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Abstract

The knowledge of analytical expressions for the electromagnetic (EM) fields produced by the coils used in eddy current testing is an important

point in the development and application of these devices. In the present work, the second order vector potential formulation is used for the

calculation of the fields produced by planar rectangular spiral coils of arbitrary number of turns and finite rectangular cross-section placed on a

conducting half-space. Impedance plane diagrams are calculated for different frequencies, lift-off and half-space conductivity. Tests for

conductivity assessment are also simulated. The theoretical results are compared with experimental measurements.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The use of planar coils for defect detection and materials

characterization has been reported by many authors [1–6]. Our

group has been working for some years on the design,

characterization and use of planar rectangular coils [7,8]. For

the design and construction of the coils described used in the

cited papers simple models have been used, through which

only the electrical parameters of the coils could be calculated:

L0, R and C. The experience acquired in those early works gave

us an insight of the advantages of this type of coils: elimination

of end effect in the inspection of edge cracks, good

performance in the conductivity measurement at high

frequencies, high sensitivity to crazing and other shallow

imperfections, and the fact that any number of identical planar

coils can be made from a single photographic negative. It also

presented us with the challenge to extend our understanding of

the scope and limitations of this type of coils. To achieve this, a

knowledge of the expressions of the EM fields they produce is

fundamental.

In this work, the calculations of the EM fields and the

expressions for inductance and impedance are first
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presented, following the same steps as other authors

[9,10]. Thus, the expressions for field calculations are

derived in the second order vector potential formulation.

The formulae are then applied to the calculation of coil

inductance in air, L0, and to modeling of the impedance

plane of the coils under study.

In this way, a generalization of the results by Theodoulidis

et al. [9] was achieved. In particular in the present paper results

from three planar coils are presented: two of them consist of

two planar windings of 6 and 10 turns, respectively, placed on

the opposite faces of an isolating substrate, the third one

consists of two planar 7-turn windings, both of them placed on

the same face of the isolating substrate. These results may be

extended to flat rectangular coils with finite rectangular cross-

section and any number of turns.
2. Problem definition

A sketch of the problem to be solved is shown in Fig. 1: a

source J of alternate current above an infinite isotropic,

homogeneous, conducting, non-ferromagnetic half-space of

electrical conductivity s and magnetic permeability m. Here,

mZm0mr with m0 the permeability of free space and mr the

relative permeability.

The EM fields produced by the source in all the space are to

be calculated. For this task, the second order potential vector

formulation [11] under the quasi-static approximation was

used.
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Fig. 1. Current distribution in an infinite conducting half-space and the regions

of interest. zZ0 corresponds to the interface separating the media.
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The source is excited with a sinusoidal current density of

frequency f: J(x, t)ZJ0(x)e
jut with uZ2pf. In the Coulomb

gauge (P$AZ0) [12], the existence of a second order vector

potential W can be assumed, such that AZP!W. Following

[11] we write W as

Wa;b Z ẑW1;a;b C ẑ!V$W2;a;b (1)

with ẑ the unit vector in the z-axis direction and W1 and W2 the

two independent scalar potentials on which W depends.

Because we are working in the Coulomb gauge and in a region

free of electric charge sources (r(x, t)Z0), the electric potential

is zero (f(x, t)Z0) and the vector potentialA satisfies Eq. (2) in

each of the regions of space of interest to the present problem:

V2Aa;b Cma;b3a;bu
2Aa;b ZKma;bJa;b; (2)

The sub indices a and b indicate the a and b regions into which

the problem has been divided for its study, where Da,bZ30Ea,b

because 3aZ3bZ30; BaZm0Ha, BbZmHb, JaZ0 and JbZsEb,

and the fields are given by Ea,bZKvAa,b/vt and Ba,bZP!
Aa,b.With these expressions, Eq. (2) can be written as follows in

terms of the vector potential:

V2Aa;bKjma;bsa;buAa;b Cma;b3a;bu
2Aa;b Z 0: (3)

For metals and the test frequencies ordinarily used in

electromagnetic nondestructive testing (under 10 MHz), the

value of msu greatly exceeds that of m3u2, so that the third term

in (3) can be disregarded [13]. This is known as the quasi-static

approximation. The equations for A can thus be written

V2Aa Z 0 (4)

V2AbKg2Ab Z 0; (5)

with g2Zjums.

