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Simple Summary: The presence of the Africanized bee on the American continent allowed hybridiza-
tion processes, which led to a high genetic diversity. However, distinct morphotypes with unique
characteristics emerge at different altitudinal levels across the continent. Ecuador possesses high
biodiversity and offers ideal conditions for Africanized hybrid development. Nevertheless, it is
crucial to identify the formation of morphotypes adapted to the area in order to propose conservation
plans for these insects, since individuals with excellent behavior in both hygiene and defensiveness,
desirable traits in Africanized bees, have been observed previously.

Abstract: Seventy-five samples were collected from 15 beehives in the central highlands of Ecuador
(Tungurahua–Chimborazo) to assess Africanization in managed bee populations using wing geo-
metric morphometric and mitochondrial DNA analyses. The results indicated that when grouping
the apiaries based on altitudinal floors into 2600–2800, 2801–3000, and 3001–3274 m above sea level,
differences (p < 0.001) were observed. The morphotypes were similar in the first two floors, but
the third indicated that altitude plays a crucial role in the differentiation of populations. When
comparing with the pure subspecies, we found differences (p < 0.001); the nearest Mahalanobis
distance was for Apis mellifera scutellata (D2 = 3.51), with 95.8% Africanization via father in the area.
The maternal origin of all patterns belonged to lineage A (A. m. scutellata), with seven haplotypes.
The most frequent haplotypes were A26 and A1; however, the A1q haplotype was not detected at the
national level or in nearby countries. The identified haplotypes do not coincide with A4, which is
predominant in South Africa and Brazil. The results indicate a double origin due to their presence
in North Africa and the Iberian Peninsula. The formation of specific morphological groups within
ecoregions is suggested.
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1. Introduction

The conservation and sustainable use of biodiversity for food and agriculture play a
crucial role in the fight against hunger to ensure environmental sustainability and increase
agricultural and food production [1]. The decrease in species worldwide caused by different
factors [2] significantly alarms researchers and producers. As a result, researchers have
orientated their efforts toward characterization studies, technological exploitation, and
sustainable use of species.

The identification and classification of A. mellifera have a long history, with various
methods employed since ancient times. Early classifications of A. mellifera relied on mor-
phological and behavioral characteristics, often linked to the geographic distribution of
the observed specimens [3]. These included traditional morphometry [4,5], allozyme and
isozyme analysis [6,7], nuclear DNA molecular markers [8], mitochondrial DNA [9–11],
microsatellites [12–14], cuticular hydrocarbons [15], and single-nucleotide polymorphisms
(SNPs) [16].

In recent years, geometric morphometry (GM) has taken on great importance and is
the most widely used tool for identifying subspecies [17]. GM has emerged as a valuable
tool for A. mellifera identification due to its high accuracy in discriminating between species,
subspecies, and hybrids [18,19]. Some studies suggest that geometric morphometrics might
sometimes be even more effective than molecular markers for subspecies identification
within A. mellifera [20].

Molecular markers such as mitochondrial DNA can help validate and expand our
knowledge of species biodiversity [21]. The genetic diversity within a population repre-
sents the raw material for adaptation, allowing organisms to evolve and better cope with
changing environments and demands [22]. Information on the origin and history of animal
genetic resources underpins their sustainable management [23]. Prior evaluation of genetic
variability and gene flow within populations is crucial for effective gene pool management
in animal genetic resources. This assessment helps establish appropriate selection programs
for breeding and conservation efforts [24].

In Brazil, in 1956, after an attempt to improve European bees, to obtain a hybrid prod-
uct of interbreeding between European and African subspecies with good temperament
and searching habits [25], a swarm escape occurred, producing a hybridization with native
bees [26]. The continent’s extensive geographic distribution and environmental variation
have fostered micro-evolutionary adaptations in hybrid populations [27]. Perhaps due
to their remarkable genetic plasticity and adaptability, these hybrids have formed and
dispersed across diverse morphoclimatic patterns, acquiring unique characteristics [28].
Africanized bees are present from northern Argentina to the southern and central United
States [11] and occupy a range of approximately 20 million km2. Their high colonizing
capacity has led to one of the fastest and most rapid biological invasions on record [29,30].

