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Multimode model for an atomic Bose-Einstein condensate in a ring-shaped optical lattice
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We study the population dynamics of a ring-shaped optical lattice with a high number of particles per site and a
low (less than ten) number of wells. Using a localized on-site basis defined in terms of stationary states, we were
able to construct a multiple-mode model depending on relevant hopping and on-site energy parameters. We show
that in the case of two wells, our model corresponds exactly to a recent improvement of the two-mode model. We
derive a formula for the self-trapping period, which turns out to be chiefly ruled by the on-site interaction energy
parameter. By comparing to time-dependent Gross-Pitaevskii simulations, we show that the multimode model
results can be enhanced in a remarkable way over all the regimes by only renormalizing such a parameter. Finally,
using a different approach which involves only the ground-state density, we derive an effective interaction energy
parameter that turns out to be in accordance with the renormalized one.
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I. INTRODUCTION

The two-mode model applied to double-well atomic
Bose-Einstein condensates has been extensively studied in
recent years [1–9]. Assuming that the order parameter can
be described as a superposition of localized on-site wave
functions with time-dependent coefficients, such a model
predicts Josephson and self-trapping regimes [1,2], which have
been experimentally observed by Albiez et al. [5].

The self-trapping (ST) phenomenon, which is also present
in extended optical lattices [10], is a nonlinear effect where an
initially highly populated (over a critical value) site remains
with a larger number of particles than the remaining sites
over the whole evolution. There is now active research on the
self-trapping effect, which involves different types of systems,
including mixtures of atomic species [11].

The dynamics of ring-shaped optical lattices with three [12]
and four wells [13] has been previously investigated through
multiple-mode (MM) models which utilized ad hoc values
for hopping and on-site energy parameters. In the present
article, instead, we will extract such parameters from a
mean-field approach using localized on-site functions. We
have shown in a previous work [14] that in a ring-shaped
optical lattice, localized on-site [which we called Wannier-like
(WL)] functions can be obtained in terms of stationary states
of the Gross-Pitaevskii (GP) equation with different winding
numbers. Here we will show that the above parameters yield
the same type of corrections to the MM model for large filling
factors as those obtained for the improved two-mode (TM)
model for two-well systems [3].

We will derive an approximate formula for the self-trapping
period in terms of the on-site interaction energy parameter.
Using this formula and a single GP simulation result, a
renormalizing on-site energy parameter that substantially
improves the MM model can be obtained in what will be called
the renormalized multiple-mode (RMM) model. Taking into
account the density deformation during the time evolution [15],
it has been shown in a recent work that for a double-well
system an effective interaction energy parameter should be
considered in the TM model to properly describe the exact
dynamics [9]. Here we will adapt the same approach to our
multiple-well system, which will allow us to obtain such

an effective parameter only in terms of the ground-state
density. Finally, we will show that both approaches give similar
results.

This paper is organized as follows. In Sec. II we describe the
system, and in Sec. III we outline the method for obtaining the
WL functions, along with the properties required for building a
reasonable multimode model dynamics. There we also define
the model parameters in terms of the WL functions. In Sec. IV
we specialize to the case of two wells, showing that our
treatment through the WL functions turns out to be exactly
the same as the latest two-mode model formulation [3]. Next,
by means of the formula derived for the ST period, we show
that the two-mode model can be enhanced in a remarkable
way by only renormalizing the on-site interaction energy
parameter. In Sec. V we develop the multiple-mode model,
which generalizes our finding of the previous section. Finally,
based on the method described in Ref. [9], in Sec. VI we derive
an effective interaction energy parameter and compare it with
the renormalized one. To conclude, a summary of our work is
presented in Sec. VII.

II. RING-SHAPED LATTICE AND
CONDENSATE PARAMETERS

We consider a Bose-Einstein condensate of rubidium
atoms confined by an external trap Vtrap, consisting of a
superposition of a toroidal term Vtoro and a lattice potential
VL(x,y) formed by radial barriers. Similar to the trap utilized
in recent experiments [16,17], the toroidal trapping potential
in cylindrical coordinates reads

Vtoro(r,z) = m

2

[
ω2

r r
2 + ω2

zz
2
] + V0 exp

(−2 r2
/
λ2

0

)
, (1)

where m is the atom mass and ωr and ωz denote the radial
and axial frequencies, respectively. We have set ωz � ωr to
suppress excitation in the z direction. In particular, we have
chosen ωr/(2π ) = 7.8 Hz and ωz/(2π ) = 173 Hz, while for
the laser beam we have set V0 = 100h̄ωr and λ0 = 6lr , with
lr = √

h̄/(mωr ). On the other hand, the lattice potential is
formed by Nc Gaussian barriers located at equally spaced
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angular positions θk = 2πk/Nc, where −[[(Nc − 1)/2]] �
k � [[Nc/2]] with [[·]] denoting the integer part,