In the region, Ra Laplace equation (4) is also true for Wa,

therefore P2W1aZ0 and P2W2aZ0. Aa consequently takes

the form

Aa ZV!ẑW1aKðẑ$VÞVW2a; (6)

and the corresponding magnetic flux density is

Ba ZV
vW1a

vz

� �
(7)

In the region, Ra the vector potential is the sum of the primary

potential Aap produced by the excitation current in the coil and
the secondary potential Aas originated in the eddy currents

within the conductive halfspace: AaZAapCAas. W1a will thus

consist of the same contributions W1aZW1apCW1as, each of

them satisfying Laplace equation:

V2W1ap Z 0 (8)

and

V2W1as Z 0: (9)

For the calculation of the vector potential in the region Rb, there

is in principle the equation derived from (1). As it is known

[14,15], from the continuity of the tangential component of the

magnetic field intensity and of the normal component of the

magnetic flux density, the boundary conditions for the scalar

potentials at the interface between both media (zZ0) can be

determined.

The conditions which W2b must satisfy are: vW2b/vzZ0 and

W2bZ0, and because there are no sources in the conductor, W2b

must be zero in the conductor. Thus, the expression for the

vector potential is

Ab ZV!ẑW1b; (10)

and substituting this expression in (5), an analogous equation

for W1b is obtained

V2W1bKg2W1b Z 0: (11)

The solution to this problem is fully determined once Eqs. (8),

(9) and (11) are solved. Therefore, it is only necessary to know

one scalar potential W1, all over the space. These equations

have general solutions, which can be written in terms of double

Fourier transforms. W1ap is obtained from the calculation of

A1ap for a known current distribution, as discussed in Section 3.

The solutions of Eqs. (9) and (11) in terms of the Fourier

transforms ofW1as andW1b, [16], whichwe denoteX1as(a,b,??z)

and X1b(a,b,z), respectively, are

X1asða;b;zÞZK1asða;bÞe
Kkz and

X1bða;b;zÞZK1bða;bÞe
lz; with k2 Za2 Cb2 and

l2 Z k2 Cg2:

If a solution for W1ap is known

W1ap ZFK1½X1ap�Z

ðCN

KN

ðCN

KN

K1apða;bÞe
kzejðaxCbyÞda db; (12)

with FK1[X1ap] the inverse Fourier transform of X1ap. The

expressions for the K1as and K1b coefficients are determined

applying the boundary conditions forB andH at zZ0 in terms of

the scalar potentials. Thus, the scalar potentials are

W1as Z

ðCN

KN

ðCN

KN

K1apða;bÞ
mrkKg

mrk Cg
eKkzejðaxCbyÞda db; (13)
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W1b Z

ðCN

KN

ðCN

KN

K1apða;bÞ
2mrk

mrk Cg
elzejðaxCbyÞda db: (14)
3. Rectangular coils

3.1. Single wire rectangular current loop

As above indicated, first W1ap for the current distribution

under study must be determined in order to be able to calculate

the expressions for the other scalar potentials using (13) and

(14). We start with the expression for the magnetic flux density

of a current loop calculated using the corresponding vector

potential [17]

Ba ZV!Aa ZV!
m0

4p

ð
VS

JðrsÞ

r
dVS

2
64

3
75

ZV!
m0I

4p #
C

dl

r

dl

r

2
4

3
5 (15)

with rZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxKxsÞ

2C ðyKysÞ
2C ðzKzsÞ

2
p

, where rsZ(xs, ys,

zs) is a current source point and rZ(x, y, z) is a field point. After

using Stokes’ theorem, rearranging, comparing our result with

(7) and solving for W1ap, we get

W1ap ZK
m0I

4p

ð
S

ẑVs

ð
dz

r

� �
da: (16)

For the calculation of W1ap, let the current source circulate

along a conducting wire in the shape of a rectangular loop,

Fig. 2. Due to the design of the coils under study in the present

work (Section 3.2), for the calculations two loops must be

considered, one centered at (0, 0, zc) and the other at (x
0, y 0, zc).

