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Abstract— This paper presents a useful
theoretical extension of the Lyapunov-Krasovskii’s
theory to analyse the exponential stability of
differential equations with time-varying delay. The
presented theoretical analysis allows establishing the
coefficients of an upper exponential bound of the
real response of a delayed system. In addition, we
propose stability conditions —delay amplitude
independent- applied to linear and non-linear
systems with time-varying delay. Based on the
Krasovskii-type functional, the proposed functionals
incorporate information of the delayed system. The
main motivation of this paper is to arrive at
conditions of exponential stability that show directly
the influence of the time-varying delay and the non-
delayed dynamics on the real response of a delayed
system. Theoretical results are tested through a
numerical example.
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linear systems, non-linear systems, time-varying delay.

I. INTRODUCTION

Many real systems are represented by delayed
differential equations, with models applied to biology,
chemistry, economics, mechanics, medicine, physics,
etc. (Hale and Lunel, 1993; Kolmanovskii and Myshkis,
1999). In general, the introduction of a time delay into
the differential equations may lead to instability or to a
bad performance of the system (Kolmanovskii and
Myshkis, 1992; Niculescu, 2001; Richard, 2003). On
the other hand, the literature presents various criteria to
analyse the stability of non-linear and linear systems
with time delay (Kharitonov, 1999; Kolmanovskii ef al.,
1998 and 1999b). Main stability conditions are based on
the Lyapunov-Krasovskii functional (Mao, 1996;
Verriest and Niculescu 1997; Verriest and Aggoune,
1998; Tchangani et al, 1998; Kolmanovskii et al.,
1999a; Niculescu and Mazenc, 2001; Jafarov, 2001;
Nian, 2003; Han, 2004; Pepe, 2005); matrix measures
norm (Mori, 1985, Niculescu et al., 1995); and
Razumikhin functions (Jankovic, 1999; Teel, 1998), but
these papers don’t analyse how to modify the transitory
of the system, which is useful for the design and control
of real systems. The general purpose of this paper is to
analyse the exponential stability of systems with time-
varying delay studying how some factors (for example,
time delay) establish the stability regions and modify
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the response of such systems.

Based on the Lyapunov-Krasovskii’s theory applied
to delayed differential equations and the Lyapunov’s
theory applied to differential equations, we propose a
useful theoretical extension to analyse the exponential
stability of delayed differential equations establishing an
upper bound of the real response of a delayed system. In
addition, we propose sufficient conditions —independent
of the delay amplitude- to analyse the exponential
stability of linear and non-linear systems with time-
varying delay. In general, the used functionals are based
on the Krasovskii-type functional and they depend on
setting positive definite symmetric matrices in the form
of Riccati equations, which are generally set by trial and
error. In this work, the proposed functionals incorporate
information of the delayed system arriving at useful
stability conditions for control of systems. Such
conditions show the influence of the time-varying delay
and the non-delayed dynamics (which can be generally
handled) on the stability and response of a delayed
system. The paper also includes a numerical example
that helps the reader to test the reached theoretical
results.

The paper is organized as follows. Section II gives
the notation used in this paper. In section III some
background materials on delayed differential equations
and the Lyapunov-Krasovskii’s theory are introduced.
Section IV presents the proof of the proposed main
theorem for exponential stability of systems with time-
varying delay. The proposed conditions of exponential
stability applied to linear and non-linear systems with
time varying delay are proven in section V. In addition,
the stability region is analysed. Section VI presents a
numerical example to verify the reached theoretical
results. Finally, general conclusions are given in section
VIIL.