VL(x,y) = Vb

[[Nc/2]]∑
k=−[[(Nc−1)/2]]

exp

{
− [cos(θk) y − sin(θk) x]2

λ2
b

}

×�[sin(θk)y + cos(θk)x], (2)

where � denotes the Heaviside function. For the numerical
calculations we have fixed the width of the Gaussians to λb =
0.5 lr and the barrier height to Vb = 80h̄ωr . In the mean-field
approximation, the stationary states are solutions of the GP
equation [18],[
− h̄2

2m
∇2 + Vtrap(r) + g N |ψn(r)|2

]
ψn(r) = μψn(r), (3)

where ψn(r) denotes a two-dimensional (2D) order parameter
[19] normalized to unity with winding number n [20]. The
vorticity is numerically imprinted following the procedure
described in Ref. [21]. N and μ denote, respectively, the
number of particles and the chemical potential (N = 105 will
be assumed over all the numerical calculations). The effective
2D coupling constant g = g3D

√
mωz/2πh̄ is written in terms

of the three-dimensional (3D) coupling constant between
the atoms g3D = 4πah̄2/m, where a = 98.98 a0 denotes the
s-wave scattering length of 87Rb, with a0 being the Bohr
radius. Technical advances have been recently achieved to
obtain experimentally this type of condensate in ring-shaped
optical lattices with an arbitrary number of sites [22].

III. LOCALIZED STATES AND HOPPING
AND ON-SITE ENERGY PARAMETERS

In this section we will summarize the results obtained in a
previous work [14] that will be used to describe the present
dynamics. We are interested in studying the Josephson and ST
regimes. Such a dynamics takes place when the ground-state
chemical potential becomes smaller than the minimum of the
effective potential barrier dividing two lattice sites [20].

A. Localized WL states

The stationary states ψn(r,θ ) are obtained as the nu-
merical solutions of Eq. (3) [20]. Assuming large barrier
heights [14], the winding number n will be restricted to
the values −[[(Nc − 1)/2]] � n � [[Nc/2]] [20]. We have
seen in Ref. [14] that stationary states of different winding
number must be orthogonal and that the definition for the WL
functions,

wk(r,θ) = 1√
Nc

∑
n

ψn(r,θ) e−inθk , (4)

corresponds indeed to well-localized functions on each k site.
In addition, it has been shown in Ref. [14] that the above
orthogonality implies that the set of Nc WL functions (4)
located at different k sites must also form an orthonormal
set. In Fig. 1 we have depicted the WL function density w2

0
for several values of Nc, where it becomes clear that they are
certainly well-localized functions. Here it is important to recall
that the main difference between our WL function and a “true”
Wannier function results from the fact that only the former

depends on the filling factor, i.e., the number of particles at
each site, as seen in Ref. [14]. One may also write the above
stationary states in terms of these localized functions,

ψn(r) = 1√
Nc

∑
k

wk(r,θ) einθk , (5)

which will be useful to describe the dynamics we are interested
in.

B. Hopping and on-site energy parameters

The Nc-mode dynamics will be described in terms of the
following parameters:

ε =
∫

d2r w0(r,θ )

[
− h̄2

2m
∇2 + Vtrap(r)

]
w0(r,θ ), (6)

J = −
∫

d2r w0(r,θ )

[
− h̄2

2m
∇2 + Vtrap(r)

]
w1(r,θ ), (7)

J ′ = −2 g

∫
d2r w3

0(r,θ ) w1(r,θ ), (8)

U = g

∫
d2r w4

0(r,θ ), (9)

which, due to the symmetry of the lattice, can be written
without loss of generality only in terms of the k = 0 and k = 1
sites. We want to mention that these parameters can also be
efficiently evaluated through the alternative formulas given in
Ref. [14].

IV. TWO-MODE DYNAMICAL EQUATIONS

When the trapping potential consists of a double well,
the condensate dynamics may be simply described through a
pair of coupled equations, which correspond to the two-mode
model. Such a TM dynamics has been extensively studied
in recent years [2]. Particularly, an improved version of this
model [3] has been also applied to particles exhibiting a dipolar
interaction, which generates self-induced Josephson junctions
in a similar toroidal geometry [7].