When expression (16) is applied to these distributions, the

desired results for W1ap are obtained. For the distribution in

Fig. 2 (loop centred at (0, 0, zc)) we use the expression

presented in [9]:

W1ap Z
m0I

2p2

ðCN

KN

ðCN

KN

eHkðzKzcÞ

k

sin axc
a

cos byc
b

ejðaxCbyÞda db

zXzc:

(17)
Fig. 2. Current carrying rectangular loop.
For the case of a loop centred at (x 0, y 0, zc), the factor e
Kj(ax 0C

by 0) is introduced in the integrand of (17), as shown by an

analogous calculation.
3.2. Rectangular spiral planar coils of finite rectangular

cross-section

We want to calculate the EM fields of coils as those shown

in Fig. 3, similar to those used in [7,8]. The usual technique for

the construction of printed circuits was applied, i.e. the coils

consist of rectangular spiral copper traces on a fiber glass

substrate. The copper traces may lie on one or both faces of the

substrate, and there may be more than one substrate per plate,

the so called multi-layer design. A thin layer of epoxy resin

protects the copper traces. Here, as in [7], single and two-layer

coils have been used. In the present work, the following

configurations are studied: a coil made of two rectangular

6-turn copper traces, each one deposited on the opposite faces

of the isolating substrate (thus resulting in the upper and lower

faces of a two layer coil), another similar coil but with two 10-

turn copper traces and a third coil consisting of two parallel

7-turn copper traces on the same face of the substrate (single-

layer coil). The width of the copper traces and the gap between

them is 0.2 mm and their thickness is approximately 0.065 mm.

All the coils are covered with a solder mask approximately

0.02 mm thick. In what follows these three coils will be

referred to as coils 1, 2 and 3, respectively.

To deduce an expression for the fields and impedance of

these coils, we calculate first the potential of a single

rectangular loop of rectangular cross-section such as that

shown in Fig. 4. For this calculation, we used the method

presented in [10] for the calculation of the vector potential of a

circular coil of finite rectangular cross-section, but applied to

the deduction of the scalar potential W1ap. The superposition

principle is here applied to Eq. (17), assuming the excitation
Fig. 3. General characteristics of the coils used and modelled. Side view of the

upper and lower faces of a two-layer coil.



Fig. 4. Rectangular loop with a finite rectangular cross-section.
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current density is constant in phase and amplitude over the loop

cross-section. In particular in our coils, each turn in the spiral

consisting of a single copper trace, the superposition is made by

calculating the integral of W1ap, Eq. (17), over the cross-

section, but bearing in mind that this single copper trace is to be

considered as a single ‘turn of wire’. The expressions thus

obtained for the scalar potential W1ap of the loop in Fig. 4 in the

different regions of space are presented in the Appendix A, and

correspond to the expressions obtained in [9], but with number

of turns NZ1. As indicated in Fig. 4, in the formulae in the

Appendix A and in what follows, z1 and z2 are the positions on

the z-axis, such that z2Kz1 is the thickness of the finite loop, the

(xc,i, yc,i) pairs are the half-axes of the inner rectangle forming

the loop (the sub indices i will be used in section when many

turns are considered) and c is the width of the loop.

Once the expressions for the scalar potentials of a rectangular

planar loop with a rectangular cross-section are known, the

calculation of the scalar potentials for the coils under study is

achieved by superposing concentric rectangular loops of the size

corresponding to each turn of the spiral which makes each

particular coil. In all these calculations, edge and skin effect, as

well as the eddy currents inside the coils have been neglected.

Moreover, the cross-section of each loop in the coil is assumed

rectangular, though it is only approximately rectangular. A

further approximation is that the spiral traces making the coils

are substituted by the rectangular concentric loops.

The magnetic flux density in the no-conductor region Ra

produced by the current circulating in the coils under study, is

formed by the superposition of the fields produced by their 2n

loops.

3.2.1. Coils 1 and 2

For coils 1 and 2, one half of the total 2n turns lie on one of

the faces of the isolating substrate and the other half lie on the

opposite face. One of these faces is denoted up, the fields

produced by the loops on this face being indicated with the sub

index u. Analogously, the opposite face is denoted down and

the corresponding fields are indicated with the sub index d.

Thus, the magnetic flux density in Ra we are calculating is

B
1ap
Coils 1;2 Z

Xn

iZ1

ðB
1ap
i;u CB

1ap
i;d ÞZV

v

vz

Xn

iZ1

ðW1ap;i;u CW1ap;i;dÞ:

(18)
For each W1ap,i,u and W1ap,i,d the expression (A2) from the

Appendix A is used, the total scalar potential of the coils in free

space thus being of the form

WTOT
1ap; Coils 1;2 ZK

m0I

2p2ðz2Kz1Þc

ðCN

KN

ðCN

KN

ekz

k2

Pn

iZ1

Gðxc;i;yc;iÞ

ab

!½eKkz2;uKeKkz1;u CeKkz2;d

KeKkz1;d �ejðaxCbyÞda db

(19)