The introduction of African honey bees (Apis mellifera scutellata) through hybridiza-
tion has impacted natural ecosystems and beekeeping activities on the continent. Their
defensive behavior has posed a particular challenge. The Africanization process began
in Ecuador during the 1970s [31], rapidly spreading throughout the country and causing
significant damage to Ecuadorian beekeeping.

In the highlands of Ecuador, altitude may be a key factor influencing the variability of
bee populations, particularly in continental Africanization. Distinguishing bee subspecies
or lineages is crucial for two main reasons. First, it aids in conserving bee biodiversity.
Second, it allows us to assess the extent of Africanization, serving as a baseline for designing
strategies to conserve identified genotypes.

Mitochondrial DNA analysis is a powerful tool to identify bee species and trace their
maternal origin. Additionally, morphometric analysis of traits can be a good indicator of
nuclear introgression, providing insight into the paternal genetic contribution [32]. Studies
have identified five distinct lineages of bees [33], likely due to variations in climate and
flora caused by glacial and post-glacial periods [34].
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Therefore, this study aims to measure the Africanization of the honey bee with geo-
metric morphometry and mitochondrial DNA in the Ecuadorian highlands at altitudes
between 2600 and 3274 m above sea level.

2. Materials and Methods
2.1. Sampling

To collect samples for analysis, we visited 15 apiaries (beekeeping establishments)
in the Ecuadorian provinces of Tungurahua and Chimborazo (Figure 1). This territory
presents the particularity of being traversed from north to south by the mountainous system
of the Andes. The climate of the center area of Ecuador can range from temperate semi-wet
to humid. It is warm and dry in the valleys and high cold mountain conditions on the
paramos, over 3400 m above sea level. The temperature is linked to height (i.e., between
1500 and 3000 m.a.s.l.) [35]. Seven hundred and fifty samples were collected, focusing on
the largest apiaries.
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Figure 1. Map of the provinces of Tungurahua and Chimborazo with the geographical locations of
the apiaries marked.

The hives that we worked with were commercial and were selected according to the
characterization of the beekeepers [36]; inclusion and exclusion criteria were considered
regarding the research goals.

This study encompassed apiaries utilizing Langstroth hives, colonies demonstrating
robust health (evidenced by the occupation of seven combs, including an average of three
brood combs, aligned with [37]; honey production exceeding the national average of
10.2 kg per hive [38]; and a history of queen stability. Conversely, exclusion criteria were
implemented for swarm hives, apiaries practicing transhumance, and beekeepers declining
participation in the research.

Of the eighteen apiaries, three were excluded: two in the province of Tungurahua (for
swarming and transhumance) and one in Chimborazo (refusal of the beekeeper). The hives
under study had a breeding chamber and two half honey supers.

An average of 250 worker bees from the central combs of the brood chamber were
taken per hive, which guaranteed variation between the colonies [39], in five hives per
apiary, and were stored in 90% ethanol in a freezer (−20 ◦C) until examination.
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2.2. Geometric and Morphometric Qualities

The left forewing was dissected from 10 bees per colony from the 15 apiaries
(750 wings) [39]. The wings were mounted in glass photographic frames and scanned with
a PlusteK OpticFilm 8100 (7200 dpi). Nineteen homologous landmarks [40], corresponding
to specific vein intersections on the wing, were manually identified in the obtained images
(Figure 2). This process was facilitated by tpsDig2 v2.16 software, which generated TPS
files using tpsUtil v1.46 software [41].
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The analysis additionally included 50 images of the left forewing for each documented
pure subspecies known to have been introduced into the country, A. m. carnica, A. m.
ligustica, A. m. mellifera, and A. m. scutellata, obtained from the Morphometric Bee Data
Bank in Oberursel, Germany.