A. Dynamical equations in terms of the coefficients
of well-localized functions

The commonly used ansatz for the TM wave function reads

ψTM(r,θ,t) = bR(t) ψR(r,θ ) + bL(t) ψL(r,θ ), (10)

where ψR(r,θ ) and ψL(r,θ ) are well-localized functions at
the right and left wells, respectively. Such wave functions are
easily identified with the WL functions, namely, ψR(r,θ ) =
w0(r,θ ) and ψL(r,θ ) = w1(r,θ ), since from Eq. (4) we get, for
Nc = 2,

w0(r,θ) = 1√
2

[ψ0(r,θ) + ψ1(r,θ)], (11)

w1(r,θ) = 1√
2

[ψ0(r,θ) − ψ1(r,θ)], (12)

which turns out to be identical to the standard TM variational
proposal [1].

Note that the first excited state is an odd function of x,
as required by the TM model (antisymmetric solution). This
can be easily verified by noting that the stationary state with
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FIG. 1. Density isocontours of (a) the ground-state wave function |ψ0|2 for Nc = 8 and of the WL function w2
0(r) for the following numbers

of sites: (b) Nc = 8, (c) Nc = 4, and (d) Nc = 2.

winding number n = 1 has uniform phases at the right and left
wells with values φ = 0 and φ = π , respectively [20]. Here
we may recall that this only occurs in the regime of large
barriers [14], where ψ1(r) = ψ−1(r) may be taken as a real
function that does not carry any angular momentum and hence
does not correspond to a “vortex” state [20].

In order to obtain the TM equations, we may replace the
order parameter, which is written in terms of the WL functions
according to the ansatz (10),

ψTM(r,θ,t) = b0(t) w0(r,θ ) + b1(t) w1(r,θ ) (13)

in the time-dependent GP equation,

ih̄
∂ψTM(r,θ,t)

∂t
=

[
− h̄2

2m
∇2 + Vtrap(r,θ )

+ g N |ψTM(r,θ,t)|2
]

ψTM(r,θ,t). (14)

Making use of the orthonormality of the WL functions
and recalling the definitions of hopping and on-site energy

parameters [Eqs. (6) to (9)], one obtains

ih̄
db0

dt
= εb0 − Jb1 + UN |b0|2b0 − J ′

2
N [2Re(b∗

0b1)b0 + b1],

(15)

ih̄
db1

dt
= εb1 − Jb0 + UN |b1|2b1 − J ′

2
N [2Re(b∗

1b0)b1 + b0].

(16)

The above equations correspond to the improved TM model
developed in Ref. [3] and applied in Refs. [6,7]. Here it is worth
noticing that we have disregarded in our derivation terms of
the order of the integral

I = gN

∫
d2r w2

0(r,θ ) w2
1(r,θ ) (17)

since the corresponding contributions have been shown to be
negligible, as has also been argued in Ref. [3] for high barriers.
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B. Dynamical equations in terms of the particle imbalance
and phase difference

A more convenient set of variables is obtained by observing
that bk(t) = |bk(t)|eiφk(t), where φk(t) is the uniform phase
of the k site and nk = Nk(t)/N = |bk(t)|2 denotes the corre-
sponding filling factor. Following the procedure of Ref. [7],
the equations of motion for the conjugate coordinates, namely,
imbalance Z = n0 − n1 and phase difference ϕ = φ1 − φ0,
read

dZ

dt
= −

√
1 − Z2 sin ϕ, (18)

dϕ

dt
= �effZ +

[
Z√

1 − Z2

]
cos ϕ, (19)

where the time t (in the derivatives) has been expressed in units
of h̄/2Jeff and we have defined �eff = UN

2Jeff
, with Jeff = J +

J ′
2 N . Note that the above equations possess the same structure

as the standard TM ones, except that the bare J has been
replaced by an effective hopping parameter Jeff , which takes
into account the interaction between particles. It is interesting
to recall that J may be negative, as occurs in the present
calculations, while Jeff remains always positive [14].

The TM equations (18) and (19) can also be derived from
the “classical” Hamiltonian

H (Z,ϕ) = 1
2�effZ

2 − √
1 − Z2 cos ϕ (20)

since we have

dZ

dt
= −∂H

∂ϕ
,

dϕ

dt
= ∂H

∂Z
. (21)

For low �eff values the Hamiltonian exhibits only a minimum
at (Z,ϕ) = (0,0), and the dynamics becomes restricted to
Josephson-type oscillations. For �eff > 1 a maximum appears
at ϕ = π and

ZM =
√

1 − 1

�2
eff

, (22)

which gives rise to a self-trapping regime. Around this
maximum the orbits are restricted to only one sign of the
imbalance. In other words, if one starts with a positive
imbalance, it always remains positive. A ST running-phase
mode [1] arises for �eff > 2, which is characterized by an
unbounded ϕ value. To find the value Zc above which the
dynamics becomes ST for ϕ(t = 0) = 0, we need to impose
the condition H (Zc,0) = H (0,π ), which yields