By comparison between (19) and (12) we deduce that the KTOT
1ap

coefficient, for a n-turn coil, is

KTOT
1ap;Coils 1;2 Z

m0I

2p2ðz2Kz1Þc

Pn

iZ1

Gðxc;i;yc;iÞ

ab

!
½eKkz1;uKeKkz2;u CeKkz1;dKeKkz2;d�

k2
: (20)

In (19) and (20): z2,u, z1,u, z2,d and z1,d are the z-axis positions of

the upper and lower parts of the copper traces on the up and

down faces of coils 1 and 2. Thus, z2Kz1Zz2,uKz1,uZz2,dK
z1,d, is the thickness of the loops.
3.2.2. Coil 3

For coil 3, the 2nZ14 loops lie on the same face, in two

parallel intertwined lanes having seven turns each. One of these

lanes is called left and the fields produced by the loops in this

lane are indicated with the sub index l. Analogously, the other

lane is called right and the corresponding fields are indicated

with the sub index r. The magnetic flux density in Ra produced

by the coil is

B
1ap
Coil 3 Z

Xn

iZ1

ðB
1ap
i;l CB

1ap
i;r ÞZV

v

vz

Xn

iZ1

ðW1ap;i;l CW1ap;i;rÞ

(21)

The loops which make the left spiral are centred at the

point (x 0, y 0)Z(K0.2032 mm, K0.2032 mm) on the plane

of the coils, therefore in the expression for W1ap,i,l in (21),

in which Eq. (A2) is used, the factor ej(ax 0Cy 0), introduced

in Section 3.1, is evaluated at that point. Similarly, the

spiral denoted right is centred at the point (x 0, y 0)Z
(0.2032 mm, 0.2032 mm), the correction for W1ap,i,r being

consequently evaluated at that point. Thus, the scalar

potential for coil 3 is:

WTOT
1ap; Coil 3 ZK

m0I

p2ðz2Kz1Þc

ðCN

KN

ðCN

KN

ekz

k2

Pn

iZ1

Gðxc;i;yc;iÞ

ab

!½eKkz2KeKkz1 �cos½ðaCbÞ2:032

!10K4�ejðaxCbyÞda db (22)
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From comparison between (22) and (12) the coefficient

KTOT
1ap for these type of coils is:

KTOT
1ap; Coil 3 Z

m0I

p2ðz2Kz1Þc

Pn

iZ1

Gðxc;i; yc;iÞ

ab

!
½eKkz1KeKkz2 �

k2
cos½ðaCbÞ2:032!10K4� (23)

In (22) and (23) z2 and z1 are the z-coordinates of the upper

and lower positions of the copper traces in coil 3.

With the formulae deduced in this section, together with

(13) and (14), the scalar potentials of the coils under study can

be calculated in all the regions of interest, and from them the

EM fields are obtained.
4. Coil impedance

Coil impedance is calculated from the induced voltages on

each of the loops making the coil, which are in turn calculated

by superposition of the flux density produced by each particular

loop through itself and through all the others.

Let us first consider any single loop i in the coil. Let BTOT
i be

the sum of the magnetic flux densities through the area

bounded by loop i produced by loop i itself, all the other loops

in the coil and the induced currents in the material. Then the

induced voltage on loop i is

VTOT
i Z

ju

ðz2Kz1Þc

ð
Coil crosssection

ð
Si

ẑBTOT
i dai

0
B@

1
CAd Areai (24)

On the other hand, we know that:

V Z IZ Z IðZ0 CDZÞ; (25)

Z0 Z jX0 Z juL0 (26)

and

DZ ZDRC jDX: (27)

Here, Z0 is the coil impedance in air and DZ is the impedance

change produced by the currents induced in the conducting

material.
4.1. L0 coil inductance

In this case, the BTOT
i field in (24) is the flux density through

loop i produced by the coil in free space. As explained above,

the active fields in each particular loop i in the coil are its own,

namely B
1ap
i , and that produced by the other loops in the entire

coil.
4.1.1. Coils 1 and 2

Let loop i lie on the up face and BTOT
1ap;iu be the total flux

density through that loop. Then the z component in (24) is
BTOT
z;1ap;i;u Z

Xn

nuZ1

B
1ap
z;iu;nu C

Xn

ndZ1

B
1ap
z;iu;nd: (28)

Each of the B
1ap
z;iu;nu is given by (A3) through (7), and each of the

B
1ap
z;iu;nd is given by (A1), also through (7). The reader is referred

to the Appendix A for both cases. Using (22) and (28), the total

induced voltage on loop iu is

VTOT
1ap;iu Z

2juIm0

p2ðz2Kz1Þ
2c2

!