To the files with the coordinates of the landmarks, a Procrustes adjustment was applied
(to eliminate the variation caused by the differences in the size, position, and orientation of
the wings) to align and obtain the coordinates of the centroid. The overlapping coordinates
were projected in a shaped space tangent [42], thus providing the shape parameters used
in multivariate analyses. Based on the spectral decomposition of the covariance, principal
component analysis (PCA) was carried out as an exploratory analysis with all the mea-
surements of the study area. The differences in shape between apiaries were obtained
by calculating the Mahalanobis distance (degree of separation between populations) by
canonical variable analysis (CVA) using the MORPHOJ package [43].

A discriminant function analysis (DFA) allowed the identification of each sample. A
cross-validation test verified the reliability of the data, and a permutation test was carried
out for all pairwise tests.

First, the entire dataset was analyzed to identify potential natural groupings. Second,
bees were grouped based on altitude. A bivariate correlation (SPSS version 21) between
wing measurements (centroid) and altitude was performed. This analysis resulted in
three altitudinal groupings: 2600–2800 m above sea level (m.a.s.l.), 2801–3000 m.a.s.l., and
3001–3274 m.a.s.l. Finally, individual bees were classified at the subspecies level. This
analysis compared the morphometric variation patterns of the studied bees with known
pure subspecies to assess the extent of Africanization.

A UPGMA cluster [44] was made with the Mahalanobis distances obtained from
morphometric data to show the clustering among honey bee populations, with the pairwise
distance method, using the MEGA 7 software [45]; placebo samples of bees Tetragonisca
angustula were used.

2.3. Mitochondrial DNA

Genomic DNA was extracted directly from the thorax of 15 workers (one per apiary)
using the alkaline lysis method. This method relies on cell lysis to release DNA without
further purification [46]. Each sample was immersed in 50 µL of alkaline lysis solution
(25 mM NaOH, 0.2 mM EDTA, pH 12) and incubated at 95 ◦C for 30 min. Subsequently, the
samples were cooled to 4 ◦C in a Mastercycler TM thermocycler (Eppendorf, Germany) and
were added to 50 µL of neutralizing solution (40 mM Tris-HCl, pH 5). DNA samples were
frozen at −20 ◦C until analysis.
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2.4. DNA Amplification

Genomic DNA was used to amplify the intergenic region tRNALeu-COII with the
primers E2 (5′- GGCAGAATAAGTGCATTG-3′) and H2 (5′-CAATATCATTGATGACC-3′).
Amplification reactions were performed in 50 µL solution containing 1× DreamTaq Buffer,
1.5 mM MgCl2, 1 U of Taq Polymerase, 2 µL of the sample, 0.6 µM of each primer and
0.2 mM of dNTP. The PCR program followed the Garnery, Solignac [47] protocol: initial
denaturation at 94 ◦C for 5 min followed by 40 cycles each at 94 ◦C for 1 min, 55 ◦C for 45 s,
and 72 ◦C for 1 min, and a final extension step at 72 ◦C for 10 min. The size of the amplified
fragment was verified by electrophoresis in 1% agarose gel.

2.5. Sequencing and Phylogenetic Analysis

The samples that amplified successfully were purified and sequenced with the forward
primer (E2) used in the PCR protocol. The molecular analysis sequences were assembled,
edited, and analyzed with the Molecular Evolutionary Genetics Analysis 7 (MEGA 7)
program. Subsequently, sequences were compared with the NCBI Genbank database using
the BLAST algorithm (Basic Local Alignment Search Tool) to determine the sequence(s)
with the highest similarity. A phylogenetic tree was constructed with the sequences aligned
with the maximum likelihood method.