Zc = 2

√
�eff − 1

�eff
. (23)

In this work we are interested in the range �eff � 1,
and thus a small Zc value is attained. In fact, we have
calculated the values of on-site energy and hopping pa-
rameters, U = 6.73 × 10−4h̄ωr , J = −3.66 × 10−4h̄ωr , and
J ′
2 N = 5.05 × 10−4h̄ωr , from which we obtained the TM

parameters, Jeff = 1.39 × 10−4h̄ωr and �eff = 2.42 × 105.
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FIG. 2. (Color online) Phase diagram of the improved TM model
for imbalance Z and phase difference ϕ. The circle and squares
respectively indicate the positions of the minimum and saddle points
of the Hamiltonian (20), while the stars correspond to the critical
value |Zc| [Eq. (23)]. We have also depicted as thick green solid lines
the results of the GP simulation for the initial conditions (|Z|,ϕ) =
(0.001,0) and (|Z|,ϕ) = (0.006,0).

In addition, we have found I = 6.05 × 10−7h̄ωr [Eq. (17)],
which justifies having neglected terms proportional to such a
parameter in the equations.

In Fig. 2 we show the phase diagram (Z,ϕ) for |Z| < 0.012
since for larger values of |Z| the orbits are almost horizontal.
The thick green lines correspond to exact numerical evolutions
for the initial conditions: (|Z|,ϕ) = (0.001,0) (Josephson) and
(|Z|,ϕ) = (0.006,0) (ST). To obtain such simulations, we have
solved the time-dependent GP equation with an initial wave
function which reproduces the same initial condition assumed
for the TM model evolution. In order to compare the phase
differences of both results, we have averaged the GP phase in
each k well according to

φk =
∫

d2r w2
k (r)φ(r), (24)

where φ(r) denotes the phase of the GP wave function. We
want to note that the Bloch states of Ref. [20] correspond to
equally populated wells with different winding numbers. In
the double-well potential these states are represented by the
stationary points located at Z = 0 in Fig. 2. The minimum at
ϕ = 0 corresponds to a vanishing winding number, while the
saddle point at |ϕ| = π corresponds to winding numbers with
|n| = 1. The latter, however, does not correspond to a vortex
state since it possesses zero angular momentum, as discussed
in Ref. [20].

Typical time evolutions of Josephson oscillations and ST
orbits are shown in Figs. 3 and 4, respectively. In Fig. 3 we
depict Z and ϕ as functions of time for the GP simulations
(solid line), together with the results arising from the TM
model (dot-dashed blue line). On the other hand, Fig. 4
shows the same evolutions for a larger initial imbalance,
where we clearly observe a self-trapping behavior. In both

013636-4



MULTIMODE MODEL FOR AN ATOMIC BOSE-EINSTEIN . . . PHYSICAL REVIEW A 88, 013636 (2013)

0 10 20 30 40 50 60 7 0
-100

-50

0

50

100

N
0-

N
1

ω
r
t

0 10 20 30 40 50 60 7

0 8

0 80
-1.0

-0.5

0.0

0.5

1.0

[φ
1-

φ 0]/
π

ω
r
t

FIG. 3. (Color online) Josephson oscillation in the double-well
system with an initial imbalance Z = 10−3. (top) Imbalance and
(bottom) phase difference are depicted as functions of time. The
solid line corresponds to the GP simulation, while the dot-dashed
blue and dashed red lines correspond to TM evolutions with
U = 6.73 × 10−4h̄ωr and a renormalized on-site energy parameter
UR = 5.28 × 10−4h̄ωr , respectively.

0 10 20 30 40 50 60 7 0

420

480

540

600

N
0-

N
1

ω
r
t

0 10 20 30 40 50 60 7

0 8

0 80
-1.0

-0.5

0.0

0.5

1.0

[φ
1-

φ 0]/
π

ω
r
t

FIG. 4. (Color online) Same as Fig. 3 for a self-trapping evolution
with an initial imbalance Z = 6 × 10−3.

cases we may see that the TM model predicts a faster
dynamics than the GP simulation. As we will show in the next
section, such a discrepancy can be substantially reduced when
using a renormalized on-site interaction energy parameter
(dashed red line).