II. NOTATION

In this paper, the following notation is used:

h(t)e ®" denotes the time delay. We assume that the
delay is finite and A(r)<1. Here, xi)e sand | is the
Euclidean norm of x. If B is a matrix or vector then B’
is the transpose of B, |4 denotes the Euclidean norm
of Ae %™ defined by [4_sup ||Ax|

|x[z0

., u(A) denotes the

X

matrix measure (derived from the Euclidean norm) of
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the real matrix 4 computed as ,,(A):lmax,l(Aur 4) >
Qs

where /1,(14’+ A) are the eigenvalues of 4" +4. On the
other hand, x (for a given time instant ¢) is the
function defined by x(0)=xr+6) foroe[-n()o], for
example: x(0)=xfr), x(-#)=ar—4); and the norm | | is
defined by |y,

sup x(9) - Here, (C"") is the Banach
(o)1

space of continuous functions on the interval [1—nle).c] at
any time 7, and ¢, = {WGCZ w SH} . On the other
hand, given a non-linear differentiable function
#(r)= g(x(t).x(r - n)) » the incremental gain of g is defined
as g =infly:g(v.x)-gv.0) <y [v x]-[n »ll
Vx,,x,,y,,y, €R".

II1. STABILITY OF DELAYED SYSTEMS

Let’s consider the delayed functional differential

equation given by,

i(r)=f(e.x,), 0)
tt,eR, and f:R xC->R" with
7(.0)=0.v¢>¢,. Here, f is continuous and takes

bounded sets into bounded sets. We assume that there
exists a solution x(1;7.p,) of (1) which depends

where xeR ,x eC,

continuously on the initial data [t”,l//o], where
w, =x(t,+6) for oe[-n(,)0] with y, eC,. Sufficient
conditions implying existence, uniqueness and
continuous dependence can be found in the standard
theory (e.g., Driver, 1962, Sawano, 1982 and Burton,
1985 ). From now on, we will denote the solution norm

by x(t’ tu"//u) = xl (O) :

The transition from x to x is shown in Fig. 1 for an
arbitrary example with #(z,)> #(z,) . The right hand side
of (1) is a function of ¢, and a functional of x , i.e. to
any ¢ and any function y, eC corresponds a vector
f(t”//,)e "R" :

The following definitions and facts are a standard in
the theory of delayed functional differential equations
(Bellman and Cooke, 1963; Krasovskii, 1963; Hale,

1977, Hale and Lunel, 1993; Kolmanovskii and
Myshkis, 1992; Kolmanovskii and Myshkis, 1999).
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Definition 1. The solution x, =0 of (1) is said to be
asymptotically stable if,
a) For every ¢>0 and each ¢ >0 there exists p=s1)
such that I <o implies that |‘x(Z;to’l//n} <g forall 7, >0.
b) For every ¢, >0 there exists ¢ =¢ (;,) such that if
ol <2 » then |x(r;z,.y, ) —>0 as £ > .

If pand ¢, are independent from the initial time

t, , then the zero-solution is uniformly asymptotically
stable.

Definition 2. The solution x =0 of (1) is called
exponentially stable if there exist constants y >0 and
a >0, such that every solution of (1) satisfies the
following condition:

|x(t;to,(//ox < 7||t//0”e’“("’°),Vt >£,>0, )
Fact 1 (Lyapunov, 1949). Applying the Lyapunov’s
theory of differential equations to delayed differential

equations described by (1) it is easy to arrive at a
sufficient condition of exponential stability given by:

L%, ()" <V (t.x,)< mx (0)" » 3
V(t.x,)<—k|x (0)" “
or
Llx[™ < Viex,)<m|x|” > (5)
P(ex )<k i | ©

where the functional J: R xC — R" maps bounded sets
of C into bounded sets of R", y(,x,) is the time
derivative of y(;,x,) along the trajectories of (1) , the

coefficients [ ,m,,k,l,,m,,k, e R* and p , p, are
positive integers.

The solution of the system has an upper bound defined

by |x(t) <7, |w.[e > where 5, :{ﬂ} "and L T
ll 1 mlpl
from (3) and (4)- or |x|<z,|w e, where
yz{&] “and , _ k. -from (5) and (6)- The
A S omyp,

coefficients y,,a, or y,,a,
Lyapunov’s classical coefficients.

are computed as the

X

b= fl[{,) II.