ðCN

KN

ðCN

KN

2 ðz2;uKz1;uÞC
ðeKkðz2;uKz1;uÞK1Þ

k

� �8<
:

!

Pn

nuZ1

Gðxc;nu;yc;nuÞ

ðabÞ2
Gðxc;iu;yc;iuÞda db

C

ðCN

KN

ðCN

KN

eKkz1;uKeKkz2;u
� �

ekz2;dKekz1;u
� �

k

" #

!

Pn

ndZ1

Gðxc;nd;yc;ndÞ

ðabÞ2
Gðxc;iu;yc;iuÞda db

9>>=
>>;

(29)

The total induced voltage on all the coil deposited on face u is

the sum of the voltages VTOT
1ap;iu on each loop iu of that face. Let

VTOT
1ap;u be that voltage

VTOT
1ap;u Z

16juIm0

p2ðz2Kz1Þ
2c2

ðCN

0

ðCN

0

ðz2;uKz1;uÞ

"8<
:

C
eKkðz2;uKz1;uÞK1
� �

k

# Pn

nZ1

Gðxc;n;yc;nÞ

� �2
ðabÞ2

da db

C

ðCN

0

ðCN

0

eKkz1;uKeKkz2;u
� �

eKkz2;dKeKkz1;d
� �
2k

" #

!

Pn

nZ1

Gðxc;n;yc;nÞ

� �2
ðabÞ2

da db

9>>>=
>>>;

(30)

Besides, VTOT
1ap;uZ juIL0;u and, because of coil symmetry the

inductance in air results

L0; Coils 1;2 Z 2L0;u: (31)
4.1.2. Coil 3

Loop i of coil 3 lies on the same face of the isolating

substrate as all the other loops making the coil. Let that coil

belong to the left spiral and BTOT
1ap;il be the total flux density

through that loop, then the z component is:

BTOT
z;1ap;il Z

Xn

nlZ1

B
1ap
z;il;nl C

Xn

nrZ1

B
1ap
z;il;nr: (32)
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Here, both B
1ap
z;il;nl and B

1ap
z;il;nr are calculated applying (7) and

(A3) to these coils; but with the corrections due to the position

of the centre of spirals l and r, that is, the factor eKj(ax 0Cby 0)

must be evaluated as indicated in Section 3.2.1. From (24), but

now with (32), the induced voltage on loop il is

VTOT
1ap;il Z

8juIm0

p2ðz2Kz1Þ
2c2

ðCN

KN

ðCN

KN

ðz2Kz1ÞC
eKkðz2Kz1ÞK1
� �

k

" #

!

Pn

mZ1

Gðxc;m;yc;mÞ

ðabÞ2
Gðxc;ilyc;ilÞ

!cos½2:032!10K4ðaCbÞ�da db:

(33)

The total induced voltage on all the l coil is the sum of the

voltages VTOT
1ap;i;l on all of its il loops. Let VTOT

1ap;l be that voltage.

Then

VTOT
1ap;l Z

8juIm0

p2ðz2Kz1Þ
2c2

ðCN

KN

ðCN

KN

ðz2Kz1ÞC
eKkðz2Kz1ÞK1
� �

k

" #

!

Pn

mZ1

Gðxc;m;yc;mÞ

� �2
ðabÞ2

cos½2:032!10K4ðaCbÞ�da db

(34)

In (32)–(34), sub index m stands for mZnlZnr.

Besides, VTOT
1ap;lZ juIL0;l, and

L0; Coil 3 Z 2L0;l: (35)
4.2. Coil DZ

For the calculation of the impedance change produced by

the currents induced in the conducting material, the expression

derived by Auld et al. in [18] was used:

DZ Z
1

I2
)
Sc

n̂$ðE0!HcKEc!H0ÞdSc: (36)

Here, Sc is an arbitrary closed surface enclosing the conductor

but excluding the coil. E0 andH0 are the fields in absence of the

conductor, while Ec and Hc are the fields in its presence. The

surface Sc is that of the conductor (at zZ0) and is closed at

infinity by surface SN which extends within the conductor for

z!0. With this choice for Sc, applying (7) and vector identities

to the integrand in (36), and considering the divergence

theorem and Farady’s law, Eq. (36) becomes

DZ ZK
ju

m0I
2

!