C. Characteristic times

In this section we will derive a formula for the period of ST
oscillations. Before this, we recall that the Josephson period
in the limit of small oscillations reads [1,6]

Tso = πh̄

Jeff
√

�eff + 1
. (25)

Replacing in the above equation the values of Sec. IV B, we
obtain Tso = 46.0ω−1

r . This is a rather good estimate of the
TM period in Fig. 3 (TTM = 46.68ω−1

r ), but it clearly under-
estimates the corresponding GP period (TGP � 53.09ω−1

r ).
On the other hand, the phase difference increases almost

linearly with time for small-imbalance oscillations in the ST
regime,

ϕ(t) � 2π

TST
t, (26)

as seen in Fig. 4. Now, to be consistent with this approximation,
we first rewrite Eq. (19) without the adimensionalized time and
next approximate such an expression for �eff = UN

2Jeff
� 1 and

|Z| � 1 as follows:

dϕ

dt
= NU

h̄
Z + 2Jeff

h̄

[
Z√

1 − Z2

]
cos ϕ

� NU

h̄
Z � NU

h̄
Z0, (27)

where Z0 = Z(t) denotes the mean value of the time-
dependent imbalance. Note in Fig. 4 that the maximum depar-
ture of Z(t) from such a mean value lies within 20%. Therefore,
from (26) and (27) we may estimate the ST period as

TST = 2πh̄

U
N
, (28)

where 
N = Z0 N denotes the time average of the particle
number difference between sites. If we calculate such an
average from the TM model of Fig. 4, we obtain 
N � 520,
from which Eq. (28) yields TST = 17.94ω−1

r , which is a good
estimate of the TM period of 18.04ω−1

r in Fig. 4. Now, given
that the TM dynamics turns out to be noticeably faster than
the GP evolution, while conserving the shape, it suggests that
a renormalized value of U in (28) could heal this mismatch. In
fact, with TGP = 24.1ω−1

r and 
NGP = 494, we may propose
to replace U in Eq. (28) by the following renormalized on-site
interaction energy parameter:

UR = 2πh̄

TGP
NGP
= 5.28 × 10−4h̄ωr . (29)

Thus, we have repeated the numerical calculations of the TM
model with the above parameter, finding excellent agreement
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FIG. 5. (Color online) (top) Time evolution of population
N0 − M and (bottom) phase difference φ1 − φ0 for the four-well
system and initial conditions N0 − M = 75, Nk − M = −25 (k =
1,2,3) with a uniformly vanishing phase. The solid line corresponds
to the GP simulation, while the dot-dashed blue and dashed red lines
correspond to the MM and RMM models, with on-site interaction
energy parameters U = 1.38 × 10−3h̄ωr and UR = 1.08 × 10−3h̄ωr ,
respectively.

with the GP results, as clearly observed in Figs. 3 and 4.
It is also remarkable that the period for small Josephson
oscillations (25) gets now closer to the GP value when using
the renormalized parameter (29) (Tso = 51.5ω−1

r ). Therefore,
a more accurate Hamiltonian (20) can be constructed by
replacing U with UR in �eff .

V. MULTIPLE-MODE DYNAMICAL EQUATIONS

The two-mode equations describing the boson Josephson-
junction dynamics of two weakly coupled Bose-Einstein
condensates [2], along with their recent improvements for
high particle numbers [3,4], can be generalized to multiple-
mode dynamical equations for Nc Bose-Einstein condensates
forming a ring. In fact, we look for a solution of the time-
dependent GP equation

ih̄
∂ψMM(r,θ,t)

∂t
=

[
− h̄2

2m
∇2 + Vtrap(r,θ )

+ g N |ψMM(r,θ,t)|2]ψMM(r,θ,t) (30)

within the variational ansatz

ψMM(r,θ,t) =
Nc−1∑
k=0

bk(t) wk(r,θ ), (31)
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FIG. 6. (Color online) Same as Fig. 5 for initial conditions
N0 − M = 300 and Nk − M = −100 (k = 1,2,3).

where the phase of the time-dependent complex amplitude bk

corresponds to the uniform phase of the order parameter at
the kth site, while N |bk|2 yields the site population. Then,
replacing (31) in (30) and making use of the orthonormality of
the set of WL functions, we may extract the following system
of Nc nonlinear equations:

ih̄
dbk

dt
= εbk − J (bk−1 + bk+1) + UN |bk|2bk

− J ′

2
N{2Re[b∗

k (bk−1 + bk+1)]bk

+ (|bk|2 + |bk−1|2)bk−1 + (|bk|2 + |bk+1|2)bk+1}.
(32)

Note that the above expression assumes that each site k is
surrounded by two different neighbors k − 1 and k + 1; for that
reason the Nc = 2 case has been treated separately. In addition,
the site denoted by k = Nc (k = −1) must be identified with
that of k = 0 (k = Nc − 1). If we use bk = |bk|eiφk , the time
derivative in (32) reads

ih̄
dbk

dt
= h̄

(
i
d|bk|
dt

− |bk|dφk

dt

)
eiφk . (33)