3. Results

In the analysis of the sampled honey bees, when studying the apiaries as a whole,
no specific groups were formed where the first 13 canonical variables were necessary to
explain 80% of the total variation between the colonies, suggesting the existence of intense
gene flow between colonies (Figure 3A). Moreover, there was a highly significant negative
correlation (r = −0.32 **) between altitude and centroid size; these results indicate that at
higher altitudes, the size of the wing shape tends to be smaller, which may be associated
with the effect of altitude in addition to the Africanization process.

Grouping apiaries based on their altitude in the highlands (2600–2800 m above sea
level (m.a.s.l.), 2801–3000 m.a.s.l., and 3001–3274 m.a.s.l.) revealed significant morphometric
variations (p < 0.001). While no morphometric differences were observed between the two
lower altitude levels (2600–2800 m.a.s.l. and 2801–3000 m.a.s.l.), significant variations were
detected between these and the highest altitude level (3001–3274 m.a.s.l.) (Figure 3B). The
total variation in the sample (100%) was represented by the first two canonical variables.
These results indicate significant morphometric differentiation (p < 0.001) between the
sampled honey bees studied and all the pure subspecies examined.

Likewise, the CVA of the data grouping confirmed the differentiation of the pure
subspecies of the highland populations; the scatter plot based on the 19 landmarks showed
the maximum separation between the groups (Figure 3C). Notably, A. m. scutellata overlaps
with samples from all apiaries, suggesting a potential influence and the formation of novel
morphotypes in the highland bee population.

The CVA identified that the first six canonical variables explained 80% of the total
variation between the four groups of A. mellifera and the individuals under study. Ac-
cording to the discriminant analysis, 94.74% of the individuals were classified in their
respective groups. However, when applying the cross-validation test, 91.79% of them were
correctly identified.

A total of 90.2% of individuals were classified as Africanized, 5.7% as A. m. scutellata,
1.8% as A. m. ligustica, 1.2% as A. m. carnica, and 1.1% as A. m. mellifera (Table 1). However,
the frequency of Africanized morphotypes did not differ for each province.

The degree of Africanization was similar, between 90% and 95.8%, in the three altitu-
dinal floors (Table 2).
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Table 1. Frequency of bees (wings) in the central highlands of Ecuador based on the pure subspecies
of Apis mellifera.

Known
Classification N (Wings) A. m. carnica

(%)
A. m. ligustica

(%)
A. m. mellifera

(%)
A. m.

scutellata (%)
AB*
(%)

A. m. carnica 50 90 10 0 0 0
A. m. ligustica 50 10 90 0 0 0
A. m. mellifera 50 0 2 98 0 0
A. m. scutellata 50 0 0 0 94 6

AB* 750 1.2 1.8 1.1 5.7 90.2

AB* = Africanized bees, samples from the 15 apiaries.

Table 2. Frequency of Apis mellifera morphotypes based on altitudinal floors in the central highland
of Ecuador.

Morphotype
(%)

Altitudinal Floors (m.a.s.l.)

2600–2800 2801–3000 3001–3274
n = 15 n = 35 n = 25

Africanized 95.8 93 90
European 4.2 7 10
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The Mahalanobis distances were closer for A. m. scutellata (D2 = 3.51); however, longer
distances were seen for the subspecies A. m. ligustica (D2 = 4.28), A. m. carnica (D2 = 4.63),
and A. m. mellifera (D2 = 4.73). The dendrogram showed three main clusters (Figure 4).
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Figure 4. Dendrograms showing (A) groupings of pure subspecies of Apis mellifera, apiaries, and a
placebo; (B) groupings of pure Apis mellifera subspecies and study apiaries of the central highlands of
Ecuador, based on the Mahalanobis distances. Method: pairwise distance. Bee lineages: A, M, and C.
Subspecies: A. m. scutellata, A. m. mellifera, A. m. carnica, and A. m. ligustica. Apiaries under study:
1–15. Red line = phenom. Placebo samples = Tetragonisca angustula.

