculation, that being the
approximate thickness of the solder mask. At first glance, it
may be stated that the characteristics of the diagrams depend on
the type of coil (i.e. basically its geometry), independent of the
material of the conducting half-space.

As it can be ObSCrVed, AZCoil 3 < AZCoils 12 and AZCoill
=AZcoi» for all the frequencies. We conclude that at all
frequencies the coupling between coil 3 and the conducting
material is weaker than that of the two others. We postulate this
is basically due to the respective single-layer, two-layer design
of the coils and not to the number of turns itself. The lift-off
traces produced by coil 3 in Fig. 6 are thus smaller than those of
the other two. Though this fact might seem beneficial at
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Fig. 6. Impedance diagrams made varying the excitation frequency.

inspection time, it is actually not so, because the signals from
this coil need greater amplification, thus amplifying also
unwanted noises and lowering signal to noise ratio.

Impedance diagrams were also calculated for the full
frequency range and different lift-off values. Fig. 7 shows
one of these diagrams. From these calculations, the limiting
lift-off value, for which the lack of coupling between material
and coil starts being significant, can be estimated. It must be
pointed out that the above-mentioned 2.0X 10> m lift-off
curve is not shown in Fig. 7 because it differed non-
significantly from the zero lift-off curve (compare Fig. 6).

The optimal frequency for conductivity measurement was
determined in an approximate way for each coil and each
conducting material. Following [21], this frequency is that for
which AR/X, is maximum in an impedance diagram such as
those in Fig. 6. Graphically it corresponds to the extreme right
portion of the nose-shaped diagrams. These optimal frequen-
cies are listed in Table 2.

In order to compare our sensors’ response to conductivity
changes, some conductivity variation assessment tests have
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Fig. 7. Impedance diagrams made varying the excitation frequency, for three
lift-off values.

been modelled for Zry-4 and Al. The calculations were
made at the optimal frequencies and at frequencies quite
higher than those. The higher frequencies were prompted by
the experience in the use of these sensors. In the
experiments reported in [7,8], and in other experiments
performed with these sensors in the group, good response
for material sorting was observed at frequencies quite higher
than the theoretical optimal frequencies determined here. As
an example, for Zry-4, hydrided Zry-4 and low conductivity
materials, the best responses were those at frequencies
above 300kHz, even as high as 1 MHz. Therefore,
calculations for Zry-4 were also made at 800 kHz as the
alternative frequency. The alternative frequency for Al was
selected such that it produced in Al the same standard skin-
depth as 800 kHz in Zry-4. The alternative frequency for Al
thus determined is approximately 30 kHz. The results are
shown in Figs. 8 and 9.

The shape of these curves is that of the well-known lift-
off signals. Just to explain the origin and shape of these
signals, it must be pointed out that in these kind of eddy-
current experiments, the Wheatstone bridge constituting the
normal equipment—to one branch of which the sensor is
connected—is balanced while the sensor is ‘in air’ (i.e. far
from the conducting material). The experiment consists on
recording the bridge ‘unbalance’ while the sensor is
approached to the material [21]. For the present calcu-
lations, lift-off was varied between 30 and O mm. The
simulations were made using the conductivities of Zry-4 and
Al, full-line curves in Figs. 8 and 9, and then +15%
variations to those conductivities were considered (dotted-
line curves). These variations were arbitrarily chosen. For

Table 2

Optimal frequencies for conductivity assessment

Optimal fre- Coil 1 Coil 2 Coil 3
quencies (kHz)

Zry-4 150 75 145
Al 5.5 3 5.5
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Fig. 9. Simulated conductivity assessment tests with coil 3.

each of the coils it can be generally stated that for both
materials the sorting power of the coils is similar at the
frequencies defined as optimal in the handbooks and at
the higher frequencies. Another aspect, which results from
the comparison between Figs. 8 and 9 is that because the
full lift-off signal from coil 3 is quite smaller than those
from coils 1 and 2, the relative variations between the
different signals are smaller for coil 3 than for the two
others. For instance, at the optimal frequencies in the
conductivity range studied (—15 to +15%), the variations
for coil 2 lie in an interval of approximately 0.05 units on
the X/X, axis (similar values being determined for coil 1),
while the variations for coil 3 lie in an interval of
approximately 0.04 units on the same axis. This is another
consequence of the lower coupling with the material to be
inspected which coil 3 presents as compared to the other
two coils.

Finally, impedance diagrams for conductivity variation were
calculated. This was made for the three coils at the optimal
frequencies defined here and zero lift-off. The results for
f=3 kHz are shown in Fig. 10. Here, as for the analysis of Fig. 6,
it can be stated that diagram characteristics depend on coil

design and not on the conductivity of the material to be
inspected. In the analysis of Fig. 10 this last point is more
evident, because the diagrams here are produced when
conductivity varies throughout the complete range for metals.
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Fig. 10. Impedance diagrams made varying the conductivity.
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6. Conclusions

Analytical expressions for the EM fields produced by
rectangular planar spiral coils with finite cross-section were
obtained with the second order vector potential method. The
knowledge of these fields enabled us to calculate the electrical
parameters of the coils and model their impedance diagrams.

The comparison of the calculated self-inductance in air of
the coils under study and the measurements on real coils
showed that the theoretical derivations presented here are
acceptable for determining that parameter.

The construction of the impedance diagrams led us to
conclude that coil design is determinant as to the coupling
between the coil and the conducting material, independent of
material properties. Thus, the coupling of the coil having two
planar windings on the same face of the isolating substrate (coil
3) is remarkably lower than that of the coils having their planar
windings on opposite faces of the substrate. The consequences
of the lower coupling properties of coil 3 as compared with the
two others were observed in the experimental work, both in
conductivity assessment and crack detection on flat components
[7.8].

The determination of the impedance diagrams enabled us to
estimate also at which lift-off value, lack of coupling between
material and sensor acquires importance in a given work
condition.

With the full impedance diagrams constructed varying the
frequency in all the usual range for eddy current testing, the
optimal frequency for conductivity assessment could be
evaluated for each coil and material (according to handbooks
[21]). Simulated conductivity experiments at the optimal
frequencies and at another set of frequencies (quite higher
than the optimal frequencies and empirically established at our
laboratory) showed that the resolving power of these sensors
for material sorting is similar at both frequency groups.

The establishment of analytical expressions for the EM
fields of this type of coils with an acceptable approximation
will be particularly helpful and useful to us, especially for the
design of new coils and /or for the prediction of the
performance of the coils we have under new test conditions.
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Appendix A

The application of the superposition principle with (17) to a
configuration like that in Fig. 4 (i.e. a single rectangular loop of
finite cross-section) which leads to the expressions for the
scalar fields, is presented [9] with the following results:

4o 4o

W _ MONI F(-xc,ivyc,i) ikz[ kzp
lap = 5 2 7 1€
2m%(z, —74)c af k
— ket gy 48 (A1)
for z>z5,
400 40 k
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k2

for 7; <z< 2.

As mentioned in Section 4.2, in the case of our loops, the
number of wire turns N=1.

The function I'(x., y.) contains the geometry and
dimensions of the coil [9]

T (aye) = Jsin (s + O)sin By + e
0
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