Next, replacing (33) in (32), multiplying this equation by e−iφk ,
and separating the real and imaginary parts, one can, after
some algebra, decouple Eq. (32) into the following 2Nc real
equations, written in terms of population nk = |bk|2 = Nk/N

013636-6



MULTIMODE MODEL FOR AN ATOMIC BOSE-EINSTEIN . . . PHYSICAL REVIEW A 88, 013636 (2013)

and phase difference ϕk = φk − φk−1:

h̄
dnk

dt
= −2J [

√
nk nk+1 sin ϕk+1 − √

nk nk−1 sin ϕk] − J ′N [
√

nk nk+1(nk + nk+1) sin ϕk+1 − √
nk nk−1(nk + nk−1) sin ϕk],

(34)

h̄
dϕk

dt
= UN (nk−1 − nk) − J

[(√
nk

nk−1
−

√
nk−1

nk

)
cos ϕk +

√
nk−2

nk−1
cos ϕk−1 −

√
nk+1

nk

cos ϕk+1

]

− J ′N
2

[(
nk

√
nk

nk−1
− nk−1

√
nk−1

nk

)
cos ϕk +

(
3
√

nk−2 nk−1 + nk−2

√
nk−2

nk−1

)
cos ϕk−1

−
(

3
√

nk+1 nk + nk+1

√
nk+1

nk

)
cos ϕk+1

]
. (35)

The above MM dynamical equations constitute the general-
ization of the TM pair of equations (18) and (19) for Nc > 2.
Note that similar to the TM case, only 2Nc − 2 of the above
equations are independent since the variables must fulfill∑

k nk = 1 and
∑

k ϕk = 0.

A. Four-well ring lattice

In order to compare the MM dynamics with the results
of GP simulations, we have numerically integrated the
system (34) and (35) for Nc = 4 and two initial config-
urations. The model parameters utilized in this case were
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FIG. 7. (Color online) Particle number differences between neighboring sites for Nc = 4 and the initial conditions N0 − M = 600,
N1 − M = −300, N2 − M = −200, and N3 − M = −100. The solid line corresponds to the GP simulation, while the dot-dashed blue
and dashed red lines correspond to the MM and RMM models, with on-site interaction energy parameters U = 1.38 × 10−3h̄ωr and
UR = 1.08 × 10−3h̄ωr , respectively.
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U = 1.38 × 10−3h̄ωr , J = −4.98 × 10−4h̄ωr , and J ′ =
2.76 × 10−8h̄ωr .

1. Symmetric case

Here we consider initial conditions which are symmetric
with respect to the right and left from the k = 0 well, as
also studied by De Liberato and Foot [13]. Particularly,
in Fig. 5 we have chosen the following initial conditions:
N0 − M = 75 and Nk − M = −25 for the remaining sites,
where M = N/Nc = 25 000 denotes the mean number of
particles per site in the ground state. We may observe in the
top panel that the population oscillates around the mean value
M without any periodicity, at least for the times involved in
our numerical simulations. A similar behavior for the phase
difference has been depicted in the bottom panel of Fig. 5.
Note that the MM model again reproduces the shape of the
GP evolution in a faster dynamics, as already observed for the
TM model. Figure 6 shows the time evolution for the same
symmetric initial configuration, but with a higher population
in the k = 0 well (N0 − M = 300, Nk − M = −100 for k =
1,2,3). We observe in this case a clear ST regime, with
the population N0 − M , which remains positive during the
oscillations performed around N0 − 25 000 � 240, and an
unbounded phase that increases almost linearly with time.

Now we will generalize the treatment of Sec. IV C to
estimate the ST period in order to derive a renormalized on-site
energy parameter. First, according to the bottom panel of Fig. 6
we may approximate [cf. Eq. (26)]

ϕ1(t) � 2π

TST
t, (36)

and next, consistent with this approximation [cf. Eq. (27)], we
approximate Eq. (35) as

dϕ1

dt
� UN (n0 − n1)

h̄
� U (N0 − N1)

h̄
, (37)

where the upper bar again denotes time average. Therefore,
from (36) and (37) we may estimate the ST period as

TST � 2πh̄

U (N0 − N1)
, (38)

which, taking into account the value (N0 − N1) = 345 ex-
tracted from the MM results, yields TST � 13ω−1

r , in accor-
dance with the period of the MM model in Fig. 6 (dot-dashed
blue lines). Then, we may repeat the procedure of Sec. IV C and
extract a renormalized on-site interaction energy parameter,

UR = 2πh̄

TGP(N0 − N1)GP
, (39)