‘fu t! o h(tl)

t

x

L

o |
~h,)

= ":(tn J

Fig. 1. Transition from x (left) to x, (right).
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The practical problem of this theorem applied to
delayed differential equations is to find any functional
to easily compute the coefficients /,,m,,k, or I,,m,,k,

that define the exponential upper bound of the system
real response. In general, the used functionals are based
on the Krasovskii-type functional (Richard, 2003). The
classical Krasovskii functional for systems with time
varying delay is given by:

I'(t, X, ) = x(t)' Px(t)+

where P,Q are positive definite matrices, A(r) is the

_LT ]'x'(e)Qx(a)de O

1=h(t)

time delay and /(r)< 7 <1, with 7 ¢ (~w.1).

Fact 2 (Krasovskii, 1963). Let’s suppose that the
function 7:%' xC—% maps bounded sets of C into

bounded sets of R” , and that u(s),v(s)and w(s) are

scalar, continuous, positive and non-decreasing
functions. If there exists a continuous functional
VR xC — R, and the following conditions hold:

u(]x, (o])< V(x)<v(x)) - 8)

t X )< —w(] 0)‘) )

where y(z,x,) is the time-derivative of y(;, x,) along the
trajectories of (1); then the solution x, = 0 is uniformly

asymptotically stable.

This theorem allows using the Krasovskii-type
functional (7), however only conditions of asymptotic
stability are achieved, which for many applications is
not accepted.

IV. EXPONENTIAL STABILITY OF SYSTEMS
WITH TIME-VARYING DELAY

This section presents the main contribution of this
paper. Based on the Lyapunov-Krasovskii’s theory
applied to delayed differential equations and the
classical Lyapunov’s theory applied to differential
equations, we propose a useful theoretical extension to
analyse the exponential stability of delayed differential
equations establishing an upper bound (which can be
easily computed using Krasovskii-type functionals as
will be presented in section VI) for the real response of
the delayed system.

Theorem 1. The zero solution of the delayed system
x=f(t,x) (f is supposed to map bounded sets of C

into bounded sets of R and the time delay is bounded
by h, =sup h(t)) is exponentially stable if there exists a

=1y

differentiable  functional V:R'xC—>R', and the
following conditions hold,

a1x, (OY <V(t.x)< b||x, ",, s (10)

P(t.x,) < e (0 an

where a,b,c are positive constants, p is a positive
integer and V(,x,) is the time derivative of v(i.x,) along
the system trajectories (1). The solution of the system
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has an upper bound defined by |x(t:t,.v,) < a,|w,|le ™
c {é
bpd” a
<)L,
the solution of d = e[b"J["pJ
Proof. This theorem is motivated on the classical
Lyapunov and Krasovskii theories for differential
equations and delayed differential equations,
respectively. From (11), we can express the following:

Vtzt,20, where, p =

a,

1/p
} and d is

*V.(t’x’)2|x,(0]') . (12)
c
Now, from (10) we obtain that,
V(t,x,)< blx|" . a3)

We suppose that there exists a constant ¢ >0 such
that v|x (0) = 0 verifies the following:

" < d’|x, o) . (4)
We will prove (14) by reductio ad absurdum: 1f (14) is
false, then |x,|” > d”|x, (0}" vd >0.Now, if d »w then
|, | > o0 V¢ 21, which is absurd because we assume that
the initial condition y, is bounded, i.e. y, eC, (see

Section III). Therefore, we can assure that there exists at
least a constant ¢4 satisfying (14). From (13) and (14),

Vo)< ba|x 0)' a% oy, 09
Since (12) and (15), we can write the following:
) V3 ey e ey (16)
c bd* bd’
The solution for (16) is an exponential function:
Fex)= G )e D)
where we set ¢, = 0 only for simplicity.
Next, from (10) and (17), it yields,
a|x,(01" < V(t,x,)s V(t(,,l//”)eiﬂrﬁj’ (18)
< b"l//(, ||pe7’_’["’_k]l .
Then, by obtaining |x, 0] from (18),
() 19)

b, ) < aflw e
where the coefficients a,,b, of (19) are the Lyapunov’s

>

classical coefficient for exponential stability, that is:

] o (20)

From (19), and because the exponential function is
continuously decreasing, it holds that,

—mﬁ(rw )

b

ot

a

<
bp

el < @l ol @D

Fig. 2 shows graphically the qualitative relation between
the bounds of |, (0] and |x (9, With 6 ¢ [~ A(r).0].