ðCN

KN

ðKN
KN

v2W0

vz2
vWc

vz
K

v2Wc

vz2
vW0

vz

� �
ðzZ0Þ

dx dy (37)
For our problem, W0ZW1ap and WcZW1apCW1as. From the

calculation of each of the factors in the integrand of (37) using

(12) and (13) the expression for DZ results:

DZ Z
j8p2u

m0I2

ðCN

KN

ðKN
KN

k3K1apða;bÞK1apðKa;KbÞ

!
mrkKg

mrk Cg
da db (38)

This is a general expression, valid for any particular

distribution determined by K1ap.

4.2.1. Coils 1 and 2

For coils 1 and 2, the K1ap factor in the integrand of (38) is

given by (20). Considering that KTOT
1ap; Coils 1;2ða;bÞZ

KTOT
1ap; Coils 1;2ðKa;KbÞ and substituting (20) in (38) we get the

expression for the impedance change due to the presence of the

conducting material

DZCoils 1;2 Z
j8um0

p2ðz2Kz1Þ
2c2

ðCN

0

ðKN
0

Pn

iZ1

Gðxc;i;yc;iÞ

� �2
ðabÞ2

!
½eKkz1;uKeKkz2;u CeKkz1;dKeKkz2;d �2

k

!
mrkKg

mrk Cg
da db (39)
4.2.2. Coil 3

The factor K1ap for coil 3 is given by (23). Here also

KTOT
1ap; Coil 3ða;bÞZKTOT

1ap; Coils 3ðKa;KbÞ, thus analogously to the

procedure for coils 1 and 2, the impedance change of coil 3 due

to the presence of the conducting material is

DZCoils 3 Z
j32um0

p2ðz2Kz1Þ
2c2

ðCN

0

ðKN
0

Pn

iZ1

Gðxc;i;yc;iÞ

� �2
ðabÞ2

!
½eKkz1KeKkz2 �2

k

mrkKg

mrk Cg
cos2½2:032

!10K4ðaCbÞ�da db: (40)
5. Implementation and results

In order to determine the scope and validity of the

derived formulae, we calculated first the values of L0, the

inductance in air of the coils under study, and compared them

with the measured values. Eqs. (30) and (31) were used for

coils 1 and 2 and Eqs. (34) and (35) for coil 3. The

measurements for coils 2 and 3 were presented in [7]. They

were made using a resonant R–L–C circuit, as explained there.

These results as well as the measurements corresponding to



Table 1

Calculated and measured in-air inductances of the three coils under study

L0,Calculated

(mHy)

L0,Measured (mHy) D%

Coil 1 0.98 1.23G0.03 20.3

Coil 2 3.20 3.38G0.03 5.3

Coil 3 1.45 1.58G0.02 8.2
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coil 1 are presented in Table 1. Column 4 of Table 1 shows the

percentage difference (D%) of the calculated L0 with respect to

the experimental L0. Considering the approximations in these

calculations, it may be said that the theoretical derivations

presented here yield predictions of L0.

As mentioned above, the L0 measured values for the three

coils, which are compared with the calculated values, were

obtained using a R–L–C resonant circuit. The resonance

frequency, fr, is measured in this circuit; and then L0 is obtained

through the expression: L0(fr, C)Z1/(2pfr)
2C. The value of C

that appears in this formula is known and is determined with its

correspondent error, just like fr. The error in L0 is then

calculated by error propagation for the expression above. The

values shown in the third column of Table 1 were calculated in

that way. Of the two magnitudes in the formula, the capacity

and the frequency of resonance, the latter and its error are the

magnitudes, which have the most influence in the calculation of

L0 and its error.

In addition to the quasi-stationary approximation introduced

in Section 2, the following approximations, mentioned in

Section 3.2, were considered for the application of the model

developed to the coils in question:

† In all these calculations, edge and skin effect, as well as the

eddy currents inside the coils have been neglected.

† Moreover, the cross-section of each loop in the coil is

assumed rectangular, though it is only approximately

rectangular.

† A further approximation is that the spiral traces making the

coils are substituted by the rectangular concentric loops.

These last two approximations are the ones that have the

most severe influence in the theoretical description of the real

coils, possibly because this kind of approximations are directly

related to the actual shape of the coils. As to the approximation

of the spirals by concentric rectangular loops, it is no surprise
Fig. 5. Cross-section of a cooper trace.
that it will be a better description of the real coils if the spiral

tracks are very narrow and very close to each other. The fact

that assuming a rectangular cross-section is an approximation

can be evaluated by optical microscopy of a cut of the copper

traces of the coils, see Fig. 5. As it can be seen in this figure,

there is a rectangular section plus a trapezoidal one. The area

taken for the calculation was a rectangular equivalent section

of the same area as the sum of the rectangle plus the trapezoid

areas. This approximation will be a better description of the

real coils as the cross-section of the copper tracks decreases.