0 10 20 30 40 50
-1.0

-0.5

0.0

0.5

1.0

[φ
1-φ

0]/
π

ω
r
t

0 10 20 30 4 0
-1.0

-0.5

0.0

0.5

1.0

[φ
2-φ

1]/
π

ω
r
t

0 10 20 30 40 50
-1.0

-0.5

0.0

0.5

1.0

[φ
3-φ

2]/
π

ω
r
t

0 10 20 30 4

0 5

0 50
-1.0

-0.5

0.0

0.5

1.0

[φ
0-φ

3]/
π

ω
r
t

FIG. 8. (Color online) Same as Fig. 7 for the phase differences between neighboring sites.
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FIG. 9. (Color online) Same as Fig. 7 for initial conditions N0 − M = 300, N1 − M = −300, Nk − M = 0 (k = 2,3).

where the values (N0 − N1)GP = 323 and TGP � 18ω−1
r ,

arising from the GP simulation results, yield UR = 1.08 ×
10−3h̄ωr . The use of this renormalized U parameter in the
MM calculations leads to a much better agreement with the
GP results, as clearly shown in Figs. 5 and 6. We will call this
improved MM model the renormalized multiple-mode model.

2. Nonsymmetric case

To test the quality of the above RMM model, we will
analyze the time evolution of two nonsymmetric initial
configurations utilizing the same value for UR extracted in
the previous section. In Figs. 7 and 8, we have plotted the pop-
ulation and phase differences between adjacent sites, respec-
tively, for initial conditions N0 − M = 600, N1 − M = −300,
N2 − M = −200, and N3 − M = −100. We may observe
that the RMM model fits much more accurately the GP
simulation results than the original MM model. A similar
improvement may be observed in Figs. 9 and 10 for the
second initial conditions, N0 − M = 300, N1 − M = −300,
and Nk − M = 0 for k = 2,3. As inferred from Figs. 7 and 8,
such a configuration presents self-trapping in the k = 0 site,
while for the second initial conditions, this system exhibits
self-trapping in the k = 0 site, self-depletion in the k = 1
site, and an irregular oscillatory dynamics around the mean
number of particles on the remaining wells, as seen from

Figs. 9 and 10. The latter configuration had been previously
described by means of a standard MM model by De Liberato
and Foot [13].

B. Eight-well ring lattice

To conclude we will explore a ring lattice consisting
of a larger number of wells, Nc = 8. The corresponding
MM parameters are as follows: U = 2.918 × 10−3h̄ωr , J =
−1.898 × 10−3h̄ωr , and J ′ = 2.118 × 10−7h̄ωr . In Fig. 11,
we have depicted the population of the site k = 0 and the
phase difference between the k = 1 and k = 0 sites for three
different initial conditions. Then, we may obtain as before a
renormalized on-site energy parameter UR from the GP results
of the ST regime depicted in the right panels of Fig. 11. In
fact, replacing the ST period TGP � 8.4ω−1

r and the average
difference (N0 − N1)GP � 335 in Eq. (39), we obtain a RMM
model parameter UR = 2.2 × 10−3, which yields a sizable
improvement to the MM results, as seen in Fig. 11.

VI. CALCULATION OF THE EFFECTIVE INTERACTION
ENERGY PARAMETER USING THE GROUND-STATE

DENSITY

Recently, it has been demonstrated [9] that for a double-
well system, the on-site interaction energy dependence on the
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FIG. 10. (Color online) Same as Fig. 9 for the phase differences between neighboring sites.

imbalance should be taken into account in the two-mode model
in order to accurately describe the exact dynamics. There,
using a Thomas-Fermi density, a linear dependence with the
imbalance has been analytically encountered, and this has been
shown to give rise to an effective interaction energy parameter
in the two-mode equations of motion. Here we generalize,
beyond the Thomas-Fermi approximation, that result to the
case of multiple-well configurations. Following the procedure
of Ref. [9] adapted to Nc wells and using numerically obtained
densities, we have to evaluate the quotient

Uk

U
�

∫
d2r ρN (r) ρN+
N (r)∫

d2r ρ2
N (r)

, (40)

where we have further assumed in (40) that instead of localized
on-site densities, we may use the ground-state densities
ρN (r) and ρN+
N (r) normalized to unity of systems with N

and N + 
N particles, respectively, with 
N = Nc
Nk =
NcNk − N .

Numerical calculations of the right-hand side of (40) are
depicted in Fig. 12, where we may observe a linear behavior
with Nc
Nk/N for different numbers of lattice sites. Note that
the apparent counterintuitive decrease of this function with the
site population is related to the fact that the densities must be
normalized to unity.