Now, from (14) and (19),

v ]l< a affe 22)
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e, (0) = ¢(1)]
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Fig. 2. Evolution of the upper bound of |x (0) -

30
7@)
25f
--------- h‘=
201 ' 1 i
15} — o=

Fig. 3. Relation between d and h,, .

On the other hand, we can re-write (21) as follows:

—n(r)

-l
aly.e 23)

By comparing (22) and (23), we verify that d exist and
it is the solution of,

by
B

bt

d=e " (24)
where , —sup A(¢)- The functions —dependent on d - in

left and right hand of (24) are increasing and decreasing
functions, respectively. Then it will always exist
solution for d. Figure 3 shows an example for three
values of #4,, where b, =1. The higher the maximum

m >

time delay #,, the higher d is.
Finally, the inequality (19) can be expressed as (2),

RGNS E¥1 72 25)
where
7=a,=a2>0,a=%=b2>0. (26)

From (25) and (26), Theorem 1 is proven. The
inequality (25) satisfies Definition 2 of exponential
stability. A

The proposed Theorem 1 is a useful theoretical
extension of the Lyapunov-Krasovskii’s theory for
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exponential stability of delayed differential equations.
From (24), the higher the maximum time delay A, , the

higher d is and therefore, the lower the exponential rate
a, -from (26)- of the upper bound of the system

response will be. The coefficients of the upper
exponential bound -for the real response of the delayed
system- are easily computed for delayed linear systems,
as will be analyzed in section VI through a numerical
example.

V.STABILITY CONDITIONS OF SYSTEMS
WITH TIME-VARYING DELAY

In this section, we propose conditions of exponential
stability applied to linear (Section A) and non-linear
(Sections B and C) systems with time varying delay.
Our contribution in this section is the way to build a
functional, which incorporates information of the
delayed system. In addition, we will analyse the
achieved stability region, which will depend on the
maximum derivative of the time delay and the non-
delayed dynamics of the system.

A. Stability of linear systems with time-varying delay
Let us consider a delayed linear system described by,

()= Ax(t)+ Bx(r - h(t)). 27)
where 4,BeR™, x()e®’, and 0<hlt)<h e,
h(t) <7 <1, Yt 21,, with re(-w) .

Theorem 2. The zero solution of the delayed system
described by (27) is exponentially stable if,

- /

where |p| is the Euclldean norm of the matrix B, u(4) is

(28)

|8l <0

the matrix measure of the matrix A and the time-
derivative of the delay verifies that /z(t)< r<l.

Proof: A functional V:®"'xC—>R" based
Lyapunov-Krasovskii’s theory is proposed as follows:

Plex)= 1) x()+ 12_ }?ge)fx(a)dbo, (29)

where the proposed functional incorporates information
of the delayed dynamics (’ B| ).

on

From (29) and considering that the delay a(;) is
bounded (x(:)<h ) and that x:‘x‘(o)r g“x‘HZ (by using
norm properties), then the proposed functional p/(z,x )

verifies condition (10) — given by Theorem I-,

Y OF <7 )z Y1 B e 60

where the values «,b, p obtained by comparing (10)
and (30) are the following:

a—0.5,b—0.5(1+|1 | 3D

Bh,,,]
e lp=2.
T

The derivative of (¢, x ) along the system trajectories (27) is,
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Fig. 4. Stability region as a function of 7 .
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Pe.x,)= V(o) [x(0)+ Bl - mle Y Lax(e)+ Bx- ) ()
+1/2f|r|x(t)rx(t)f %‘B|%x(t—h)’x(t—h) .

By re-arranging terms and considering that
() Bx (- ()= [x() Bx (- n(:)) | because it is a real
number ( B e R, x € R"), then,

V(t,x,)=x(t)r{ AB"} )+ x() Bx (- 1)

1-
_ %|B|L — :|x(l —h) x(-n).
where 7e9R™ is the identity matrix. Using the inequal-
ity By, < B YlBlex, MO Plex). with

x, =x(f) and x, = x(t- 1), it follows that,
V(.x)< (z)f{“/l /| | /|B|I}x(t
+x(th)’{%|3|1[1%ﬂx(zh).