There is an aspect of the real coils, which has not been taken

into account in the calculation and also explains in part the

discrepancy among the calculated and measured values of L0,

specially for coil 1 which showed the bigger discrepancy (see

Table 1). This aspect is related to the manufacture of the coils,

and it is that in the central part of the coils we have constructed

the connectors, on which the cables are to be welded (see

Fig. 3). These connectors are also made of copper as the spiral

tracks; but they are quite larger: they are 1.6 mm side squares.

The variation of the electromagnetic field in the surface of

these square connectors produces an increment in the

impedance of the coils. This variation would explain, in part,

that with our calculations we always obtain values smaller than

the measured ones. Thus, this increment in the inductance

relative to the total area of the coil is more important for the

smaller coil than for the bigger ones. This would explain the

bigger discrepancy between the calculated and the measured

value of L0 for the coil 1.

With the expressions (39) and (40) together with (25), the

impedance diagrams for the inductors under study were

determined in different conditions. For the simulations, lift-

off values between 0 and 30 mm and excitation frequencies

between 0 and 100 MHz were considered. All the frequency

range for eddy current testing was thus covered. As the

materials for the conducting half-spaces, Zircaloy-4 (Zry-4)

and aluminum were selected. Their electrical conductivities are

1.35!106 S/m [19] and 3.56!107 S/m [20], respectively, and

both have mrZ1. Impedance diagrams were also calculated

varying the conductivity of the half-space in all the possible

range, to obtain a full diagram. As is usual practice in eddy

current testing, the complex impedance given by (25) is

normalized to X0, the inductive reactance of the coil in air.

Fig. 6 shows the impedance diagrams for Zry-4 and Al of

the three coils under study, when frequency is varied. A 2.0!
10K5 m lift-off was used for the calculation, that being the

approximate thickness of the solder mask. At first glance, it

may be stated that the characteristics of the diagrams depend on

the type of coil (i.e. basically its geometry), independent of the

material of the conducting half-space.

As it can be observed, DZCoil 3/DZCoils 1;2 and DZCoil1

yDZCoil2 for all the frequencies. We conclude that at all

frequencies the coupling between coil 3 and the conducting

material is weaker than that of the two others. We postulate this

is basically due to the respective single-layer, two-layer design

of the coils and not to the number of turns itself. The lift-off

traces produced by coil 3 in Fig. 6 are thus smaller than those of

the other two. Though this fact might seem beneficial at



Fig. 6. Impedance diagrams made varying the excitation frequency.
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inspection time, it is actually not so, because the signals from

this coil need greater amplification, thus amplifying also

unwanted noises and lowering signal to noise ratio.

Impedance diagrams were also calculated for the full

frequency range and different lift-off values. Fig. 7 shows

one of these diagrams. From these calculations, the limiting

lift-off value, for which the lack of coupling between material

and coil starts being significant, can be estimated. It must be

pointed out that the above-mentioned 2.0!10K5 m lift-off

curve is not shown in Fig. 7 because it differed non-

significantly from the zero lift-off curve (compare Fig. 6).

The optimal frequency for conductivity measurement was

determined in an approximate way for each coil and each

conducting material. Following [21], this frequency is that for

which DR/X0 is maximum in an impedance diagram such as

those in Fig. 6. Graphically it corresponds to the extreme right

portion of the nose-shaped diagrams. These optimal frequen-

cies are listed in Table 2.

In order to compare our sensors’ response to conductivity

changes, some conductivity variation assessment tests have
Fig. 7. Impedance diagrams made varying the excitation frequency, for three

lift-off values.
been modelled for Zry-4 and Al. The calculations were

made at the optimal frequencies and at frequencies quite

higher than those. The higher frequencies were prompted by

the experience in the use of these sensors. In the

experiments reported in [7,8], and in other experiments

performed with these sensors in the group, good response

for material sorting was observed at frequencies quite higher

than the theoretical optimal frequencies determined here. As

an example, for Zry-4, hydrided Zry-4 and low conductivity

materials, the best responses were those at frequencies

above 300 kHz, even as high as 1 MHz. Therefore,

calculations for Zry-4 were also made at 800 kHz as the

alternative frequency. The alternative frequency for Al was

selected such that it produced in Al the same standard skin-

depth as 800 kHz in Zry-4. The alternative frequency for Al

thus determined is approximately 30 kHz. The results are

shown in Figs. 8 and 9.