Taking into account this linear dependence of the on-site
energy parameter we may write

Uk

U
� 1 − α

Nc
Nk

N
, (41)

where the values of α in Table I correspond to the linear fits
of the points in Fig. 12. To include this correction in the MM
model we must evaluate [9]
Uk−1

U
Nk−1 − Uk

U
Nk =

(
1 − α

Nc
Nk−1

N

) (

Nk−1 + N

Nc

)

−
(

1 − α
Nc
Nk

N

) (

Nk + N

Nc

)
,

(42)

TABLE I. Linear correction coefficient α of the on-site interaction
energy parameter of the k site [Eq. (41)] and effective (Ũ ),
renormalized (UR), and bare (U ) interaction energy parameters for
three numbers of wells Nc. The interaction energy parameters are
given in units of h̄ωr .

Nc α Ũ UR U

2 0.208 5.33 × 10−4 5.28 × 10−4 6.73 × 10−4

4 0.214 1.09 × 10−3 1.08 × 10−3 1.38 × 10−3

8 0.228 2.25 × 10−3 2.22 × 10−3 2.92 × 10−3
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FIG. 11. (Color online) (top) Population of the k = 0 well and (bottom) phase difference between the k = 1 and k = 0 wells for Nc = 8
and the initial conditions N0 − M = 210, Nk − M = −30 (1 � k � 7) (left panels), N0 − M = 280, Nk − M = −40 (1 � k � 7) (middle
panels), and N0 − M = 350, Nk − M = −50 (1 � k � 7) (right panels). The solid line corresponds to the GP simulation, while the dot-dashed
blue and dashed red lines correspond to the MM and RMM models, with on-site interaction energy parameters U = 2.918 × 10−3h̄ωr and
UR = 2.2 × 10−3h̄ωr , respectively.

which yields

Uk−1

U
Nk−1 − Uk

U
Nk

= (1 − α)(Nk−1 − Nk)

−α(Nk−1 − Nk)

[
Nc(Nk−1 + Nk)

N
− 2

]
. (43)

Finally, we replace the last result in the first term on the right-
hand side of Eqs. (19) and (35). By analyzing the term

α(Nk−1 − Nk)

[
Nc(Nk−1 + Nk)

N
− 2

]

= α(Nk−1 − Nk)
Nc(
Nk−1 + 
Nk)

N
, (44)

we first note that in the double-well case it is identically zero,
while for other studied cases Nc(
Nk−1+
Nk )

N
� 1 (cf. the range

of Nc
Nk/N in Fig. 12). Thus, disregarding such a term, we
in fact obtain a correction that can be regarded as a reduced
effective interaction parameter Ũ = (1 − α)U . Note that this
result is in accordance with our previous analysis, which
yielded the renormalized parameter UR using characteristic

times, while the corresponding quantitative agreement is
shown in Table I.
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FIG. 12. (Color online) Numerical calculation of the right-hand
side of Eq. (40) vs Nc
Nk/N for three numbers of lattice sites. The
black squares, red circles, and blue triangles correspond to Nc = 2,
4, and 8, respectively, while each line corresponds to a linear fit.
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VII. SUMMARY AND CONCLUDING REMARKS

We have investigated the dynamics of ring-shaped optical
lattices with a high number of particles per site. To this aim,
we have derived the equations of motion for population and
phase differences between neighboring sites of a generalized
multimode model that utilizes a localized on-site Wannier-
like basis. We have shown that in the case of a double-well
system, this approach coincides with a recent improved two-
mode model [3].

To test the quality of our model, we have numerically solved
the time-dependent GP equation for different numbers of wells,
particularly 2, 4, and 8. By realizing that the self-trapping
time period turns out to be chiefly ruled by the on-site
interaction energy parameter and utilizing the output of a
single GP simulation, we were able to renormalize such a
parameter. The use of this renormalized parameter in the
multimode equations strikingly led to a much better agreement
with the GP results for all investigated initial conditions, of
which only a few representatives were included in this report.
Finally, we have shown that the effective interaction energy

parameter, which takes into account the deformation of the
density during the time evolution, yields results that are in good
agreement with those previously obtained for the renormalized
parameter.

To conclude, we wish to emphasize that the two-mode
model has predicted, even in its improved version [3], a sizable
faster evolution than our GP simulation results, as discussed
in Sec. IV C. The same behavior is observed in previous
experimental and theoretical works dealing with other types of
double-well systems (see, e.g., [6,23] and references therein).
We believe that also in these systems as in our case, the TM
model with an effective reduction of the on-site interaction
energy parameter numerically calculated as proposed here
should provide a more accurate dynamics.
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