We use the property of the matrix measure given by
x(e) 0.5[4+ 4" Jx(e) < x(t) [u(4)]x(r) into y(z,x,) as follows,

Vit,x)< x(t)'[ (A)l+[ / ]| |](t) 32)

+x( - h)T{/|B|I[I - —H (c-n).

The second term of the right hand in (32) is negative
definite because iz(t)< r<1. From (32), condition (11)

A+ A"
2

—given by Theorem I- is satisfied if (28) is verified.
Therefore, inequalities (30) and (32) satisfy the stability
conditions required by Theorem 1, and in consequence,
the origin of the system (27) is exponentially stable. A

Next, we apply the property of the matrix measure
given by Re 2,(X)< u(x) into (28) as follows:

- u(4)> |B|[1_1_/31] ——ReA(4)> |3|[1_1_y31

Figure 4 shows the influence of the maximum
derivative of the time delay on the stability region -

(33)
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given by (33)- for two arbitrary values |5=1 and |g=2.

The achieved stability condition (33) is independent of
the delay amplitude and it depends on three main
factors: the real part of the eigenvalues Rrei(4) of the
non-delayed dynamics of the system, the norm |5 of the
delayed dynamics of the system and the maximum time-
derivative r of the time delay. Moreover, the greater
the time derivative of the time delay (7 ), the stronger
the stability of the non-delayed system (x=Ax) to
reach the stability of the system with time delay.

B. Stability of delayed linear systems with nonlinear

components

Let us consider a delayed linear system described by,
i(0) = Ax(0) + Bl - n0)+ f O+ glale-n(0))) . (B34)

where 4, Be R™",  x()eR’ 0<hlt)<h,en’,

h(t)<z <1, Yt >1,, With 7 (o) . It is assumed that the

non-linear functions f and g belong to a class of

functions Q:9R" — R"satisfying v eQ (Verriest and
Aggoune, 1998),
o)

and

0(0)=0,v¢ and |im sup "~ =0- (35)

Condition (35) ensures that for perturbations f{(x)
and g(x) in class Q, there exist k,,k,,7>0, such
that V|x| <n,

fx) <k, x, (36)
glx) < k,x . 37

Theorem 3. The zero solution of the delayed system
represented by (34) is locally exponentially stable if :

,u(A)+|B|[;/]+k +k, i}<0. (3%)

-7

Proof. A functional V:®" xC—>®R" is proposed as
follows:
1
Px)= L@y =@+ 27 [x() x(0)do
=7 W (39)
1k
427 jx(e) x(0)do >0 .

- l—hr

where the proposed functional incorporates information
of the delayed dynamics (|B| and kg)-

From (39) and considering that the delay #(r) is
bounded (#(t)<#h,) and Xx=|x (0) <[x| (by using
norm properties), then the proposed functional p(z,x )

verifies condition (10) —given by Theorem I-,
(8++.)
S OF <v(ex)< Vol f +Y <[

The time-derivative of V(t, x,) along the system
trajectories (34) is similar to (32), but with the addition

(40)
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of four new terms as follows,

Pos)< {4511/ Ag}(tﬂ”(t))t)

(41)

& ()l <l MB'[I—,] Yk _z}x(t 0.
From (36), (37), and by using norm properties,
SO 50 <) < £, ) 50)
el )Y 3(0) = |- n)Y ()
SN NG B M O )
Substituting (42) and (43) in (41), it yields,

Plx)< x(t) {;I(A)I+#|B|I+I:/ [k +k2 ]1]x(t)
+x(th)7{</|3| Yk, )(1——] :|x(t h).

By re-arranging terms into y{z,x,),

(42)

(43)

V(e.x,)< x(t) {A(A)1+ / |B|7 + _5 k21+k,~1}x(t)(44)

xlioh {(/|B| Y, [1__] }x(, 5.

The second term of the right hand in (44) is negative
definite because j,(;)< 7 <1. From (44), condition (11) is

satisfied if (38) is verified. Therefore, inequalities (40)
and (44) satisfy the stability conditions required by
Theorem 1, and in consequence, the origin of the system
(34) is locally exponentially stable. A

The stability condition (38) clearly shows the effect
of the delayed and non-delayed non-linearity on the
system behavior. The influence on the system stability
of the delayed dynamics (linear or non-linear) depends
on the maximum time-derivative of the time delay.