The first cluster encompassed individuals of the M lineage (A. m. mellifera), the second
cluster comprised members of the C lineage (A. m. ligustica and A. m. carnica), and the third
cluster consisted of two sub-groups: populations of the A lineage (A. m. scutellata) and local
Africanized hybrids. A nine-locus phenogram effectively differentiated the three lineages
and the study subjects.

Intergenic regions of the RNAtleu-COll showed polymorphisms in sequence and size
among individuals. The amplification of the RNAtleu-COll fragment resulted in bands
with fragments of lengths of between 400 and 740 base pairs.

Samples were related to more than one sequence, and the haplotypes were already
described; however, the lineage classification did not differ in any case. The maternal
origins of all patterns were traced to Africa (lineage A), with seven distinct haplotypes
identified. Notably, the A1q haplotype was detected, a variant previously unreported at
the national or regional levels (Table 3). Genetic similarity among the observed haplotypes,
assessed by shared nucleotide sites, ranged from 94.14% to 100%.

Table 3. Similarity, haplotypes, and lineages in the analysis of mitochondrial DNA of representative
samples of 15 apiaries of Apis mellifera from the central highland of Ecuador.

Apiary Bee Identity (%) Haplotype Lineage

A1 1 99.87 A26a A
A2 2 99.87 A26c A
A3 3 99.6 A30 A
A4 4 100 A30 A
A5 5 99.49 A26c A
A6 6 99.70 A26c A
A7 7 96.83 A1q A
A8 8 99.87 A26c A
A9 9 99.83 A1e A
A10 10 100 A1e A
A11 11 96.14 A26a A
A12 12 99.66 A1e A
A13 13 100 A26 A
A14 14 100 A1e A
A15 15 94.14 Seq1 A
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The most frequent detections were African haplotypes A26 and A1; the rest were
detected less frequently, which indicated that the maternal Africanization process occurred
throughout the area under study. The two percent covers all the nodes of the sequences of
the intergenic region RNAtleu-COll of the mitochondrial DNA of the bee samples, which
represents a high level of relation between the sequences in comparison (Figure 5).
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4. Discussion

According to the criteria of Klok and Harrison [48], altitude can influence the size and
shape of the structures of organisms because, as it is higher, the oxygen concentration in the
air decreases and causes hypoxia, which can alter the development of individuals, making
them smaller, which shows that it plays a crucial role in the differentiation of populations.
This behavior could be because the migration of Africanized bees to high areas (above
2600 m.a.s.l.) is probably slower, which is fundamentally because the temperatures are less
favorable for their development, and adaptation is more difficult than in other scenarios in
the region.

The arrival of Africanized honey bees in Ecuador likely began in the lowland tropics,
where the climate is more favorable. Cooler temperatures in the highlands likely presented
a selection pressure, delaying colonization by Africanized honey bees until they could
adapt. We observed that the highest altitude level differed from the preceding two. This
finding aligns with the lower Africanization percentage of individuals at higher altitudes. In
the highlands of Mexico, Medina-Flores, Guzmán-Novoa [29] reported 14% Africanization
at altitudes between 1800 and 2400 m.a.s.l.; 44% between 1200 and 2000 m.a.s.l., and 69%
between 1000 and 1400 m.a.s.l. This suggests that European honey bee genotypes are better
maintained at higher altitudes with cooler climates.
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The first hives introduced in Ecuador were of the honey bee ecotype A. m. ligustica [49],
in the 1950s. The arrival of Africanized hybrids meant the abrupt displacement of the
populations of these bees due to competition. Likewise, Wallberg, Han [50] argued that the
success of Africanized bees in spreading is related to the presence of genes with possible
functions regarding the motility and maturation of spermatozoa, for which reason bees in
South America have, to a large extent (70–90%), lineage of African origin.