The shape of these curves is that of the well-known lift-

off signals. Just to explain the origin and shape of these

signals, it must be pointed out that in these kind of eddy-

current experiments, the Wheatstone bridge constituting the

normal equipment—to one branch of which the sensor is

connected—is balanced while the sensor is ‘in air’ (i.e. far

from the conducting material). The experiment consists on

recording the bridge ‘unbalance’ while the sensor is

approached to the material [21]. For the present calcu-

lations, lift-off was varied between 30 and 0 mm. The

simulations were made using the conductivities of Zry-4 and

Al, full-line curves in Figs. 8 and 9, and then G15%

variations to those conductivities were considered (dotted-

line curves). These variations were arbitrarily chosen. For
Table 2

Optimal frequencies for conductivity assessment

Optimal fre-

quencies (kHz)

Coil 1 Coil 2 Coil 3

Zry-4 150 75 145

Al 5.5 3 5.5



Fig. 8. Simulated conductivity assessment tests with coil 2.

Fig. 9. Simulated conductivity assessment tests with coil 3.

Fig. 10. Impedance diagrams made varying the conductivity.
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each of the coils it can be generally stated that for both

materials the sorting power of the coils is similar at the

frequencies defined as optimal in the handbooks and at

the higher frequencies. Another aspect, which results from

the comparison between Figs. 8 and 9 is that because the

full lift-off signal from coil 3 is quite smaller than those

from coils 1 and 2, the relative variations between the

different signals are smaller for coil 3 than for the two

others. For instance, at the optimal frequencies in the

conductivity range studied (K15 to C15%), the variations

for coil 2 lie in an interval of approximately 0.05 units on

the X/X0 axis (similar values being determined for coil 1),

while the variations for coil 3 lie in an interval of

approximately 0.04 units on the same axis. This is another

consequence of the lower coupling with the material to be

inspected which coil 3 presents as compared to the other

two coils.

Finally, impedance diagrams for conductivity variation were

calculated. This was made for the three coils at the optimal

frequencies defined here and zero lift-off. The results for

fZ3 kHz are shown in Fig. 10. Here, as for the analysis of Fig. 6,

it can be stated that diagram characteristics depend on coil
design and not on the conductivity of the material to be

inspected. In the analysis of Fig. 10 this last point is more

evident, because the diagrams here are produced when

conductivity varies throughout the complete range for metals.
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6. Conclusions

Analytical expressions for the EM fields produced by

rectangular planar spiral coils with finite cross-section were

obtained with the second order vector potential method. The

knowledge of these fields enabled us to calculate the electrical

parameters of the coils and model their impedance diagrams.

The comparison of the calculated self-inductance in air of

the coils under study and the measurements on real coils

showed that the theoretical derivations presented here are

acceptable for determining that parameter.

The construction of the impedance diagrams led us to

conclude that coil design is determinant as to the coupling

between the coil and the conducting material, independent of

material properties. Thus, the coupling of the coil having two

planar windings on the same face of the isolating substrate (coil

3) is remarkably lower than that of the coils having their planar

windings on opposite faces of the substrate. The consequences

of the lower coupling properties of coil 3 as compared with the

two others were observed in the experimental work, both in

conductivity assessment and crack detection on flat components

[7,8].

The determination of the impedance diagrams enabled us to

estimate also at which lift-off value, lack of coupling between

material and sensor acquires importance in a given work

condition.

With the full impedance diagrams constructed varying the

frequency in all the usual range for eddy current testing, the

optimal frequency for conductivity assessment could be

evaluated for each coil and material (according to handbooks

[21]). Simulated conductivity experiments at the optimal

frequencies and at another set of frequencies (quite higher

than the optimal frequencies and empirically established at our

laboratory) showed that the resolving power of these sensors

for material sorting is similar at both frequency groups.

The establishment of analytical expressions for the EM

fields of this type of coils with an acceptable approximation

will be particularly helpful and useful to us, especially for the

design of new coils and /or for the prediction of the

performance of the coils we have under new test conditions.
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Appendix A

The application of the superposition principle with (17) to a

configuration like that in Fig. 4 (i.e. a single rectangular loop of

finite cross-section) which leads to the expressions for the

scalar fields, is presented [9] with the following results:
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for z1%z%z2.

As mentioned in Section 4.2, in the case of our loops, the

number of wire turns NZ1.

The function G(xci, yci) contains the geometry and

dimensions of the coil [9]

K
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