C. Stability of nonlinear systems with time-varying delay
Let us consider a non-linear system with time varying
delay described by,

ir)= /(50)) + g (sl x(e =) (45)
where 0<n(r)<h, and i(r)<z<1, with / eR*, xeR',
L, €M, R >R and g® xR >R, with £(0)=0
and g(0,0)=0 V¢>¢,. In addition, we assume that £
and g map bounded sets (R and R xK, respectively)
into bounded sets in R’

Lemma 1. If a system represented by x=f(xy is
exponentially stable, then there exist o, 1 € ®* such that
¥ f(x)<—x'x, where |x|<alx(0)e ™.

Proof. If the system 5= f(x) is exponentially stable,

then it satisfies |x| < a|x(0]e’ ', and therefore:

46
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x<alx(0)e "1, . (46)
where 7, € R” with 7,(;,1)=1 for 0 <i<n. From (46),

the evolution of X verifies that,

x< —Aot|x(0]e’ﬁ'1l . (47)
Using (46) and (47) on — Ax"x,
—Ax'xz —ﬂ(a|x(01e”" Xa|x(0)e’”"’ )z x"x=x"f(x). (48)
Inequality (48) proves the proposed Lemma. A

Theorem 4. Let us suppose that the subsystem 5= f(x)

of the system (45) is exponentially stable with rate ],
then the following condition ensures the exponential
stability of the system (45):

2-37¢
_}“"'lgl{ié

1-7
where L|g‘€m* and h()<z<1. The norm ‘g| is the

(49)

<0

incremental gain of the function g() .

Proof. A functional
follows,

ViR xC—>R" is proposed as

1 1
28 [x"0x,,d0 >0, (50)

t— h\¢

y _ 1 T

14 (t,x,)— H X X+
where the proposed functional incorporates information
of the delayed dynamics (| g| ).

From (50) and considering that the delay A(r) is
bounded (A(r)< 4, ) and that X x =[x O <|x|

norm properties), then the proposed functional p(z,x,)
verifies condition (10) —given by Theorem I-,
(51

1
12x,(0)Z <V(tx)< 12 x|+ I%f xh, .

where the values 4,5, p comparing (10) and (51) are
a=0.5, b:0,5[1+ gh'"] p=2.
1-7

The time-derivative of V(t, x’) along the system
trajectories (45) is,
Mex) <o fx)+x" gl e )+ }é|g| }é|g|( ) () x(-n) (52)

Applying norm propertles,
el e~ ) < il ot ] <l 1)
el + S+ By <2l Llefte-nf
Introducing (53) into (52), it yields,
g

V(t,x,)gx’f(x)+‘g{%lir}\bﬁ2[1 E ﬂ}( W x(-n) . (54)

The third term of the right hand in (54) is negative
definite because /<7 <1. By applying Lemma 1 to (54)
and organizing terms, it yields,

. 2-3
V(e.x,)< —2x x+| g|[l—AT]X1 x
-7

From (55), condition (11) is satisfied if,

(53)

(55)
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1
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— |zg|=0s :'

': -I.lﬁ -1 0.6 [] 0.6
T
Fig. 5. Stability region in function of 7.
12-35r (56)
-A+lg . <0,

Inequalities (51) and (56) verify the stability
conditions (10) and (11) (Theorem 1). In addition, we
remark that (56) is equal to (49). Therefore, the
proposed Theorem 4 is proven ensuring the exponential
stability of the system (45). A

Figure 5 shows the influence of the maximum
derivative of the time delay on the stability region given
by (56) for three arbitrary values |¢/=05, [¢g]=1 and
|g)=2- The stability condition is independent of the
delay amplitude and it depends on three main factors:
the exponential rate 1 of the non-delayed system
= f(x), the norm |g| of the delayed non-linear function
g(x, x(t - 1)) and the maximum time-derivative 7 of the
time delay. Then, we can conclude that the greater the
temporal derivative of the time delay (t), the stronger
the stability (higher X) of the non-delayed system
(&= f(x)) to reach the stability of the system with time
delay. In addition, if |g/—0 then the proposed stability

condition tends to the stability condition of a non-
delayed system, this is: 1<0.