The most common haplotypes in nearby countries in the region were A1, A4, and
A26; we know that in Uruguay, Central–South Brazil, and Venezuela, the most common is
A4 [51], and in Colombia, the most common are A1e, A26a, A1, A4, A26d, and A26c [52].
In northern Ecuador, diversity related to lineage A and C was found: A26a, A26c, A30, A1,
A1e, A31, seq1, seq2, C1, C2j, and C31 [53].

The high presence of the A1 haplotype is consistent with the existence of a negative
correlation between latitude and the presence of the haplotype, with a higher frequency of
A1 towards the north of Brazil [54]. It can also be noted that there is a similar frequency
of haplotypes across the study area; these results agree with the morphometric analyses
(96% paternal Africanization), so it can be asserted that the Africanization process in
the highlands has both a matrilineal and patrilineal origin (it is bidirectional). More
recently, Tibatá, Arias [52] confirmed that there are 98.3% of populations with African
mitotypes. However, a prevalent practice in this region—capturing wild swarms to increase
hive numbers—might inadvertently contribute to the spread and survival of Africanized
bees [36].

Acosta [53] suggests an Africanization towards the north of Ecuador, with a high
presence of haplotypes of the A lineage and a reduction as it enters the central part of the
country. The present study suggests that Africanization may also have occurred in the
eastern region, following an adaptation period that allowed bees to migrate to different
altitudes. In this study, the apiaries showed a haplotype from the A lineage, with the first
report of the A1q haplotype at the national level.

Based on morphometric analyses, the Africanization process in the highlands is still
in progress. However, the complete Africanization of the country is limited due to the
introduction of imported European queens, as pointed out by Branchiccela, Aguirre [30]
in Uruguay.

The haplotypes identified in the present investigation do not coincide with A4, the
predominant haplotype in southern Africa [55], Brazil, and Uruguay [54]. Haplotype A
patterns have also been reported in North Africa and the Iberian Peninsula [55]. Therefore, it
could have a double-origin in America, either from the Iberian Peninsula or the introduction
of A. m. scutellata in Brazil in 1956. For this reason, the use of new polymorphic genes is
necessary to identify the asymmetry in gene flow.

The haplotype variability shows a high gene flow among the bees of the studied region,
which delays the formation of morphotypes as an adaptive response of these insects to the
specific conditions of each altitudinal floor in the highlands of Ecuador. Additionally, the
disorganized introduction of queens of different subspecies into the country by beekeepers
also delays the formation of morphotypes.

The presence of Africanization in Apis mellifera in the central highlands of Ecuador,
with a diversity of haplotypes of the A lineage, indicates a constant and dynamic exchange
of germplasms. In addition, the existence of specific morphological groups within the
ecoregions suggests a process of adaptation in bees to the environmental conditions of
the highlands.

However, further analysis is needed to assess the impact of meteorological variables
on the dispersion of Africanization. Moreover, it is necessary to utilize new polymorphic
genes to identify the asymmetry of gene flow in Apis mellifera from the central highlands
of Ecuador. This will enable the assessment of genetic diversity for incorporation into
genetic programs.

Guzmán-Novoa, Correa [56] pointed out that the first cause of the displacement of
European genes via maternal inheritance is the usurpation of the colonies by queens.
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However, Mortensen and Ellis [54] indicate that matrilineal usurpation is not the principal
contributing cause to African haplotypes, but rather, hybridization events are.

5. Conclusions

The presence of Africanization in Apis mellifera in the central highlands of Ecuador,
with a diversity of lineage A haplotypes, indicates a constant and dynamic germplasm
exchange. The formation of specific morphological groups within ecoregions suggests a
process of adaptation of bees to the environmental conditions of the highlands. Future
research should prioritize evaluating the impact of meteorological variables on the dispersal
patterns of Africanized honey bees in Ecuador. Such insights are crucial for devising
effective conservation and management strategies for Ecuadorian honey bee populations.
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