VI. NUMERICAL EXAMPLE
In this section, we present a numerical example of a
linear system with time-varying delay.

Let us consider the system given by (27) with scalar
values 4= 4,B=1. The initial condition is x(g)=1 for
0 e[-hl(z,).0] and the time delay is represented by
h(t)=0.1t[sec.], then 7 =0.1. From Theorem 2 (28), the
stability condition on 4 is
1-1/2(0.1)

1-(0.1)
By regarding h(r)=0.5(sec.] (7=0.5) in the above
system, the stability condition becomes,
1-1/2(0.5)
T1-03)

Figures 6 and 7 show the state evolution x(r) of the

A+1 (57)

= A+105<0=>A<-105=4,,,

A+1 —A+15<0=>4<-15=4,, (58)

example systems for several values of A . If stability
condition (28) is satisfied —conditions on 4 given by
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Fig. 6. Evolution of the state x(¢) for 7=0.1.
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Fig. 7. Evolution of the state x(¢) for 7=035.
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Fig. 8. Upper bound of the system response.

(57) and (58)-, then x(t)—> 0 with exponential rate, in
spite of the several values of the time-varying delay.
Moreover, the higher the time-derivative of the delay,
the stronger the stability of the non-delayed dynamics of
the system (x = Ax) to assure the stability of the
delayed system. The simulations of the delayed system
verify the theoretical result given by Theorem 2.

Now, for a time delay given by: A(r)=0.17+0.5[sec.] for
0<t< 5[sec.] , and h(t)= l[sec.] for ¢> 5[sec.], then
h, =1[sec.]. In addition, we set 4=-2. From Theorem 1

and Theorem 2, the upper bound of the response of the
system is computed assuming that the main transitory is
on the time-interval 7 < 5[sec.], then 7=0.1. From (28)

and (30)

a:l/2,b:1/2(1+ ! ]zl,pzz,
1-0.1
_ 59
A+1L2(()'l)zA+1<0:>A<—1:AM, (59)
1-(0.1)
—c=4-4.,,="2-(-)=-1

From Theorem 1 -by using a,b,c, p from (59)-, we
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compute a,,b, as follows:
Joe
1
= =0
2(1.32)
The resulting coefficients in (60) are used by Theorem 1

to compute the theoretical upper bound of the norm of
x(r) as |x(t) < 1.41]y,[e > . Figure 8 shows the simulated

d=

]' o]
=d~132, a,= o5| =141
) (60)

2

response of |xl(0],‘xl(_hx and the theoretical upper
bound of |x(r) .

The theoretical upper bound is useful as a
performance measure for the analysis and design of
control systems. In addition, the example has shown that
the theoretical upper bound can be easily computed for
delayed linear systems.

VII. CONCLUSIONS

In this paper it has been proposed a useful theoretical
extension to analyse the exponential stability of delayed
differential equations establishing an upper bound for
the real response of a delayed system. In addition,
conditions of exponential stability for linear and non-
linear systems with time-varying delay were proposed
and the analysis of the achieved regions of stability was
also presented.

The proposed stability conditions depend on the
maximum derivative of the time delay, but they are
independent of the delay amplitude. The higher the
time-derivative of the time delay, the stronger the
stability of the non-delayed dynamics of the system to
ensure the exponential stability of the delayed system.
The main utility of the achieved conditions of
exponential stability is that they directly depend on the
non-delayed dynamics of the system (which can be
generally handled or controlled) and the maximum
derivative of the time delay (which can be generally
measured in line).

On the other hand, the presented theoretical analysis
allows setting the coefficients of an exponential
response that bounds the system real response. Such
coefficients can be easily computed as shown the
presented numerical example (for a delayed linear
system) and they are a performance measure of the
system, which is useful to analyse and design control
strategies for delayed systems. Finally, the simulation
results were satisfactory, verifying the achieved
theoretical results.
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